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We introduce Dual Embedding for Stellar Astronomy
(DESA) model, a novel multi-modal model designed for
representational learning of stellar light curves and spec-
tra. DESA operates in two main stages: first, it trains
individual encoders for each modality using a hybrid ap-
proach that combines supervised and self-supervised learn-
ing; second, it integrates the individual embeddings through
a unique module, DualFormer. DualFormer is motivated
by the orthogonality of light curve and spectra and incorpo-
rates three key innovations: (1) a transformer-based module
that merges both inter-modality and intra-modality informa-
tion, (2) a specialized loss function that ensures alignment
across modalities while preventing collapse, and (3) a lin-
ear projection layer that extracts meaningful information
from the joint embedding space. This projection generates
physically relevant features, useful for tasks like similar-
ity search and anomaly detection. We evaluate DESA on
several downstream tasks, including zero-shot classifica-
tion of Color-Magnitude Diagram (CMD) classes, few-shot
regression of stellar magnitude and color values, and fine-
tuning for binary detection and stellar age prediction. In all
cases, DESA outperforms state-of-the-art self-supervised
and single-modality models, demonstrating its superior per-
formance on astrophysical data. DESA marks a significant
step forward in multi-modal, data-driven research in stellar
astrophysics.

1. Introduction
Understanding the fundamental properties of stars is key
to astrophysics, providing insights into stellar evolution,
galactic structure, and planet formation. Traditionally,
this has been done through analysis of stellar measure-
ments, such as light curves (photometry) and spectra (spec-
troscopy). While spectra analysis predicts stellar parameters
like Teff , logg, vsini and metallicity (FeH) (Garcı́a Pérez
et al., 2016; Wu et al., 2014), light curve analysis often uses
spot modulation to detect periodicity and magnetic activity
(Reinhold et al., 2013; McQuillan et al., 2014; Santos et al.,
2019; Lu et al., 2020; Santos et al., 2021; Reinhold et al.,
2023; Hattori et al., 2025). The rise of deep learning has fur-
ther impacted stellar astrophysics, with models predicting
or classifying stellar parameters from observations and sim-
ulations. For example, (Leung & Bovy, 2019), (Bai et al.,
2020), (Olney et al., 2020), (Leung & Bovy, 2023), (Li &

Lin, 2023), and (Koblischke & Bovy, 2024) used spectra-
based deep learning models, and (Blancato et al., 2020),
(Claytor et al., 2024),(Kamai & Perets, 2025), and (Claytor
& Tayar, 2025) used light curve based models. Most of these
approaches, however, rely on a single modality, referred to
as unimodal models.
In contrast, multi-modality models combine data from dif-
ferent modalities of the same object, showing great success
in NLP and vision, as seen in CLIP (Radford et al., 2021)
and its variants. AstroCLIP (Parker et al., 2024) and Maven
(Zhang et al., 2024) are examples of such models for as-
trophysical data. AstroCLIP combines galaxy images and
spectra, and Maven combines light curves and spectra of
supernova for classification and redshift estimation.
Here, we present DESA, the first multi-modal model for
stars. While similar in some ways to previous approaches
(e.g., using a two-step model), DESA offers a new perspec-
tive on multimodality in astronomical data. A diagram of
DESA is shown in the upper panel of Figure 1.

2. Related Work
2.1. Contrastive Learning

Contrastive self-supervised methods use ’positive’ and ’neg-
ative’ pairs to create an embedding space where positive
pairs are close and negative pairs are distant. These meth-
ods have been highly successful in the vision domain, with
works like SimCLR (Chen et al., 2020). However, classical
contrastive methods have drawbacks, such as the need for
large batch sizes to adequately represent negative samples
and the simplified assumption of ’positive’ and ’negative’
pairs, which can be problematic in domains with continuous
transitions, like stars. Another issue is collapsing, where
the model creates trivial features. Several approaches have
addressed these challenges, including SimSiam (Chen &
He, 2020), MoCo (He et al., 2019), and BYOL (Grill et al.,
2020). Despite these issues, contrastive methods remain
popular. For example, both (Parker et al., 2024) and (Zhang
et al., 2024) used contrastive methods.

