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Abstract
Multiband astronomical time series exhibit hetero-
geneous variability patterns, sampling cadences,
and signal characteristics across bands. Standard
transformers apply shared parameters to all bands,
potentially limiting their ability to model this rich
structure. In this work, we introduce Astro-MoE,
a foundational transformer architecture that en-
ables dynamic processing via a Mixture of Ex-
perts module. We validate our model on both
simulated (ELAsTiCC-1) and real-world datasets
(Pan-STARRS1).

1. Introduction
After a decade of breakthroughs enabled by single-epoch
surveys, astronomy is transitioning toward a new era de-
fined by multi-epoch observations. This shift has fueled the
rapid growth of time-domain astronomy, which focuses on
studying celestial objects and phenomena whose properties
evolve over time through wide-field surveys that repeatedly
image large areas of the sky (Graham et al., 2012; Kasliwal
et al., 2019). The upcoming Legacy Survey of Space and
Time (LSST; Ivezić et al. 2019), beginning full operations
by the end of 2025, will accelerate this trend by generat-
ing multiband time series data for approximately 20 billion
sources with unprecedented depth, cadence, and volume.

The intrinsic complexity of time-domain data (characterized
by heterogeneous sampling, irregular cadences, and inter-
band dependencies) has motivated significant advances in
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representation learning for astronomical time series (e.g.
Protopapas 2017; Charnock & Moss 2017; Naul et al. 2018;
Park et al. 2021; Donoso-Oliva et al. 2023; Pan et al. 2024;
Becker et al. 2025). Transformer architectures (Vaswani
et al., 2017) have shown particular promise for modeling
such irregular sequential data, achieving state-of-the-art
results within astronomy across tasks such as denoising
(Morvan et al., 2022), classification (Pimentel et al., 2022;
Allam Jr & McEwen, 2024), regression (Zhang et al., 2024),
and uncertainty estimation (Cádiz-Leyton et al., 2024), even
in data-scarce scenarios (Moreno-Cartagena et al., 2023;
Donoso-Oliva et al., 2025). A core challenge in this do-
main is learning unified embeddings that compactly encode
both temporal evolution and spectral characteristics across
photometric bands. Such representations not only enhance
performance on fundamental astronomical tasks (e.g., vari-
able star classification, redshift regression) but also enable
effective integration into multimodal frameworks (Rizhko
& Bloom; Lanusse et al., 2023; Parker et al., 2024). For
instance, recent models such as ATAT (Cabrera-Vives et al.,
2024) demonstrate how combining light curve embeddings
with auxiliary metadata can accelerate scientific discovery.

However, conventional transformer-based architectures face
fundamental limitations when processing multiband time
series. Transformers apply homogeneous processing to all
inputs (i.e., reuse the same parameters for all inputs), which
is suboptimal for astronomical data where each photomet-
ric band probes distinct astrophysical processes, exhibits
unique sampling characteristics, and manifests independent
variability behaviors. This diversity suggests that uniform
weight-sharing mechanisms may not adequately capture
band-specific features and complex inter-band interactions.
Mixture of Experts (MoE) architectures offer a compelling
solution through dynamic, input-dependent routing to spe-
cialized subnetworks (Masoudnia & Ebrahimpour, 2014;
Shazeer et al., 2017). MoE-based models select different
parameters for each example, resulting in sparsely-activated
models with more parameters but constant computational
cost. This capability is ideally suited to multiband astro-
nomical data, where experts can learn band-specific repre-
sentations while maintaining shared temporal knowledge.
While recent works like Time-MoE (Shi et al., 2024) and
Moirai-MoE (Liu et al., 2024) highlight the potential of ex-
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pert routing in temporal data, their adaptation to the specific
challenges of irregular, multiband astronomical time series
remains an area of ongoing interest, with opportunities for
further methodological development.

In this work, we introduce Astro-MoE, a pretrained trans-
former that incorporates sparsely-gated MoE modules in the
architecture. This design enables the processing of multi-
band time series, producing embeddings that are both robust
and informative for downstream tasks. Our architecture
addresses the challenges of astronomical time series by al-
lowing different experts to specialize in different variability
patterns while maintaining the ability to model complex
inter-band correlations.

