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Abstract
Event time series are sequences of discrete events
occurring at irregular time intervals, each associ-
ated with a domain-specific observational modal-
ity. They are common in domains such as high-
energy astrophysics, computational social science,
cybersecurity, finance, healthcare, neuroscience,
and seismology. Their unstructured and irregular
structure poses significant challenges for extract-
ing meaningful patterns and identifying salient
phenomena using conventional techniques. We
propose novel two- and three-dimensional tensor
representations for event time series, coupled with
sparse autoencoders that learn physically mean-
ingful latent representations. These embeddings
support a variety of downstream tasks, including
anomaly detection, similarity-based retrieval, se-
mantic clustering, and unsupervised classification.
We demonstrate our approach on a real-world
dataset from X-ray astronomy, showing that these
representations successfully capture temporal and
spectral signatures and isolate diverse classes of
X-ray transients. Our framework offers a flexible,
scalable, and generalizable solution for analyz-
ing complex, irregular event time series across
scientific and industrial domains.

1. Introduction
Event time series—irregular sequences of timestamped dis-
crete events of a particular observational modality—arise
across a wide range of scientific and industrial domains. In
astronomy, they represent photon arrivals detected by tele-
scopes; in computational social science, they trace social
media activity or user interactions; in cybersecurity, they
log system alerts; in finance, they capture transactions and
market fluctuations; in healthcare, they reflect patient mon-
itoring data; in neuroscience, they record neuronal spike
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trains; and in seismology, they track seismic wave arrivals.
These time series encode rich temporal and domain-specific
information, often containing salient patterns, natural group-
ings, and rare anomalies. Yet this information can remain in-
accessible, as the irregular and unstructured nature of event
time series limits the effectiveness of conventional analysis
techniques. Unlocking their latent structure requires more
flexible and expressive methods that simultaneously enable
a range of follow-on analyses. In this work, we present
a representation learning (Bengio et al., 2013) framework
based on sparse autoencoders (SAEs; Hinton & Salakhut-
dinov 2006; Ng et al. 2011) to extract meaningful features
from event time series, enabling downstream tasks such as
anomaly detection, similarity searches, clustering, and un-
supervised classification. By enforcing sparsity in the latent
space, the model is encouraged to focus on the most physi-
cally relevant features, while remaining robust to nuisance
variation arising from noise, observational systematics, or
contextual artifacts unrelated to the underlying phenomena.

We demonstrate our pipeline on archival data from the Chan-
dra X-ray Observatory (Weisskopf et al., 2000). In X-ray
astronomy, event files record the arrival times and energies
of individual photons, capturing the stochastic behavior of
astrophysical sources. Some of the most interesting discov-
eries—such as extragalactic fast X-ray transients (FXTs;
Jonker et al. 2013; Glennie et al. 2015; Xue et al. 2019;
Lin et al. 2022) and even the first candidate extragalactic
planet (Di Stefano et al., 2021)—have been made serendip-
itously, often years after the data were collected. FXTs
are brief, intense X-ray flares from extragalactic sources
lasting only minutes to hours, whereas the planet candidate
was identified as a dip in the X-ray light curve. These and
other transient sources span a wide range of timescales and
spectral properties, offering insights into their astrophysical
origins. However, conventional methods often rely on rigid
assumptions and handcrafted summary statistics (Yang et al.,
2019; Quirola-Vásquez et al., 2022), limiting their ability
to capture the full complexity of such phenomena. In con-
trast, our sparse representation learning approach provides
a flexible and scalable alternative—well-suited for anomaly
detection, transient searches, and unsupervised classifica-
tion in large datasets containing diverse types of event time
series. Our method has already led to the discovery of XRT
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200515 (Dillmann et al., 2025), a previously unknown FXT
and a new hyperluminous supersoft X-ray source (Sacchi
et al., 2025) that had been buried in the archive for years.

2. Method
2.1. Tensor Representation of Event Time Series

For a dataset with n event time series {xi}ni=1 that vary
in length N and duration T , we introduce a fixed-size ten-
sor representation that standardizes the data for subsequent
analysis. This approach is inspired by the DMDT maps
developed for optical light curves by Mahabal et al. (2017).