2.2. Regularized Methods

A different line of work focuses on feature-level discrimi-
nation rather than instance-level discrimination, as in con-
trastive methods. This idea is motivated by canonical cor-
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relation analysis and was suggested as a self-supervised
method by (Zhang et al., 2021) and (Zbontar et al., 2021).
The latter was the motivation of the Variance-Invariance-
Covariance Regularization (VicReg) architecture (Bardes
et al., 2021). VicReg applies three losses to prevent col-
lapse and maintain alignment: ensuring embedding variance
is large, forcing the covariance between features to be the
identity matrix, and minimizing the L2 distance between em-
beddings. This method does not require negative pairs and
has been shown to outperform contrastive methods without
requiring large batch sizes.

3. Multi-Modal Neural Network for Stellar
Astrophysics

3.1. Hybrid Training of Individual Modalities

We begin by training individual modalities separately, as
in (Parker et al., 2024) and (Zhang et al., 2024), but with a
hybrid framework. This framework adds a supervised head
to the self-supervised model and trains with the following
loss function:

Lhybrid = (1− λ)Lssl + λLsupervised, (1)

where λ controls the balance between self-supervision and
supervision. This idea, used by (Walmsley et al., 2022)
for unimodal galaxy models, ensures the embeddings are
physically meaningful. in Appendix B, we show a training
example and plot Lssl, Lsupervised, and Lhybrid. It can be
seen that the addition of Lsupervised indeed contributes to
the final loss. The spectra encoder uses a CNN followed by
a Conformer module (Gulati et al., 2020), modified with Ro-
tary Position Embedding (RoPE) (Su et al., 2021). The self-
supervised approach for spectra is Masked-Filling, where
15% of the spectrum is masked, with 80% replaced by zero
and 20% by a random value. The model uses a CNN decoder
to reconstruct the spectrum and a Conformer-MLP branch
to predict stellar parameters. Lssl is the Mean Squared Er-
ror (MSE) between the masked and filled spectra, while
Lsupervised is Conformalized Quantile Regression (CQR)
(Romano et al., 2019), which creates guaranteed confidence
intervals. We also incorporated signal-to-noise ratio (SNR)
as a weight for the final loss.
For the light curve encoder, we use a contrastive-hybrid
method. Light curves are augmented into two views via
cropping, and both the Autocorrelation Function (ACF) and
Fast Fourier Transform (FFT) are added as channels. The
views are processed by a CNN encoder and Conformer, with
embeddings combined via SimSiam framework (Chen &
He, 2020), and a 2-layer MLP that predicts the rotational pe-
riod. Here, Lssl is the cosine similarity loss from SimSiam,
and Lsupervised is again CQR.

3.2. DualFormer

The next step is to combine the embeddings from the pre-
trained individual encoders. Here we are using a novel
approach specifically tailored for light curve and spectra
multi-modality. This is motivated by the observation that
the information relationships between light curves and spec-
tra of stars are very different from those found in NLP and
vision modalities. While text describe its corresponding
image, light curve and spectra show different relationships.
They both partially describe the star in complementary ways.
Intuitively, light curves and spectra can be seen as orthogo-
nal views of the star. Of course, the measurements are not
mathematically orthogonal, since the measurements come
from different surveys, with potentially different bands and
sensitivities, and can be taken at very different times, which
makes the relationships more complicated. Moreover, in
both text and images (as well as spectra and images like
in AstroCLIP), the dynamics of the system are not mani-
fested in the data. Contrary to that, light curves measure
time-dependent phenomena by design. This creates a time-
dependent information relationship in the case of light curve
and spectra alignment. As such, the shared information
between light curves and spectra is more complicated and
may be degenerate. Another uniqueness of astronomical
data is the importance of prior knowledge. In astrophysics,
we usually have some extra information about objects. This
can be, for example, stellar parameters that are known with
good accuracy. As mentioned in 3.1, this information can
be used to train individual encoders, but it can also be cru-
cial during the alignment process, since this information is
modality-invariant. These differences suggest that standard
multi-modal approaches might not be sufficient in our sce-
nario, and that a specific model is needed. The lower panel
of Figure 1 shows a diagram of DualFormer. The inputs are
the final features from the light curve and spectra encoders.
They are first processed in a transformer-like module with
a modified MHSA; instead of self-attention, we use both
self-attention and cross-attention, where the former focuses
on in-modality relationships, and the latter focuses on cross-
modality relationships. Next, we aggregate the information
using average pooling, add conditional prior information,
and project both features through the same linear layer, A.
This layer is the effective bottleneck of the network and
should store the important shared information. Specifically,
we use A for the projection of one feature branch and AT