2. Methods
The Astro-MoE model extends the Astromer frame-
work (Donoso-Oliva et al., 2023), a self-supervised light
curve transformer originally designed for single-band data,
to a multiband setting. Each astronomical object is repre-
sented as a sequence of observations across multiple pho-
tometric bands. For each band b and time step j, the input
includes a flux measurement µj,b and its associated uncer-
tainty σj,b. These values are combined into an input vector
xj,b = (µj,b, σj,b), which represents the brightness and its
error at time j in band b. To construct the model input,
each band is encoded as a fixed-length sequence of xj,b

vectors, with zero-padding applied as needed. The resulting
sequences are then concatenated across bands to form a
unified representation x, which preserves temporal ordering
and captures band-specific information.

2.1. Mixture of Experts

As illustrated in Figure 1, our model adopts an encoder-only
transformer architecture enhanced with sparse Mixture-of-
Experts (MoE) layers (Shazeer et al., 2017; Mu & Lin,
2025). The MoE module is integrated into two key compo-
nents: (1) the input embedding stage, and (2) the attention
blocks, where it replaces the standard feedforward network
(FFN) sublayer. Each MoE layer contains Nexperts parallel
experts, with sparse routing controlled by a learnable gating
function. Here, Nexperts denotes the number of experts in
the layer, which can differ between components.

Given an input vector x ∈ Rdin , where din is the dimen-
sionality of the input (e.g., 2 for brightness and uncertainty
pairs), the gating network computes a score for each expert:

g(x) = Wgx+ bg, g : Rdin → RNexperts , (1)

where Wg and bg are the learnable weights and bias of the
gating network. To induce sparsity, only the top-k scoring
experts are selected using a TopK operator, and a softmax
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Figure 1. Astro-MoE architecture diagram with the traditional po-
sitional encoding.

is applied to compute normalized selection weights:

G(x) = softmax(TopK(g(x), k)), (2)

where k is the number of experts selected per input. The op-
erator TopK(v, k)i retains the top-k values in v and masks
the rest with −∞:

TopK(v, k)i =

{
vi, if vi is among the top-k elements,
−∞, otherwise.

This yields a sparse selection vector G(x) ∈ RNexperts with
nonzero weights only for the selected experts (i.e., G(x)e ̸=
0 if and only if expert e is selected). The final MoE output
is then computed as:

MoE(x) =
∑

e∈Top-k

G(x)e · E(e)(x), (3)

where E(e)(x) is the output of expert e.

In the input embedding stage, each expert E(e) is imple-
mented as a linear transformation:

E(e)(x) = W (e)x, W (e) ∈ Rdmodel×din . (4)

where dmodel is the internal model dimension used by the
transformer. Unlike prior approaches that apply a uni-
form transformation across all bands (Donoso-Oliva et al.,
2023; Cabrera-Vives et al., 2024), we project the brightness-
uncertainty pairs (xj,b, σj,b) ∈ R2 into dmodel using a MoE
module. We set Nexperts = 6 (one per photometric band)
and k = 2, matching the six-band pretraining setup. This
configuration promotes expert specialization across different
observational regimes.

Within the attention blocks, each expert is implemented as a
two-layer FFN, replacing the standard FFN sublayer. This
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choice is inspired by prior large-scale MoE transformer mod-
els (Lepikhin et al., 2020; Fedus et al., 2022), which demon-
strate that FFN layers often exhibit sparse and task-specific
activation patterns, making them well-suited for expert-
based specialization. In this setting, we use Nexperts = 8
and select the top-k = 2 experts per token.

To encourage balanced expert utilization and avoid expert
collapse, we incorporate a simplified version of the load
balancing loss from Shazeer et al. (2017):

Laux = Nexperts ·
Nexperts∑
e=1

p̄e · f̄e, (5)

where p̄e is the mean routing probability assigned to expert
e, and f̄e is the empirical fraction of tokens routed to that
expert. This auxiliary loss is computed independently for
each MoE layer and summed across all such layers. The
total auxiliary loss is then scaled by a fixed coefficient λ =
0.01 and added to the main task loss (e.g., classification or
regression). The scaling factor ensures that the auxiliary
term promotes expert diversity without overpowering the
primary learning objective.

2.2. Positional Embedding

Encoding temporal information is a crucial component in
modeling light curves, as observations are irregularly spaced
in time. Recent work has shown that the choice of po-
sitional encoding (PE) can significantly affect the perfor-
mance of transformer-based models for time series (Moreno-
Cartagena et al., 2023). Therefore, we explore two temporal
encoding strategies, both integrated at the input embedding
stage, before the self-attention layers.