Assume that each event time series consists of a sequence
of timestamps t = {tk}Nk=1 and associated event modality
values E = {Ek}Nk=1. In the context of X-ray astronomy,
t would correspond to the photon arrival times and E to
the photon energies. The total duration of the event time
series is given by T = tN − t1, and the event values lie
in the range [Emin, Emax], where Emin = mink Ek and
Emax = maxk Ek. To standardize the inputs across event
time series, we normalize the time axis as

τ =
t− t1
T

, (1)

which maps all timestamps to the normalized interval τ ∈
[0, 1]. For the event values, we apply a transformation

ϵ = f(E), (2)

with ϵ ∈ [ϵmin, ϵmax], where ϵmin = f(Emin) and ϵmax =
f(Emax). The choice of transformation function f(·) de-
pends on the domain and distribution of the event modality
and is intended to highlight relevant structure for down-
stream analysis. To capture local temporal dynamics be-
yond absolute event times, we introduce a third dimension
based on inter-event intervals. Specifically, we compute
the time differences between consecutive events, ∆t =
{∆tk}Nk=1 = {tk+1 − tk}N−1

k=1 , and normalize them to the
range [0, 1] as

∆τ =
∆t−∆tmin

∆tmax −∆tmin
, (3)

where ∆tmin = mink ∆tk and ∆tmax = maxk tk. This
third axis captures local temporal density and is a proxy for
the event rate: small values of ∆τ correspond to periods of
concentrated activity, while larger values indicate sparser
or quiescent intervals. In heterogeneous, irregular discrete
time series, temporal spacing often conveys essential struc-
tural information beyond the absolute timestamps alone.
Including this dimension improves the expressiveness of the
representation, allowing models to capture transient dynam-
ics and distinguish between different temporal regimes.

These three normalized axes—event time (τ ), transformed
modality (ϵ), and inter-event interval (∆τ )—are discretized

into fixed-width bins with nτ , nϵ, and n∆τ bins, respec-
tively. Each event is assigned to a voxel in the resulting
three-dimensional histogram based on its coordinates in this
normalized space. The number of bins along each axis can
be chosen flexibly to achieve the desired level of temporal
or modality-specific resolution, depending on the applica-
tion, domain, and characteristics of the data. This allows
the representation to be tailored to the appropriate scale and
granularity for a given task, while still providing a consistent
input format for models, even when the dataset contains se-
quences of variable length and irregular temporal structure.
This results in a tensor Xi ∈ Rnτ×nϵ×n∆τ , which provides
a standardized, structured input format for each of the origi-
nal event time series xi. Each tensor is then collected into
a final processed dataset {Xi}ni=1. We also refer to these
tensors as E–t–dt cubes. If we were to only bin along time
τ and modality ϵ, we would obtain two-dimensional tensors
Xi ∈ Rnτ×nϵ , which we refer to as E–t maps. Appendix
A shows E–t maps and E–t–dt cubes for an X-ray flare,
dip and pulsating source.

2.2. Sparse Representation Learning

We now aim to learn compact and informative represen-
tations from the E–t–dt cubes. To this end, we employ
a SAE—an unsupervised neural network model designed
to extract structured, low-dimensional features from high-
dimensional inputs. By learning to reconstruct the input data
while enforcing sparsity in the latent space, the SAE identi-
fies salient patterns and compresses each tensor into a rep-
resentation that preserves essential temporal and modality-
specific features, while remaining insensitive to irrelevant
variation (Ranzato et al., 2007; Ng et al., 2011). This in-
cludes robustness to noise, systematics, observational arti-
facts, and context-dependent features introduced by the data
acquisition process. Instead, the learned representations are
encouraged to capture the most important latent factors that
reflect the underlying physical characteristics and meaning-
ful signals encoded in the time series, rather than superficial
or incidental aspects of the data.