for the projection of another branch. To align the features
while preventing collapse, we are motivated by (Zhang et al.,
2021) and (Bardes et al., 2021) but with some modifications.
We use the same covariance loss that decorrelates features:

Lcov(xi, xj) =
1

d

∑
k ̸=l

[Cov(xi, xj)]
2
kl, (2)
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Model Teff MAE (K) logg MAE (dex) FeH MAE (dex)
DESA (ours) 91.56 0.168 0.069
StarGRUNet 93.77 0.162 0.070

Table 1. Result of spectra encoder. Ground truth labels are from
APOGEE. See text for details.

But we use it both inside each branch and between branches;
specifically, we chose to decorrelate the features after pro-
jection, p1, p2 in Figure 1, and the full covariance loss is:

Lcov = Lcov(p1, p1) + Lcov(p2, p2) + Lcov(p1, p2) (3)

In addition, instead of a point-wise MSE loss between fea-
tures, we use the following loss term:

Lduality = MSE(⟨z1, p1⟩, ⟨z2, p2⟩), (4)

where z1, z2 are the features before the projection by A,
p1, p2 are the projected features, and ⟨·⟩ is the standard
inner product. Ldaulity can be seen as a less constrained
version of the invariance term from (Bardes et al., 2021):
writing p1 = Az1 and p2 = AT z2 we see that Lduality

requires equality of the following quadratic forms:

zT1 Az1 = zT2 A
T z2 (5)

We see that while the standard invariance term requires z1
and z2 to be identical vectors, Lduality does not even require
them to lie on the same hyper-surface (since in general A ̸=
AT ), but does require the same amount of information to be
extracted from the features. This gives much more freedom
for z1 and z2 to be different, but constrains the projections,
namely A, and AT . Since A is not necessarily hermitian,
we expect the meaningful information to be stored in a
shared vector space of A and AT . Ideally, this would be the
eigenspace of A. Therefore, our final feature space is the
projection of the feature vectors (z1, z2 in Figure 1) unto the
eigenspace of A. This can be written as:

f = (z1 + z2)
TV, (6)

where z1, z2 are the pre-projection feature vectors and V
are the eigenvectors of A after training.
Although this motivation might sound appealing, it is not
guaranteed to work well. To test the architectural choices
of DualFormer, we conducted an ablation study and tested
different attention mechanisms and different uses of A (with
and without transpose). The ablation study results are shown
in Appendix B. We see that the suggested architecture out-
performs the alternatives.

4. Results
We train the full model using low-resolution spectra from
LAMOST (Zhao et al., 2012; Wang et al., 2022) and light

Figure 1. Left panel - High-level diagram of the entire model.
Right panel - Detailed diagram of the DualFormer module.

