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Abstract
We propose a new field-level emulator that bridges
two simulators using unpaired simulation datasets.
Our method leverages a flow-based approach to
learn the likelihood transport from one simulator
to the other. Since multiple transport maps exist,
we employ Conditional Optimal Transport Flow
Matching (COT-FM) to ensure that the transfor-
mation minimally distorts the underlying structure
of the data. We demonstrate the effectiveness of
this approach by bridging weak lensing simula-
tors: a Lagrangian Perturbation Theory (LPT) to a
N-body Particle-Mesh (PM). We demonstrate that
our emulator captures the full correction between
the simulators, by showing that it enables full-
field inference to accurately recover the true pos-
terior, validating its accuracy beyond traditional
summary statistics.

1. Introduction
In recent years, there has been a growing shift from tradi-
tional analytic inference methods to simulation-based infer-
ence (SBI) (e.g. Fluri et al., 2022; Porqueres et al., 2023;
Jeffrey et al., 2024). This shift is driven by SBI’s ability to
provide more precise constraints on cosmological param-
eters, particularly when analyzing data at the pixel level.
However, it comes with the downside of relying solely on
simulation accuracy. Any mismatches between the simu-
lated and true underlying physical processes can result in
biased parameter estimates (e.g. Filipp et al., 2024; Bayer
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et al., 2025). Although significant effort has been dedicated
to improving the realism of simulations, a major challenge
remains: high-fidelity simulations are computationally ex-
pensive, limiting both the number of samples and the size of
each simulation. This constraint makes full-field inference
difficult to apply without compromising simulation quality.

Emulators have emerged as a way to accelerate the gener-
ation of high-fidelity simulations. Neural network-based
emulators are trained on simulations to either correct fast ap-
proximate simulations (e.g. Dai et al., 2018; Kodi Ramanah
et al., 2020; Lanzieri et al., 2022; Payot et al., 2023; Bartlett
et al., 2025) or emulate the full simulations evolution (e.g.
Lucie-Smith et al., 2018; He et al., 2019; Jamieson et al.,
2023). As learning a small correction between low-fidelity
(LF) and high-fidelity (HF) simulations should require fewer
simulations, we focus on the formal approach. Specifically,
we propose an emulator based on flow models (Lipman
et al., 2023; Pooladian et al., 2023; Albergo et al., 2023;
Tong et al., 2024; Lipman et al., 2024) that learn mappings
between two probability distributions: the HF distribution
and LF distribution. Since many mappings can transform
one distribution into another, additional structure is needed
to ensure that the correction minimally distorts the data
manifold. To achieve this, we leverage optimal transport
(OT) theory, which seeks to find minimal-effort mappings
between distributions according to a chosen cost function.
Specifically, we use COT-FM (Kerrigan et al., 2024), an ap-
proach that aligns conditional distributions (i.e., likelihoods
rather than marginals), ensuring that the mapping between
input parameters and observables is preserved. Meanwhile,
Flow Matching (FM) provides a framework for learning
deterministic mappings by minimizing a regression loss on
velocity fields, remaining efficient even in high dimensions.
A key distinction of our approach compared to standard field
emulators is that it does not require paired data (e.g., simu-
lations with shared initial conditions), a flexibility enabled
by our OT-based framework (Tong et al., 2024).

We apply our COT-FM emulator to learn the transformation
that maps second-order Lagrangian Perturbation Theory
(LPT) convergence maps to their N-body Particle-Mesh
(PM) counterparts. Emulators are usually validated at the
summary statistics level. In this study, we assess the emula-
tor performance by performing full-field inference. We first
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show that analyzing PM convergence maps using the LPT
forward model results in biased posterior estimates, high-
lighting simulation mismatch. Then, we demonstrate that
the transformed simulations can recover the true posterior.

2. Conditional Optimal Transport Flow
Matching

2.1. Flow Matching

FM (Lipman et al., 2023; Albergo et al., 2023) is a method
for training continuous normalizing flows (CNFs) (Chen
et al., 2019). CNF aims to continuously transport a source
distribution p0 into a target distribution p1 over time through
a diffeomorphic map ϕ : [0, 1] × Rd → Rd. This map is
defined as the solution to the ordinary differential equation
(ODE):

dx = vt(x)dt, ϕ0(x) = x0, (1)

where x0 ∼ p0 are samples from the source distribution, and
v : [0, 1] × Rd → Rd is the time-dependent velocity field
guiding the transport. Intuitively, the velocity field tells each
particle x in the distribution how to move at every time t to
gradually reshape p0 into p1. The intermediate distribution
at any time t, denoted p : [0, 1] × Rd → R, and known as
the marginal probability path, is the pushforward 1 of p0 by
the map ϕt: pt = [ϕt]#(p0). As long as the velocity field
satisfies the continuity equation, the evolving distribution is
a valid probability density function.