Formally, let Xi ∈ Rnτ×nϵ×n∆τ denote the input tensor
for the i-th event time series. The autoencoder consists of
two parameterized functions: (i) an encoder network ϕθ :
Rnτ×nϵ×n∆τ → Rd that maps Xi to a d-dimensional latent
vector zi = ϕθ(Xi), and (ii) a decoder network ψθ : Rd →
Rnτ×nϵ×n∆τ that reconstructs the input as X̂i = ψθ(zi).
To encourage sparsity in the learned representations, we
impose an L1 penalty on the latent vector zi. The total
training loss balances reconstruction accuracy and sparsity,
and is given by:

L(θ) = 1

n

n∑
i=1

∥∥∥Xi − X̂i

∥∥∥2
2
+ λ ∥zi∥1 , (4)
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Figure 1. Two-dimensional t-SNE projection of the learned latent space from the SAE applied on the E–t-dt cubes. Panel A: Points
are color-coded by the variability index of the corresponding X-ray sources. Panel B: Points are color-coded by the hard-to-soft X-ray
hardness ratio. Panel C: Known dips, flares, and pulsating sources (crosses) occupy distinct clusters in the embedding space, enabling the
identification of new transient candidates via clustering and similarity searches.

where λ > 0 controls the strength of the sparsity regular-
ization. Once trained, we discard the decoder and use the
encoder ϕθ as a standalone feature extractor. The result-
ing latent vectors zi serve as learned representations of
the original event time series and can be directly used for
downstream tasks such as clustering, anomaly detection, or
similarity-based retrieval. A similar procedure is followed
when using the E–t maps as inputs to a SAE.

3. Experiments on Downstream Tasks
Application to X-ray Astronomy We apply our method
to data from the Chandra Source Catalog (CSC) version 2.1
(Evans et al., 2024). Specifically, we use region event files,
which list individual photon events for a specific source
in a given observation—each with associated arrival time
and energy. The dataset comprises 95,473 event files from
58,932 unique X-ray sources. For further details on the
dataset, please refer to Dillmann et al. 2025. Using the
terminology introduced in Section 2.1, the photon arrival
times correspond to t and the photon energies to E. We
choose the event transformation function f(·) to be the base-
10 logarithm, i.e., f(E) = log10(E), which is commonly
used in X-ray astronomy. For the E–t–dt cubes, we choose
a dimensionality of (nτ , nϵ, n∆τ ) = (24, 16, 16). For the
SAE, we choose a sparsity strength of λ = 0.1 and its la-
tent vector dimension is 24. We also run the experiments
described in this section on the E–t maps with a dimension-
ality of (nτ , nϵ) = (24, 16). In this case, we use a SAE
with convolution layers and a latent vector dimension of 12.
More details are provided in Appendix B.

Dimensionality Reduction & Embedding Space We vi-
sualize the learned representations as a two-dimensional
embedding space using t-SNE (Van der Maaten & Hinton,
2008). Figure 1A shows the embeddings color-coded by the
CSC 2.1 variability index, which quantifies confidence in
time variability from 0 to 10, with values above 6 indicating
variability at a significance level of at least 2σ. The learned
representations capture the temporal structure of the event
files and effectively isolate highly variable X-ray sources,
as evidenced by the well-isolated and pure dark cluster in
the top-left embedding region. Figure 1B color-codes the
embeddings by the hard-to-soft hardness ratio in CSC 2.1,
which compares the relative fraction of photons detected
in the soft (0.5–1.2 keV) and hard (2–7 keV) energy bands.
Values near 1 indicate a hard spectrum; values near –1 in-
dicate a soft spectrum. This metric is thus directly tied to
the source’s spectral properties. The smooth within-cluster
hardness ratio gradients further demonstrate the model’s
ability to encode spectral information, allowing for queries
of sources with distinct spectral properties. Figure 1C high-
lights the embedding positions of known flares (red), dips
(blue), and pulsating sources (green). The dips include low-
mass X-ray binaries, eclipsing binaries, and ultraluminous
X-ray sources; the flares comprise extragalactic FXTs and
young stellar flares; and the pulsations are predominantly
from pulsars. In particular, each of these groups occupies
well-separated regions of the embedding space. This clus-
tering of physically meaningful source types confirms that
the representations encode both spectral and temporal prop-
erties of the original event files. The embedding space of
the SAE latents using the E–t–dt cube inputs successfully
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Figure 2. Nearest-neighbor retrieval results in the learned latent space for three representative transient types: dips from a low-mass X-ray
binary (top row, 300 s bins), a flare from a young stellar object (middle row, 400 s bins), and pulsations from a pulsar (bottom row, 100 s
bins). For each target light curve (column 1), we show its three nearest neighbors (columns 2–4). The retrieved neighbors correspond to
physically similar phenomena: dips from low-mass X-ray binaries, flares from young stars or variable stars, and pulsations from pulsars.