curves from Kepler (Mathur et al., 2017). The implemen-
tation details of our model and all baselines are detailed
in Appendix A. First, we present the results of the hybrid
pre-training of individual modalities. The spectra encoder
performs similar to StarGRUNet (Li & Lin, 2023), with
better MAE for Teff and FeH , and competitive results
for logg as can be seen in Table 1. While the results are
similar, the main improvement over previous works is the
fact that we used the entire SNR range, while StarGRUNet
and similar works ((Li et al., 2022) for example) used some
range of SNR values. This is because we integrated the
SNR information into the training by weighting the final
loss according to the SNR. In Appendix B, we show the
MAE as a function of SNR for APOGEE test set and LAM-
OST test set. We see that the SNR sensitivity of DESA is
better than that of StarGRUNet (see figure 11 in their paper).
For the light curve encoder, our model achieves an RMSE
of 2.61 days, outperforming (Blancato et al., 2020), the only
work that used only real light curves (and no simulations)
for training, by a factor of 2.
Next, we evaluate fine-tuning on various tasks: zero-shot,
few-shot, and full fine-tuning. For zero-shot Color Magni-
tude Diagram (CMD) classification, we used labels from
(D. et al., 2025) and a Gaussian Mixture Model (GMM)
on UMAP-reduced features. For few-shot, we used linear
regression on a small subsample (20% of the test set) to
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Model GMM zero-shot accuracy Linear Regression R2 BP −RP Accuracy Gmag Accuracy
DESA (ours) 0.40 0.920 0.677 0.711

MoCo 0.18 -0.001 0.208 0.159
MoCo Clean 0.11 -0.0004 0.202 0.160

SimSiam 0.15 -0.0003 0.202 0.158
VICReg 0.25 -0.0003 0.202 0.158

Table 2. Result of zero-shot CMD clustering (first column), and
few-shot regression. See text for details.

predict de-reddened BP-RP and absolute G-Magnitude. In
both cases, our model outperform alternative models with a
very large margin (Table 2).
In Appendix B, we show the UMAP reduced features, col-

ored by the CMD classes used for clustering. We see that
our model shows a much more informative UMAP, with
natural separation, while other models mix classes (Dwarfs
and Subgiants, for example). In Appendix B we show the
results of few-shot learning. The left panel shows the results
of color and magnitude predictions (which are compared to
baselines and summarized in Table 2) and the right panel
shows predictions of Teff and log( L

L⊙ ). In both cases we
see that the model not only learn the individual labels, but
also the correct relationships. This suggests that we can
recover stellar diagrams and even create new diagrams.
For fine-tuning tasks, we add a transformer prediction head
and fine-tune on binary detection and stellar age estimation.
Both tasks are challenging and require both photometric and
spectroscopic information. For baselines, we used the same
models as in the zero-shot and few-shot experiments, with
the addition of the individual pretrained encoders, to test
unimodal models. For binary detection, we use a curated
sample from (D. et al., 2025), which consists of binaries
and single stars. We achieved 96% accuracy, F1, and AUC,
outperforming all alternatives as can be seen in Figure 2.
We also outperformed the recent supervised work by (Jing
et al., 2025), which trained a supervised model and reported
AUC of 95%. It is worth mentioning that one of the ad-
vantages of our model is the fact that it learns the task of
binary detection from different detection methods, while
other models (like (Jing et al., 2025)) usually use a specific
method. This is a result of the fact that it combines photo-
metric and spectroscopic information and implies that it has
the potential for better generalization.
For age prediction, a particularly challenging task, we train
on gyrochronology ages from (Bouma et al., 2024) and
(Lu et al., 2024) and achieve an RMSE lower than 1 Gyr,
outperforming all other models (Table 3). Similar to the
binary detection task, the fact that our model uses multi-
modal information enables potential age estimation from a
combination of different methods.

5. Conclusions
We presented DESA, a new multi-modality model for stellar
astrophysics. DESA backbone consists of pre-trained uni-

Figure 2. Experimental results of binary detection for different
models. The left panel shows ROC curves. The right panel shows
precision-recall curves.

Model Age MAE (Gyr) Age RMSE (Gyr)
DESA (ours) 0.61 0.94

MoCo 0.81 1.28
MoCo Clean 0.78 1.23

SimSiam 1.24 1.81
VICReg 0.78 1.23

Only Spectra 1.30 1.70
Only Light Curve 0.80 1.25

Table 3. Experimental result of stellar age prediction for different
models.

