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Abstract
We present Pokie, a sample-based method for
comparing posterior distributions. Pokie esti-
mates the expected probability that samples from
an inferred posterior match the true, unknown pos-
terior of a probabilistic model for which only joint
samples are available. This framework enables
direct Bayesian model comparison by assessing
how each model’s posterior distribution aligns
with the posterior of the true model, all while
avoiding evidence computation and relying solely
on simulations. We show that Pokie converges to
a score of 2/3 under well-specified models and
has a lower bound of 1/2 for misspecified models.
We demonstrate its effectiveness across several
toy problems and cosmological inference tasks.
Code: https://github.com/SammyS15/Pokie.

1. Introduction
In probabilistic modeling, where the relationship between
observations x and parameters y is described by a proba-
bilistic model p(x, y | M), two fundamental challenges
arise across diverse scientific fields: quantifying posterior
distribution calibration in Bayesian inference (Carzon et al.,
2023; Howland et al., 2022; Orozco Valero et al., 2025;
Tegmark et al., 2004; Tolley et al., 2024) and conducting
Bayesian model comparison (Jeffrey & Wandelt, 2024; Pi-
ironen & Vehtari, 2016; Slosar et al., 2003; Yuen, 2010). In
Bayesian inference, the posterior distribution is an update
of prior beliefs about parameters y after observing data x.
This update is derived using Bayes’ Theorem:

p(y | x,M) ∝ p(x | y,M)p(y | M).
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Evaluating whether a posterior estimator is calibrated is cru-
cial, particularly with the rise of implicit inference methods
powered by deep learning (e.g. Cranmer et al., 2016; Papa-
makarios & Murray, 2018; Papamakarios et al., 2019). The
ideal quality metric would compare the inferred posterior to
the true posterior distribution. In a simulation-based frame-
work, however, only joint samples x∗, y∗ ∼ p(x, y | M)
are typically available, limiting the applicability of many ex-
isting metrics (Lueckmann et al., 2021), which often assume
access to the true posterior or its density.

Bayesian model comparison aims to rank competing hy-
potheses based on their ability to reproduce the joint be-
havior of observations and parameters, effectively balanc-
ing fit and complexity. Classical Bayesian approach rely
on the computation of the model evidence p(x | M) =∫
p(x | y,M)p(y | M)dy (Kass & Raftery, 1995), which

is often computationally intractable, particularly in high-
dimensional parameter space or simulation-based settings
(Alsing et al., 2018; Spurio Mancini et al., 2023).

To address both of these challenges, we propose Pokie
(Posterior over K Inference Estimations), a likelihood-free,
sample-based approach designed for probabilistic posterior
comparison. Building upon TARP (Lemos et al., 2023) and
PQMass (Lemos et al., 2025), Pokie quantifies the expected
probability that the samples of the inferred posterior distri-
bution match the true unknown posterior distribution, using
only joint fiducial samples x∗, y∗ ∼ p(x, y | M). Pokie
operates with minimal assumptions, leveraging only the
Central Limit Theorem (CLT) to produce the scaled-value
calibration score, referred to as the Pokie score. The Pokie
score allows for a Bayesian model comparison by quantify-
ing how closely each candidate model’s posterior approxi-
mates that of the reference model. As a result, by shifting
the comparison from data space to parameter space, Pokie
enables Bayesian model comparison without requiring ex-
plicit computation of the evidence, and remains effective
even in high-dimensional parameter spaces.

In summary, our contributions are as follows. We intro-
duce Pokie as a new framework for posterior-level model
comparison that avoids likelihood evaluation. We show that
Pokie provides a score that converges to 2

3 for well-specified
models and to 1

2 for poorly specified ones in the infinite-
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sample limit. Finally, we demonstrate the effectiveness of
our method on several tasks.

2. Method
LetM be a candidate model and letM∗ be the ground-truth
model. Our objective is to evaluate whether the posterior
under, p

(
y | x∗,M

)
, is calibrated with respect to the true

posterior, p
(
y | x∗,M∗). We assume we only have access

to posterior samples {y}Ni=1 ∼ p(y | x∗,M), and joint
samples x∗, y∗ ∼ p(x, y | M∗) from the true model, i.e.
we only have one sample from p(x | y,M∗).