separates different transient types into distinct clusters and
further organizes them within clusters based on their spec-
tral properties. This tendency to prioritize temporal behavior
likely arises from the E–t–dt cube representation having
two temporal axes and only one for energy. The embed-
ding space derived from the SAE using the E–t maps as
inputs is shown in Appendix C. Notably, in this case the
known transients are dispersed all around the edges of the
embedding space rather than forming distinct transient-rich
clusters. Similarly, the embeddings in Song et al. (2025) do
not show distinct transient source groupings. This under-
scores the added value of using a SAE on the E–t–dt cubes
for transient searches.

Semantic Clustering & Unsupervised Classification By
clustering the learned latent space using DBSCAN (Ester
et al., 1996), we successfully isolate flare-dominant and
dip-dominant groups, as shown in Figure 1C, leading to the
identification of 3117 flare and 685 dip candidates. This
yields a publicly available catalog of X-ray flares and dips
(Dillmann et al., 2025) that required only minimal manual
filtering. Both clusters demonstrate high purity, with the
flare cluster in particular containing a very high proportion
of genuine flaring sources. Notably, we discover a previ-
ously unreported extragalactic FXT with unique temporal

and spectral properties (Dillmann et al., 2025), and a tidal
disruption event (TDE) from a newly identified hyperlu-
minous supersoft X-ray source (Sacchi et al., 2025), both
missed by previous transient searches in the Chandra archive
(Yang et al., 2019; Quirola-Vásquez et al., 2022).

Anomaly Detection & Similarity Search Transient
sources such as flares and dips represent only a small frac-
tion of the dataset, which is largely dominated by relatively
steady sources, making them anomalies from a data science
perspective. The learned representations support anomaly
detection and similarity-based retrieval of X-ray sources
with distinct temporal and spectral features. In Figure 2, we
demonstrate this by retrieving the three nearest neighbors
using k-nearest neighbors (Cover & Hart, 1967) for three
target sources: a dip from a low-mass X-ray binary, a flare
from a young stellar object, and a pulsar. For each target
source, the model retrieves similar light curves from the
same or a closely related physical class, indicating that the
latent space captures physically meaningful structure across
source types.

Supervised Prediction Tasks We train a vanilla XGBoost
classifier and regressor (Chen & Guestrin, 2016) on the
learned latent representations to distinguish highly variable
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Table 1. Performance summary of XGBoost models for variability
classification and hardness ratio prediction. The models use 100
estimators and default hyperparameters without fine-tuning. An
80-20 train-test split is used for evaluation.

TASK METRIC VALUE

Variability
Classification

Accuracy 0.97
F1-score (non-variable) 0.98
F1-score (variable) 0.72

Hardness Ratio
Prediction

R2 0.76
MSE 0.03

X-ray sources (variability index > 6) from non-variable
ones (variability index ≤ 6), and to predict the hardness
ratio of each source. The performances are summarized in
Table 1. The classifier achieves a high variability classifica-
tion accuracy of 0.97, outperforming the method proposed
in Song et al. (2025), and the hardness ratio regressor attains
a slightly reduced R2 score of 0.76, demonstrating that the
learned representations encode temporal variability well and
retain substantial predictive power for spectral hardness.