Once the velocity field vt is learned, generating samples
from the target distribution simply requires integrating the
ODE forward in time starting from samples of p0. Con-
versely, one can reverse the process by integrating backward
in time. If the density p1 is required, it can be recovered via
p1 = [ϕ1]#(p0).

In practice, FM turns learning vt into the following regres-
sion task

LFM = Et∼U [0,1],pt(x) ∥ vt(x)− vφ(t, x) ∥2, (2)

where vφ is a neural network (NN). Because neither pt
nor vt is known a priori, Lipman et al., 2023 proposed an
alternative conditional flow matching (CFM) loss which
shares the same gradients:

LCFM = Et∼U [0,1],q(z),pt(x|z) ∥ vt(x|z)− vφ(t, x) ∥2,
(3)

with z a conditioning variable, pt(x|z) the conditional prob-
ability path such that pt(x) =

∫
pt(x|z)q(z)dz, and vt(x|z)

the corresponding conditional velocity field. As explain in

1The pushforward operator # is defined by the change of vari-
ables formula [ϕt]#(p0) = p0(ϕ

−1
t (x)) det

[
∂xϕ

−1
t (x)

]
.

Tong et al., 2024, to bridge two arbitrary distributions, one
can define q(z) to generate pairs of samples, for instance
q(z) = p0(x0)p1(x1). Then the conditional distribution
pt(x|z) can be taken as a simple interpolating distribution,
such as a Gaussian with mean along the straight path be-
tween x0 and x1: µt(z) = (1 − t)x0 + tx1, with a small
variance σ2. Specifically, as σ → 0, pt at t = 0 and t = 1
approaches the true source distribution p0 and the true target
distribution p1, respectively.

Note that multiple velocity fields can transform p0 into
p1, and enforcing only straight-line conditional probability
paths between unpaired samples does not ensure that the
velocity field minimizes the transport cost. Additionally,
FM only transports marginal to marginal distributions.

2.2. Conditional Optimal Transport

FM enables us to learn a deterministic transport map ϕ1

such that a new sample x1 can be obtained from x0 via
x1 = ϕ1(x0). In this work, however, we seek the trans-
port map that minimizes a specific cost, ensuring that the
transformation from x0 to x1 retains essential information
without unnecessary alterations. Moreover, this transfor-
mation must preserve the conditioning: each generated PM
map should share the cosmological parameters of its corre-
sponding LPT input. Conditional Optimal Transport (COT)
offers a rigorous framework for this goal by extending clas-
sical OT to the setting where one seeks to bridge conditional
distributions across different parameters in an amortized
way (Hosseini et al., 2024; Kerrigan et al., 2024).

Formally, let Θ denotes the parameter space (e.g., cosmolog-
ical parameters) and X the observation space (e.g., conver-
gence maps). We denote by p0(θ, x) with θ ∈ Θ and x ∈ X ,
the joint source distribution (LPT forward model), and by
p1(θ, x) that of the target (PM forward model), with both
sharing the same prior p(θ) over parameters. To preserve
conditioning during transport, we define a triangular map
ϕ : Θ×X → Θ×X of the form

ϕ(θ, x) = (θ, ϕX(θ, x)) , (4)

where ϕX : Θ×X → X . A key result from Baptista et al.,
2023, shows that if p1 = [ϕ]#(p0), then for almost every θ,
[ϕX(θ, ·)]# (p0(·|θ)) = p1(·|θ). That is, a single triangular
map transports all likelihoods.