The first approach follows the original transformer formula-
tion (Vaswani et al., 2017), in which observation times are
encoded using fixed sine and cosine functions at varying
frequencies:

PEi(tj,b) =

{
sin(tj,b · ωi), i even,
cos(tj,b · ωi), i odd,

ωi =
1

10002i/dpe
,

(6)
where i is the dimension index, and dpe is the total number
of positional encoding dimensions.

As an alternative, we adopt the learnable Time Modulation
(TM) approach proposed by Cabrera-Vives et al. (2024),
which incorporates temporal information directly into the
input features. Instead of using a fixed linear projection, we
pass each input vector xj,b through a MoE layer to obtain an
adaptive representation. The resulting vector is then modu-
lated using band-specific, time-dependent Fourier functions:

The resulting vector is then modulated using band-specific,

time-dependent Fourier functions:

TM(xj,b, tj,b) = MoE(xj,b)⊙γ
(1)
b (tj,b)+γ

(2)
b (tj,b), (7)

where γ
(1)
b and γ

(2)
b are learnable band-specific Fourier se-

ries. The operator ⊙ denotes element-wise (Hadamard)
multiplication.

3. Experiments
3.1. Data description

For pretraining and classification, we use data from the first
round of the Extended LSST Astronomical Time-series Clas-
sification Challenge (ELAsTiCC-1), a large-scale simulation
designed to emulate the observational characteristics of the
Vera C. Rubin Observatory’s LSST. The dataset contains
1,845,146 multiband light curves spanning 32 astrophysi-
cal classes, including both periodic variables and transient
events. Each light curve is observed in six optical bands
(ugrizy) with realistic cadences, noise levels, and detection
limits. Following Cabrera-Vives et al. (2024), we regroup
the classes into 20 categories, discard poor-quality measure-
ments using PHOTFLAG, and extract forced photometry
ranging from 30 days before the first alert to the final de-
tection. Additionally, each object is associated with 64
metadata columns describing contextual and observational
properties. These include redshift estimates, sky coordi-
nates, host galaxy characteristics, and summary statistics of
the light curves. As in previous work, these metadata are in-
corporated as complementary inputs for classification. The
test set contains 1,000 objects per class, ensuring balance
across categories, while the remaining data are split into five
class-stratified folds with an 80/20 training-validation ratio.

To evaluate our approach on an alternative classification
task, we use photometric light curves from the second
data release of Pan-STARRS1 (PS1), which offers obser-
vations in five optical bands: gP1, rP1, iP1, zP1, and yP1.
Following the methodology of Becker et al. (2025), we re-
trieve the PS1 photometry from the Detections table via
MAST CasJobs, convert fluxes to AB magnitudes using
the standard zero-point of 3631 Jy, and apply quality fil-
ters (e.g., psfQfPerfect, infoFlags, infoFlags2,
infoFlags3) to ensure clean photometry. We require a
minimum of four observations per band. As in Becker et al.
(2025), we apply class balancing by limiting the maximum
number of objects per class to 10,000, mitigating overfitting
due to the strong class imbalance, particularly for RR Lyrae
stars. Our final dataset includes six variable star classes.
The data are split into seven folds, stratified by class, using
70% for training, 10% for validation, and 20% for testing,
with the test set kept fixed across all folds. Appendix A
shows the classes and number of objects in ELAsTiCC-1
and PS1, grouped as transients, stochastic variables, and
periodic variables.
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Table 1. Pretraining performance on the ELAsTiCC-1 test set.

MODEL TE R2 RMSE

MULTIBAND-ASTROMER PE 0.349 2.511

MOE-ASTRO PE 0.403 2.398
MOE-ASTRO TM 0.438 2.327

3.2. Training details

All model variants are based on an encoder-only transformer
architecture with three self-attention blocks. Pretraining is
performed using a masked reconstruction objective, follow-
ing the strategy introduced by Donoso-Oliva et al. (2023).
In each training step, 90% of the light curves are randomly
selected for training. Within each selected light curve, 30%
of the input tokens are masked, 30% are replaced with ran-
dom values, and the remaining 40% are left unchanged. A
dropout rate of 0.1 is applied throughout the network. For
ELAsTiCC-1 classification, we concatenate the light curve
embeddings with tabular embeddings extracted from a tabu-
lar transformer, following the ATAT architecture proposed
by Cabrera-Vives et al. (2024). For the PS1 classification
task, we apply a linear classifier directly on the light curve
embeddings, without incorporating metadata. In both tasks,
models are trained using a cross-entropy loss. Training is
performed with the Adam optimizer, using a batch size of
256 and a learning rate of 1× 10−4.