Given that two distributions are equal if they assign the
same mass on all measurable regionsR, following PQMass
(Lemos et al., 2025) framework, we compare distributions
by comparing the number of samples falling into randomly
constructed regionsR. Formally, we denote

n =

N∑
i=1

1
[
yi ∈ R

]
and k = 1

[
y∗ ∈ R

]
, (1)

where n is the number of posterior samples that fall inside
the region, and k indicates whether the ground-truth param-
eter y∗ is contained withinR. These two random variables
follow Binomial distributions

n ∼ B(N,λn) and k ∼ B(1, λk)

with λn and λk denoting respectively the posterior mass of
p(y | x∗,M) and p(y | x∗,M∗) that falls inR, that is

λn =

∫
R
p(y | x∗,M)dy,

λk =

∫
R
p(y | x∗,M∗)dy.

We define random regionsR by first sampling a center point
from the parameter space, c ∼ πc, and selecting a random
posterior yj sample from {y}Ni=1. The region R is then
defined as a hypersphere centered at c with radius ∥c− yj∥.
This construction, based on TARP (Lemos et al., 2023),
introduces stochasticity and avoids bias from fixed regions,
allowing for the exploration of the entire parameter space.

The fact that only a single sample is available from the true
posterior motivates us to cast the comparison in a Bayesian
framework. Specifically, we derive the probability that y∗

falls in the regionR given that n samples from {y}Ni=1 falls
inR, that is: p(k|n,R). Under the null hypothesis:

y∗ ∼ p(y | x∗,M), (2)

(i.e., λn = λk, ∀R), we derive the analytic posterior predic-

tive probability (proof can be found in Appendix D.1):

p
(
k = 1 | n,R

)
=

n+ 1

N + 2
,

p
(
k = 0 | n,R

)
=

N − n+ 1

N + 2
. (3)

Averaging these probabilities across all fiducial draws and
simulations defines the Pokie score:

PPokie(M) = Ep(Z)

[
Ep(k,n,R|Z) [p(k | n,R)]

]
(4)

with Z = (y∗, x∗, {y}Ni=1). The score is approximated
using Monte Carlo integration as

PPokie(M) ≈ 1

L

L∑
l=1

p(kl | nl,Rl), (5)

with L the number of fiducial values. In practice, we gen-
erate several hyperspheres per fiducial to mitigate both the
limited number of fiducials and the single posterior sample
from the true posterior distribution. In Appendix C, we pro-
vide algorithm 1, the pseudocode for estimating the Pokie
score. We demonstrate in Appendix D.2 and Appendix D.3,
that within the limit of infinite samples, PPokie(M) con-
verges to 2

3 for well-specified models (M =M∗) and to 1
2

for poorly-specified models (M ≠M∗).

Pokie offers a direct approach to Bayesian model compari-
son by evaluating how closely the posterior distributions of
candidate models match the posterior of the true model. Un-
like the Bayes factor, Pokie operates directly in parameter
space, thus avoiding the need for evidence computation. In
contrast to the often hard-to-interpret and computationally-
expensive Bayes factor, the Pokie score is a probabilistic
metric with theoretical bounds between 1

2 and 2
3 , enabling

consistent interpretability across tasks. Moreover, Pokie
is computationally efficient and works well even in high-
dimensional parameter settings.

However, Pokie shares a fundamental limitation with the
Bayes factor: the equality of posterior distributions does not
imply model equivalence. However, Pokie and the Bayes
factor are complementary. While the Bayes factor assesses
models based on evidence, Pokie focuses on the agreement
of posterior distributions. This distinction is crucial when
models yield similar evidence but diverge in their posterior
structure, in which case the Bayes factor may be misleading.
For instance, a failure of the Bayes factor can arise when
using Expectation Maximization to update the prior (Barco
et al., 2025; Rozet et al., 2024). While this method can
maximize the evidence and yield a favorable Bayes factor, it
may simultaneously produce inaccurate posteriors. A more
comprehensive comparison is left for future work.
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Figure 1. We display a visualization of posterior distributions un-
der varying noise levels η. Each column corresponds to a different
noise level, while each row shows one of three representative
ground-truth draws (red triangles). For each case, we plot the
posterior samples (blue dots and density contours) from the analyt-
ically computed posterior.