COT seeks such a triangular map ϕ that minimizes a
displacement cost. In our case, we consider the cost
c(x0, θ0, x1, θ1) = ∥x0 − ϕX(θ0, x0)∥2, leading to the fol-
lowing conditional Monge problem:

inf
ϕX

∫
∥x− ϕX(θ, x)∥2p0(θ, x)dxdθ, (5)

subject to the constraint that p1 = [ϕ]#(p0). If there exists
a unique transport map ϕ∗ that solves this problem, then
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Figure 1. From left to right: An example of LPT simulations with noise; The corresponding PM simulation sharing the same noise,
cosmological parameters and initial conditions as the LPT simulation; The LPT simulations optimally transporting onto the PM space; the
residuals, i.e., the difference of the learned PM map with the true PM map without noise.

pt = [ϕ∗
t ]#(p0), with ϕ∗

t = (1 − t)Id + tϕ∗, is the condi-
tional McCann interpolation (Kerrigan et al., 2024). This
probability path and the corresponding triangular velocity
field vt(ϕ

∗
t (θ, x)) = (0, ϕ∗

X(θ, x)−x), solve the COT prob-
lem. This result, known as the conditional Benamou-Brenier
theorem, establishes the equivalence between the static and
dynamic COT problem (Kerrigan et al., 2024).

Hence, to learn the velocity that solves the COT problem,
we use the loss introduced in Equation 3 with the same
straight-line conditional probability paths and the same cor-
responding conditional velocity field vt(x|z) = x1 − x0.
However, to ensure that the resulting velocity field corre-
sponds to the solution of the COT problem, the sample pairs
must be built as x1 = ϕ∗

X(θ0, x0) with ϕ∗
X the optimal

conditional Monge map. Moreover, to preserve the condi-
tioning during transport, the learned velocity field must be
triangular vt(x, θ) = (0, vφ(t, x, θ)), with vφ(t, x, θ) the
NN, so that θ remains unchanged.

In practice, solving the static COT problem at the dataset
scale is computationally intractable. We therefore use a
minibatch approximation, solving COT separately on each
minibatch (Fatras et al., 2021; Tong et al., 2024). Finally,
to further ease optimization under finite sample constraints,
we use a relaxed cost of the form c(x0, θ0, x1, θ1) = |θ0 −
θ1| + ϵ|x0 − x1|. As ϵ → 0, Hosseini et al., 2024 show
that we recover the triangular map solving the conditional
Monge problem. Note that when paired simulations from
both models are available, finding ϕ∗ becomes unnecessary.

3. Experiments
3.1. Simulation Models

We generate two suites of simulations: second-order LPT
and PM N-body, using JaxPM2. Both sets of simula-
tions are run in a cubic box of comoving size 500 ×
500 × 5000 Mpc h−1 discretized into a 60 × 60 × 200

2https://github.com/DifferentiableUniverseInitiative/JaxPM
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Figure 2. Posterior distributions of the cosmological parameters
evaluated on the PM map shown in Figure 1, and learned from
LPT simulations (green), PM simulations (purple), and emulated
simulations (blue).

voxel grid, corresponding to a transverse resolution of
8.3Mpc h−1 and a radial resolution of 25Mpc h−1. Dis-
placements of the PM simulations are first computed using
first-order LPT up to scale factor 0.1, and then according
to the Poisson equation. The particle displacement is in-
terpolated onto a 3D density grid using the Cloud-in-Cell
(CIC) scheme, and we treat the resulting volume as our
light cone. Convergence maps are then computed under
the Born approximation by integrating density fluctuations
along the line of sight. The resulting maps span an area
of 16◦ × 16◦ on the sky, discretized into 60 × 60 pixels
(pixel scale ≈ 0.27◦). We assume a single source red-
shift distribution given by n(z) ∝ z0.5e−(z/2.0)1.0 with
a galaxy density of ngal = 30 arcmin−2. Shape noise
is added per pixel using σpix = σe/

√
ngal Apix, where

σe = 0.26 and Apix = 256 arcmin2. Cosmological param-
eters θ = (Ωc, σ8) are drawn from independent Gaussians,
Ωc ∼ N (0.3, 0.052) and σ8 ∼ N (0.8, 0.052). An example
of the different convergence maps is shown in Figure 1.

3
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Figure 3. TARP expected coverage test over 500 simulations, with
error bars from 100 bootstrap iterations. The dashed white line
shows ideal coverage. Posteriors from PM maps analyzed with
the correct model (purple) closely match this curve, while using
the LPT model (green) leads to bias. COT-FM restores accurate
coverage (blue), demonstrating effective emulation of PM maps.