4. Conclusion
We introduce a unified framework for learning sparse rep-
resentations from event time series to enable a variety of
different downstream tasks. We represent irregular event
time series as E–t–dt cube tensors and employ a SAE to
learn sparse embeddings that capture physically meaning-
ful variation while increasing their robustness to noise and
other irrelevant features. The method requires minimal
manual tuning and scales to large datasets across various
domains, and serves as a foundation for subsequent analysis
like anomaly detection, similarity search, and unsupervised
classification. Applied to archival Chandra X-ray data, the
learned representations encode temporal and spectral infor-
mation and enabled the discovery of a new extragalactic
FXT and a TDE from a hyperluminous supersoft X-ray
source, both previously missed by other transient search
methods. Future work involves optimizing the resolution of
the E–t–dt cubes, the deployment of more expressive SAE
architectures and the application of the method to a variety
of other scientific datasets.

Software and Data
The data used in this paper was obtained from the
publicly available CSC, using their public interfaces
(https://cxc.cfa.harvard.edu/csc/). The preprocessed datasets
are provided here. All intermediate data products can be
produced using the code provided in the GitHub reposi-
tory https://github.com/StevenDillmann/ml-xraytransients-
mnras. The catalog of transient candidates is publicly avail-
able on Zenodo and VizieR.
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Representation Learning of Event Time Series with Sparse Autoencoders

A. E-t Maps and E-t-dt Cubes Visualizations
Figure 3 displays the light curves, E–t maps, and E–t–dt cubes for event files featuring a dip, a flare, and pulsations,
respectively.
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Figure 3. The top row shows 300 s bin light curves from event files featuring a dip (blue), a flare (red), and pulsations (green), respectively.
The middle row shows the corresponding E–t maps, and the bottom row shows the corresponding E–t–dt cubes for these event files.
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B. SAE Architecture and Training
The architecture of the experimental SAE for the E–t–dt cube inputs is summarized in Table 2. For the experiments
presented in this paper, we flatten the input and use fully-connected layers for computational reasons. We recommend
experimenting with more sophisticated SAE architectures to fully leverage the value of the E–t–dt cubes and the presented
SAE representation learning approach. Starting with the original dataset of 95,473 samples, we first apply a 90/10 split to
obtain 85,925 samples for training and validation, and 9,548 for testing. We then further split the training and validation
subset using an 80/20 ratio, resulting in 68,740 training samples and 17,185 validation samples. The model is trained for
up to 200 epochs with a batch size of 1024. Optimization is performed using Adam (Kingma & Ba, 2014) with an initial
learning rate of 0.01. A learning rate scheduler reduces the rate by a factor of 10 if the validation loss plateaus for more than
10 epochs. We also apply early stopping based on the validation loss, which halts training if no improvement is observed for
25 consecutive epochs and restores the best-performing model weights. A similar procedure is followed for the experimental
SAE with convolution layers summarized in Table 3 that we used for the E–t map inputs.

Table 2. Summary of the encoder architecture of the fully-connected autoencoder used to extract informative features from the E-t-dt
cubes. Each layer uses Leaky ReLU activation and each standard fully-connected layer is followed by batch normalization with momentum
0.9.

Layer Output Shape

Input (24, 16, 16)
Flatten 6144
Dense 1536
Dense 384
Dense 92
Dense (Bottleneck) 24

Table 3. Summary of the encoder architecture of the convolutional autoencoder used to extract informative features from the E-t maps.
Each layer uses Leaky ReLU activation and each standard fully-connected layer is followed by batch normalization with momentum 0.9.

Layer Output Shape Filters Kernel Stride

Input (24, 16) - - -
Convolution (24, 16) 32 (3, 3) -
Convolution (12, 8) 32 (2, 2) 2
Convolution (12, 8) 16 (3, 3) -
Convolution (6, 4) 16 (2, 2) 2
Flatten 384 - - -
Dense 192 - - -
Dense 48 - - -
Dense (Bottleneck) 12 - - -
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C. Embedding Space from the SAE applied on the E–t Maps
Figure 4 shows the embedding space obtained from the experimental SAE applied on the E–t maps.

Figure 4. Two-dimensional t-SNE projection of the learned latent space from the SAE applied on the E–t maps. Panel A: Points are
color-coded by the variability index of the corresponding X-ray sources. Panel B: Points are color-coded by the hard-to-soft X-ray
hardness ratio. Panel C: Known dips, flares, and pulsating sources (crosses) distributed across the embedding space.
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