4. Results
Table 5 reports the mean and standard deviation of pretrain-
ing scores for our model configurations on the ELAsTiCC-1
test set. As a baseline, we consider a multiband extension
of Astromer, in which brightness vectors are ordered by
observation time and projected via a shared linear layer.
Comparing this baseline with our proposed Astro-MoE ar-
chitecture, we observe improvements when incorporating
MoE modules for both the brightness encoder and the FFN
within the attention blocks. Specifically, this configuration
achieves an R2 of 0.403 and an RMSE of 2.398. When
replacing the PE with the TM encoder, performance fur-

Table 2. Classification performance on the ELAsTiCC-1 test set
using both light curve and metadata information.

MODEL PRETRAINED F1-SCORE

MULTIBAND- YES 0.727 ± 0.034
ASTROMER NO 0.786 ± 0.013

ATAT NO 0.826 ± 0.005

MOE-ASTRO (PE) YES 0.822 ± 0.008
MOE-ASTRO (TM) YES 0.832 ± 0.015
MOE-ASTRO (TM) NO 0.860 ± 0.003

Table 3. Classification performance on the Pan-STARRS1 test set.

MODEL PRETRAINED F1-SCORE

MOE-ASTRO (TM) NO 0.373 ± 0.007
MOE-ASTRO (TM) YES 0.542 ± 0.023

ther improves by approximately 3%, reaching an R2 of
0.438 and reducing RMSE to 2.327. Overall, these results
indicate that the combination of sparse MoE-based represen-
tations and temporally adaptive encoding may enhance the
expressiveness and accuracy of light curve models. It is also
important to note that ELAsTiCC-1 is a complex dataset,
featuring a maximum sequence length of 65 per band and
comprising a wide diversity of astronomical object classes.

After pretraining, we evaluate the models in a classifica-
tion setting. Table 2 reports the mean and standard devi-
ation of macro F1-scores on the ELAsTiCC-1 dataset us-
ing a multimodal approach that integrates both light curve
and metadata features. The pretrained Multiband-Astromer
baseline underperforms compared to its non-pretrained ver-
sion (F1 = 0.727 ± 0.034 vs. F1 = 0.786 ± 0.013),
suggesting that pretraining on the same dataset may re-
sult in early convergence and reduced adaptability during
downstream fine-tuning. We also include ATAT (Cabrera-
Vives et al., 2024), a non-pretrained transformer tailored
for multimodal inputs, which achieves a competitive score
of (F1 = 0.826± 0.005) under identical evaluation condi-
tions. Our MoE-Astro model, which incorporates sparse
expert routing in place of standard transformer components,
yields consistent performance improvements. Specifically,
the pretrained MoE-Astro with positional encoding (PE)
reaches (F1 = 0.822 ± 0.008), while its variant with time
modulation improves to (F1 = 0.832 ± 0.015). Notably,
when trained from scratch, MoE-Astro (TM) achieves the
highest performance with (F1 = 0.860 ± 0.003). These
results suggest that MoE-based architectures can provide
enhanced capacity allocation and generalization (see Ap-
pendix B). While the benefits of pretraining may depend on
task similarity and dataset diversity, our approach currently
achieves state-of-the-art performance on ELAsTiCC-1.

To assess the transferability of the best pretrained model
(Astro-MoE with TM), we evaluate it on the challenging and
imbalanced PS1 dataset. As shown in Table 3, pretraining
improves performance from an F1 score of 0.373 to 0.542,
suggesting that Astro-MoE is capable of generalizing to new
domains. This preliminary result highlights its potential for
cross-survey applications and motivates further exploration
across diverse real-world datasets.