modality encoders that show state-of-the-art perforemence,
and an alignment module, DualFormer, which is motivated
by the observation that astrophysical data is unique and dif-
ferent compared to common multi-modality domains such as
vision and NLP. We demonstrate the effectiveness of DESA
in various ways, using zero-shot, few-shot, and fine-tuning
experiments for challenging tasks like binary detection and
stellar age inference that require information from both
modalities. DESA consistently outperforms all baselines on
all experiments with large margins, proving its superiority
in the astronomical domain. These results demonstrate that
DESA is not merely a predictive model, but a foundation
model capable of extracting physically meaningful struc-
ture from heterogeneous data. We anticipate that DESA
will serve as a powerful framework for future data-driven
discovery in large stellar surveys, facilitating population
studies, anomaly detection, and improved parameter estima-
tion across the HR diagram.
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A. Implementation Details
A.1. hyper-parameters

In big models, like DESA, hyperparameter tuning can be
a very challenging task. This becomes even harder when
the model consists of two steps - pre-training and alignment.
We therefore chose to use a simple heuristic when defining
the hyperparameters of our model. As the number of spectra
samples is much larger than the number of light curve sam-
ples (6.5M vs 200K), we designed the individual encoders
such that the spectra encoder has more parameters than
the light curve encoder. This is motivated by neural scal-
ing laws, a phenomenological relationship between dataset
size, model parameters, and performance that was originally
found in the vision and language domains (Kaplan et al.,
2020), but recent works showed it also applies to astronomi-
cal data (Walmsley et al., 2024; Pan et al., 2024). Therefore,
the dimension of the final spectra features was chosen to be
2048, and that of the light curve was chosen to be 256. The
number of parameters in spectra and light curve encoders
is about 500M and about 11M, respectively. During hybrid
training, λ was chosen arbitrarily to be 0.5. The embedding
dimension in dualformer was also chose to be 256, and the
number of parameters in this module is also ∼ 11M . The
light curve encoder was trained using a learning rate decay
scheduler with the cosine annealing method. The initial and
final learning rate is 2·10−5 decreasing to 2·10−6. All other
modules was trained with a constant learning rate of 2·10−5.
We trained all modules with AdamW optimizer (Loshchilov
& Hutter, 2017). Lastly, we estimated the energy used to
train the entire model using CodeCarbon1 package. It is
estimated to be 334 kWh for the entire model, out of which
204 kWh are for the pretraining stage.
All the code used for training and experiments is publicly
available on https://github.com/IlayMalinyak/DESA.

A.2. Baseline Models

We compare our model with contrastive and regularized self-
supervised methods that achieved state-of-the-art results in
various tasks: VicReg, SimSiam, and MoCo. Each of the
methods represents a different methodology - VicReg is a
regularized method, SimSiam is a ’positive-only’ contrastive
method, and MoCo is a ’positive and negative’ contrastive
method. The use of positive and negative pairs in our sce-
nario might be challenging because there are many samples
with multiple spectra. This means that in a batch of samples,
we might have off-diagonal positive pairs, which means
that they would count as negative pairs. To overcome this,
we created a version of MoCo with a special sampler that
ensures the uniqueness of stars in each batch. We call this
variant Moco-clean. To make sure that all models get the

1https://codecarbon.io/

same information, we used the same pre-trained encoders
(as specified in section 3.1) in all baselines. We also added
the same conditional labels to all models and designed them
to have at least the number of trainable parameters as in
DESA, per task.

B. supplementary graphs

Figure 3. Training example of spectra encoder (upper panel) and
light curve encoder (lower panel). The gray and cyan lines rep-
resents Lssl and Lsupervised respectively. The red line is the
combined loss.
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Figure 4. Results of ablation study of the dualFormer module. The
upper panel shows a comparison between transposing and not
transposing A. The lower panel compares different attention mech-
anisms.

Figure 5. Box plots of MAE vs SNR for APOGEE test set and
LAMOST test set.

9



Multi-Modal Stellar Astrophysics

Figure 6. UMAP of the final features of DESA model and all baselines. Colors are Color Magnitude classes from (D. et al., 2025).

Figure 7. Few-shot results of DESA. Left - prediction of BP −RP color and G band magnitude (upper panel) and a comparison between
the true and predicted color magnitude diagram (lower panel). Right - the same for Teff and log( L

L⊙ ).
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