3. Experiments
We apply Pokie (Section 2) to the following experiments.
Parameters are normalized to [0, 1], and centers cj are sam-
pled from U(0, 1). Distances are calculated using the L2
Distance, and unless otherwise noted, all experiments are
run on an M2 MacBook Air with 8 GB of RAM. For all
experiments, we generate 100 hyperspheres per fiducial.

3.1. Linear regression

We consider a linear regression task where we aim to infer
the posterior distribution over weights θ = [m, b] of the lin-
ear model y = mx+ b+ η with η ∼ N (0, σ2). We chose a
Gaussian prior p(θ) = N (µ0,Σ0) to infer the posterior dis-
tribution p(θ|y). Because both the likelihood and prior dis-
tributions are Gaussian, we can derive an analytical form of
the posterior distribution p(θ|y) = N (θ|µpost,Σpost), where

Σpost =
(
Σ−1

0 +AT Σ−1
n A

)−1
,

µpost = Σpost
(
AT Σ−1

n y +Σ−1
0 µ0

)
.

and Σn = σ2I denotes the observation noise covariance
matrix.

We define five models where we perturb the
mean vector with increasing noise levels, η =
{0.001, 0.01, 0.01, 0.10, 0.20, 0.25}, and choose the
model with the least noise as our true model. We consider
5 000 fiducial samples, i.e. we have 5 000 posterior
distributions. From each posterior, we draw 5 000 samples
from our analytic posterior distribution to evaluate the
model’s sensitivity and determine which posterior is the best
calibrated. Figure 1 visualizes a subset of these posteriors
alongside their corresponding ground-truth parameters.

The results, shown in Table 1, demonstrate that across the
different posteriors with varying levels of noise, Pokie can

detect that the posterior with the least noise is the most accu-
rate, as well as determine that the posteriors with increasing
levels of noise are less accurate. This result showcases
Pokie’s ability to identify the most in-distribution posterior.

Table 1. Pokie score with 68% bootstrap confidence intervals for
each noise level. We demonstrate that Pokie assigns higher cali-
bration and probability to the model with the lowest noise.

Noise Level Pokie Score (68% CI)
0.001 0.6670 ± 0.0011
0.010 0.6417 ± 0.0020
0.100 0.5669 ± 0.0005
0.150 0.5589 ± 0.0009
0.200 0.5548 ± 0.0009
0.250 0.5517 ± 0.0009

3.2. Analyzing distribution shifts

By definition, Pokie is the expectation of the probability
p(k | n,R) over fiducial values, and we demonstrated
in subsection D.2 and subsection D.3 its upper and lower
bounds. In this experiment, we aim to test the distributional
shift of a unique distribution, i.e., we aim to test if Pokie
can detect misspecification using only one fiducial value.
For this, we use Gaussian Mixture Models (GMMs) of 100
dimensions and 20 mixture components as our unique pos-
terior distribution without performing Bayesian inference.
The means and variances of each component of the true
model are randomly selected. The other posteriors are built
by introducing a shift of the vector of ones multiplied by l,
along the diagonal direction (a 2-d version of the GMMs can
be found in Figure 2). This setup simulates a scenario with
generative models that are either in- or out-of-distribution.
From each GMM, both truth and shifted, we generate 5 000
samples. We then run Pokie to test if it can detect a distri-
bution shift using only one fiducial. Our result in Table 2
shows that Pokie correctly identifies the model with l = 0
as the best-calibrated, while classifying the others as out-of-
distribution. This highlights Pokie’s ability to detect shifts
using a single posterior distribution.

Table 2. Pokie score with 68% bootstrap confidence intervals for
each shift level. We demonstrate that Pokie assigns higher calibra-
tion and probability to the true posterior, validating its ability to
detect shifts using a single posterior.

Model Shift Pokie Score (68% CI)
-6 0.5002 ± 0.0003
-3 0.5115 ± 0.0006
0 0.6669 ± 0.0003

+3 0.5156 ± 0.0003
+6 0.5000 ± 0.0004
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Figure 2. 2-dimensional version of the GMM experiment. We
show the true GMM distribution (red star) with the 4 different
GMM posteriors with shifts, l, in the mean vector.

3.3. Astrophysics parameter inference: detecting
physical model shifts

We apply Pokie to the joint inference of lens and source
parameters in strong gravitational lensing. Here, the goal
is to evaluate whether Pokie can detect when the underly-
ing physical model is misspecified, either in the lens mass
profile or the number of background sources.