Although we acknowledge that this is a simplistic setup, it
is sufficient for initial testing purposes. A more complete
study, with more realistic simulations will be presented in a
forthcoming paper.

3.2. Implicit full-field inference

We perform full-field inference using an implicit inference
approach that allows for amortized inference across various
simulations, which is useful for assessing the robustness of
our correction method. However, sampling schemes such
as Hamiltonian Monte Carlo (Neal et al., 2011; Betancourt,
2017) can also be applied to our corrected forward model.

Convergence maps are first compressed into a two-
dimensional summary statistic by training a convolutional
neural network (CNN) under the Variational Mutual Infor-
mation Maximization (VMIM) loss (Jeffrey et al., 2020),
which has been shown to build near-sufficient statistics for
parameter inference (Lanzieri et al., 2025). Then, we per-
form Neural Posterior Estimation (NPE) (Papamakarios &
Murray, 2018) by training a Normalizing Flow (NF) on the
compressed summaries to learn the posterior distribution
over cosmological parameters. All training details, includ-
ing the number of simulations, are provided in Appendix A.

3.3. Results

We begin by highlighting the simulation mismatch at the
pixel level. To this end, we apply our implicit inference
framework: For the LPT simulations, we train the CNN
compressor and NF posterior estimator using only LPT sam-

ples. For the PM simulations, we repeat the same procedure
but using PM samples. Once trained, we evaluate the two
inferred posterior distributions on a fixed PM fiducial con-
vergence map (shown in Figure 1). The results in Figure 2
illustrate a significant bias when analyzing PM data with a
model trained on LPT simulations.

To correct this bias, we apply COT-FM. As explained in
subsection 2.2, COT-FM learns a COT map that transforms
LPT simulations into PM-like simulations, preserving the
associated cosmological parameters and finding the minimal
correction to the LPT simulation needed to match its PM
counterpart, a process that is effective even when only two
unpaired sets of simulations are available. Our mapping is
parameterized using a 2D conditional U-Net (Ronneberger
et al., 2015) trained on two noisy datasets: the set of LPT
simulations and the set of PM simulations. At each train-
ing step, we solve the COT problem on the mini-batch to
effectively pair each LPT and PM simulation, allowing us
to learn the velocity field that solves the dynamic COT prob-
lem. Once the velocity field is learned, we integrate the
forward ODE to transport LPT samples into their corrected
PM-like counterparts. An example of a transported conver-
gence map is shown in Figure 1. Training details, including
the number of simulations, can be found in Appendix A.

As a first validation, we project the original LPT, learned
PM, and true PM simulations into summary space using
the PM-trained compressor. As shown in Figure 4, the
learned PM simulations closely align with the true PM sim-
ulations, while differing from the original LPT simulations.
We complete the evaluation by performing implicit full-field
inference, i.e., training the CNN compressor to build suffi-
cient statistics and training the NF posterior estimator using
the learned PM convergence maps. We evaluate the poste-
rior distribution on the same fixed convergence maps as for
LPT and PM posteriors. The results in Figure 2 show that
COT-FM effectively corrects the inference bias, demonstrat-
ing the emulator accuracy. To further validate the posterior
distributions across multiple simulations, we use the TARP
(Lemos et al., 2023) expected coverage probability (ECP)
test. The ECP corresponds to the expected number of poste-
rior samples that fall in a credible region of credibility level
α. TARP provides a method to estimate this ECP such that
it is precisely equal α for all α ∈ [0, 1] if and only if the
posterior distribution is calibrated. In Figure 3, we apply
TARP to the posterior distributions obtained from the three
simulation models and evaluated on 500 PM observations.
We show that, unlike the LPT maps, the learn maps recover
the true posterior distributions, as indicated by the ECP
falling along the diagonal. Finally, additional posterior dis-
tributions are displayed in Figure 5 with their corresponding
convergence maps displayed in Figure 6.
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4. Conclusion and Discussion
We have presented a new method to accurately emulate sim-
ulations at the pixel level. Instead of modeling complex
simulation dynamics end-to-end, our approach focuses on
transforming simulation likelihoods. This significantly re-
duces the complexity of the learning task, requiring fewer
training simulations and lowering the risk of generating un-
physical outputs. In addition, by framing the problem as a
transport between distributions under the COT constraint,
the method applies minimal yet targeted corrections to align
forward models. We also note that because the transport
operates on likelihood distributions, the emulator is natu-
rally conditioned on cosmological parameters. The learned
transformation is differentiable, making it suitable for ex-
plicit full-field inference that relies on gradient sampling
schemes. Finally, the COT-FM framework allows training
on unpaired datasets, which increases flexibility when exact
simulation pairs are not available. Applied to a toy weak
lensing example, we demonstrated the effectiveness of this
method by successfully recovering the full-field posterior
distribution using our emulated convergence maps.