5. Conclusion
We have empirically found evidence that sparse MoE mod-
els offer clear benefits for multiband astronomical time se-
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ries analysis, with advantages observable even at initial
scales. Their ability to allocate capacity dynamically, com-
bined with efficient computation, makes them well-suited
for large-scale pretraining on the heterogeneous and grow-
ing datasets of time-domain astronomy. Beyond improving
performance, these architectures also offer practical bene-
fits: by activating only a subset of experts per input, they re-
duce the computational cost during inference. This property
makes them particularly attractive for real-time applications,
such as transient classification in astronomical alert streams.
Overall, Astro-MoE represents a promising direction for
developing scalable and adaptive models to support the next
generation of astronomical discovery.
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A. Classification scheme
Table 4 provides an overview of the classification taxonomy used in our work, summarizing the number of objects per class
across two datasets: ELAsTiCC-1 and Pan-STARRS1 (PS1). The ELAsTiCC-1 taxonomy is structured into three primary
variability types (transient, stochastic, and periodic) encompassing a wide range of astrophysical phenomena including
supernovae subtypes (e.g., Ia, II, Iax), cataclysmic variables (e.g., Dwarf Novae), and pulsating stars (e.g., Delta Scuti,
RR Lyrae). The PS1 dataset, by contrast, focuses exclusively on periodic variables, reflecting its strengths in long-term
monitoring of the sky. The pronounced class imbalance poses challenges for training robust machine learning classifiers and
underscores the importance of methods capable of handling skewed data distributions.

Table 4. Number of objects per class in ELAsTiCC-1 and PS1, grouped by variability type. Each group lists the included classes and the
number of objects in parentheses.

Group Classes (number of objects)

ELAsTiCC-1
Transient (12)

CART (15,719), Iax (53,727)
91bg (53,414), Ia (211,892)
Ib/c (310,328), II (445,419)
SN-like/Other (103,683), SLSN (105,238)
PISN (105,446), TDE (103,067)
ILOT (14,253), KN (8,122)

ELAsTiCC-1
Stochastic (4)

M-dwarf Flare (2,640), uLens (27,263)
Dwarf Novae (12,385), AGN (99,461)

ELAsTiCC-1
Periodic (4)

Delta Scuti (29,840), RR Lyrae (21,100)
Cepheid (25,371), EB (96,778)

Pan-STARRS1
Periodic (6)

RRab (10,000), RRc (10,000)
RRd (266), MIRA SR (3,937)
DSCT SXPHE (1,906), T2CEP (189)

B. Astro-MoE confusion matrices
Figures 2, 3, and 4 present detailed visualizations of our proposed sparse MoE model’s classification performance across
various astronomical object types. To ensure robust and interpretable insights, we analyze confusion matrices aggregated
over multiple evaluation runs. Each matrix is row-normalized so that each row sums to 100%, reflecting the distribution of
predicted classes for each true class label. We report the median values across runs to provide a stable central estimate, which
is less affected by outliers compared to the mean. To capture variability, we also compute the 25th and 95th percentiles,
offering a clear view of the range in classification performance.

Each cell in the visualization conveys three metrics: the median prediction percentage (center), the 95th percentile (top right),
and the 25th percentile (bottom right). Diagonal cells represent correct classifications, while off-diagonal cells indicate
misclassifications. The color intensity encodes the prediction percentage, with darker green denoting higher accuracy. For
visual clarity, cells with values below 0.05% are left blank.

C. Parameter count comparison
We introduce a Mixture-of-Experts variant of our model to enable dynamic routing through specialized feedforward layers.
This architecture substantially increases model capacity, with approximately 3× more total parameters (4.9M vs. 1.5M).
However, thanks to its sparse activation mechanism, the GPU inference time per batch increases only modestly, from 5.3ms
to 7.1ms.

Critically, the MoE model activates only a subset of experts per forward pass, specifically, 2 out of 8 experts in the
feedforward network and 6 in the positional embedding layer. This sparsity allows the model to retain high expressiveness
without incurring the full computational cost of using all parameters. Moreover, this design opens up avenues for further
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Figure 2. Pretrained Astro-MoE (PE) confusion matrix.
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Figure 3. Pretrained Astro-MoE (TM) confusion matrix.
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Figure 4. Non-pretrained Astro-MoE (TM) confusion matrix.
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Table 5. Comparison of model capacity and inference efficiency across variants for the ELAsTiCC classification task.
MODEL TE PARAMS INFERENCE TIME (MS)

MULTIBAND-ASTROMER PE 1.5M 5.3 MS

MOE-ASTRO PE 4.6M 6.8 MS
MOE-ASTRO TM 4.9M 7.1 MS

optimization: reducing the number of active experts, for instance, could further lower inference time without necessarily
compromising performance.

This tradeoff highlights a core advantage of MoE architectures; their ability to scale capacity without a linear increase in
computation or latency. In the context of ELAsTiCC, where classification involves a wide range of astrophysical phenomena
and complex temporal dynamics, such additional representational power is beneficial. Overall, our results suggest that the
increased capacity of the MoE model justifies the minor overhead, providing a scalable and efficient solution for modeling
heterogeneous multiband time series data.

11