Following Filipp et al. (2024), we generate lenses with
multiple Sérsic components (Sérsic, 1963) to model com-
plex background source morphologies. For our background
sources, we define each model to contain either one or three
Sérsic profiles. All lenses are generated using caustics
1(Stone et al., 2024). Details on lens simulations can be
found in Appendix E.

We generate 100 synthetic observations using an elliptical
power-law (EPL) profile applied to three Sérsic sources. We
define four candidate models that vary in lens type, EPL vs.
singular isothermal ellipsoid (SIE) and source count (one
vs. three Sérsic components): EPL + 3 (correct), SIE + 3
(incorrect lens), EPL + 1 (incorrect source count), and SIE
+ 1 (both incorrect) (see Appendix E). Each models share
the same prior distribution over parameters.

We use Metropolis-adjusted Langevin sampling (MALA,
Roberts & Tweedie, 1996) to get our 100 posterior distribu-
tions, each with 20 000 samples in a 13-dimensional param-
eter space. After sampling, we apply Pokie to evaluate how
well the posterior samples match the fiducial parameters of
the observed image and perform model ranking. Results are

1https://github.com/Ciela-Institute/caustics

shown in Table 3.3. We see that EPL + 3 Sérsic sources
obtain the highest Pokie score, which makes intuitive sense
as it follows the correct data generation process. We note
that having the correct number of sources is more important
than having the correct lens profile. These results show that
Pokie reliably detects model misspecification.

Table 3. Pokie score with 68% bootstrap confidence intervals. We
demonstrate that Pokie identifies the correct lensing model in a
likelihood misspecification problem.

Likelihood Pokie Score (68% CI)
EPL + 3 Sersic Sources 0.6297 ± 0.0054
SIE + 3 Sersic Sources 0.5777 ± 0.0027
EPL + 1 Sersic Sources 0.5277 ± 0.0028
SIE + 1 Sersic Sources 0.5267 ± 0.0031

3.4. Strong lensing background source reconstruction:
detecting prior distribution shifts

We apply Pokie to the inference of pixelated background
sources in strong gravitational lensing. For this, we use the
score-based models (SBM) method from Barco et al., 2025
to iteratively learn the prior distribution and get posterior
distributions.

We use the same lensing forward model as Barco et al.,
2025, and consider 4 different simulation models, by using
different prior and different Gaussian additive noise y =
Ax + η, with η ∼ N (0, ση) : (1) spiral galaxies ps(x)
and ση = 2, (2) spiral galaxies ps(x) and ση = 0.5, (3)
elliptical galaxies pe(x) and ση = 2, and (4) elliptical
galaxies pe(x) and ση = 0.5. The true model is the one with
spiral galaxy prior x ∼ ps(x) and, ση = 2. We consider
16 observations and corresponding fiducial parameters. For
each observation, we generate 64 posterior samples from our
SBM. Some observations y, ground truths x∗, and posterior
samples under each configuration are shown in Appendix F.
We then run Pokie to evaluate the 4 models.

Table 4. Pokie score with 68% bootstrap confidence intervals. We
demonstrate that Pokie assigns a higher score to the lensing model
with the correct prior and noise level.

Prior and Noise Level Pokie Score (68% CI)
ps(x) and ση = 2 0.6518 ± 0.0369
ps(x) and ση = 0.5 0.5728 ± 0.0089
pe(x) and ση = 2 0.5214 ± 0.0168
pe(x) and ση = 0.5 0.5085 ± 0.0069

The results in Table 4, show that Pokie favors the best model
(first row), demonstrating Pokie ability to scale well with
dimensionality, (3×64×64 pixels), as well as its sensitivity
to detecting distribution shift in the prior regime for complex
astrophysical data, even in low samples and fiducial regime.
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4. Discussions and Conclusion
We introduce Pokie, a sample-based metric for evaluating
posterior calibration and model comparison. Pokie quanti-
fies the expected probability that samples from an inferred
posterior distribution match those from the true, unknown
posterior, using only joint samples from the probabilistic
model. This framework allows for model comparisons di-
rectly in parameters, bypassing the need for analytical like-
lihood and computation of model evidence. We showed that
Pokie has well-defined theoretical bounds: it converges to 2

3
for well-calibrated models and has a lower bound of 1

2 for
misspecified ones. Our experiments demonstrate Pokie’s
ability to identify out-of-distribution posteriors, model mis-
specification, and out-of-distribution priors, and rank multi-
ple models effectively. Its scalability, interpretability, and
reliability make Pokie a practical and principled alternative
to existing methods for assessing posterior calibration and
model comparison.