In future work, we plan to more rigorously investigate the
limitations of this approach, for instance, when the LF and
HF distributions differ significantly or in high-noise regimes.
We also aim to extend our experiments to more realistic
convergence maps from Stage-IV surveys, for example, by
mapping PM simulations to hydrodynamic simulations, in-
corporating baryonic effects, and modeling observational
systematics. Additionally, we will explore transporting full
simulation volumes directly. We note that, for this method
to be effective, it is crucial that COT-FM training works
well, even with a limited number of high-quality simula-
tions. This study will be conducted in future work. Another
potential direction is to condition the transport not only on
cosmological parameters θ, but also on the initial conditions.
This would ensure that paired simulations share the same
IC, potentially yielding even more minimal transports. We
believe that this framework also offers a promising avenue
for future extensions, in which it could be used as a correc-
tion tool for bridging simulations to real data. However, it
will require rethinking assumptions made in this study, since
our Universe has a fixed but unknown set of cosmological
parameters.
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A. Training details and model architectures
Implicit full-field inference is performed by first com-
pressing 60 × 60 pixels convergence maps into 2-
dimensional summary statistics using a 2D convolutional
neural network (CNN) composed of three convolutional
layers. The CNN is trained using the VMIM loss function
(Jeffrey et al., 2020) on a dataset of 60 000 simulations. To
compute the VMIM loss function, we use a RealNVP NF
(Dinh et al., 2017) with 4 coupling layers. After training,
the compressor is used to compress a new set of 40 000
simulations. A new RealNVP with 4 coupling layers is then
trained on the compressed summary statistics using the NPE
loss function to approximate the posterior distribution. The
architectures of both the compressor and the NFs are kept
fixed across all experiments.

COT-FM is performed using a 2D conditional U-Net
(Ronneberger et al., 2015) from the Diffusers library3,
which we adapt to put cosmological parameters as an ad-
ditional conditioning input alongside the time. The U-Net
is trained under the COT-FM loss to learn the marginal ve-
locity field, using a dataset of 90 000 simulations (for both
LPT and PM), different from the datasets used in implicit
full-field inference. We train with a batch size of 200 simu-
lations and use the exact linear programming Earth Mover’s
Distance (EMD) algorithm from the POT library (Flamary
et al., 2021) to solve the COT problem in each batch. For the
transport cost, we set ϵ = 0.1. Note that larger batch sizes
and smaller ϵ improve the OT approximation. Although we
did not fine-tune these parameters in this study, we plan
to address them in future work. Finally, we integrate the
learned velocity field using the Dopri5 ODE solver (Dor-
mand & Prince, 1980; Shampine, 1986) from the diffrax
library (Kidger, 2021).

We trained COT-FM for seven hours on an NVidia
A100SXM4.

3https://huggingface.co/docs/diffusers/

B. Additional figures
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Figure 4. Simulations comparison in summary space. Using the
compressor trained on PM maps, we compress PM maps (purple),
learned PM maps (blue), and LPT maps (green). We show that our
emulated PM maps align with the true PM ones.
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Figure 5. Additional posterior distributions of the cosmological parameters evaluated on the PM fiducial maps shown in Figure 6. The
green contour corresponds to the posterior distribution learned using LPT simulations. The purple one corresponds to the posterior
distribution learned using PM simulations. The blue one is the posterior distribution learned from corrected LPT simulations, i.e., PM-like
simulations. This highlights the impact of model misspecification on the cosmological constraints and how COT-FM solves this problem.
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Figure 6. Additional convergence maps. From left to right: LPT simulations with noise; The corresponding PM simulation sharing the
same noise, cosmological parameters and initial conditions as the LPT simulation; The LPT simulations optimally transporting onto the
PM space; the residuals, i.e., the difference of the learned PM map with the true PM map without noise.
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