We conducted two additional studies to support these claims.
First, in Appendix G we compare the Pokie score to the
Bayes Factor (BF) for experiments where the BF is tractable.
For these experiments, we observe agreement between the
two metrics. Then, in Appendix H we present a sensitiv-
ity analysis, varying the model dimensionality, the number
of posterior samples, the number of hyperspheres per fidu-
cial, and the number of distinct posterior distributions. We
demonstrate that Pokie is robust across these variations.

While we have demonstrated that Pokie performs well across
multiple experiments, there are important limitations to con-
sider. First, Pokie relies on a sufficient number of fiducial
and posterior samples to produce reliable estimates; other-
wise, Pokie may become noisy or uninformative. Second,
similarly to PQMass, Pokie assumes that the samples are
independent and identically distributed (i.i.d.); violations
of this assumption will render Pokie unusable. Pokie re-
quires access to the ground-truth parameters, limiting its
applicability to real data. Finally, Pokie is only a necessary
condition for correctness. In future work, we will explore
the sufficiency condition as well as delve deeper into the
complementarity of the Bayes Factor and Pokie.
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A. TARP
TARP (Lemos et al., 2023) is a method for estimating cov-
erage probabilities of generative posterior estimators using
only posterior samples, without requiring access to explicit
posterior densities. This is particularly valuable in high-
dimensional inference problems where density evaluations
are unavailable or computationally prohibitive. TARP pro-
vides a way to validate whether posterior samples accurately
reflect the true distribution, even in simulation-based set-
tings where traditional methods fail.

TARP constructs coverage regions in parameter space.
Specifically, given a true parameter θ∗, TARP defines a
hypersphere centered at a randomly chosen reference point,
θr, with a radius defined to be d(θ∗, θr). The coverage is
then estimated as the proportion of posterior samples that
fall within this region:

fi =
1

n

n∑
j=1

1[d(θij , θr) < d(θ∗i , θr)]

where θij ∼ p̂(θ | x) are posterior samples. TARP’s key
theoretical insight is that if this expected coverage holds
uniformly over random choices of θr, then the posterior
samples are guaranteed to be calibrated. This setup allows
TARP to validate the accuracy of posterior inference with-
out requiring likelihood evaluations or explicit density func-
tions.

Pokie adopts the TARP’s framework of working in the pa-
rameter space and utilizing the hypersphere setup to per-
form sample-based analysis, but modifies it in two key ways.
First, instead of defining the region radius via the distance to
the true parameter θ∗, Pokie defines the radius from θr to a
randomly chosen posterior sample. This allows Pokie to de-
fine posterior quantile-like regions without needing knowl-
edge of θ∗ when defining the region itself. Second, Pokie
introduces k, a Bernoulli variable, which records whether θ∗

falls inside the randomly defined region. This formulation
enables a probabilistic scoring mechanism that aggregates
over many such randomized comparisons, yielding a the-
oretically bounded metric that discriminates between well
and poorly calibrated models.

B. PQMass
PQMass (Lemos et al., 2025) is a sample-based method de-
signed to assess whether two sets of samples originate from
the same underlying distribution. The fundamental idea
is to compare probability masses over multiple regions of
the sample space, leveraging the properties of multinomial
distributions.

Formally, given two distributions p and q, they are consid-
ered equal if their probability measures coincide over all
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measurable setsR ⊆ Ω:

Pp(R) = Pq(R) ∀R ⊆ Ω. (6)

The probability mass of a regionR under p can be unbias-
edly estimated as:

Pp(R) = Ey∼p(y)[1(y ∈ R)] ≈
1

N

N∑
i=1

1(yi ∈ R), (7)

where yi ∼ p(y) are N independent samples. Furthermore,
given a set of N samples yi ∼ p(y), and one region, the
number of samples falling within R follows a binomial
distribution:

n ∼ B(N,λ), λ = Pp(R). (8)

This property allows for the comparison of two distribu-
tions by comparing the binomial distributions over multiple
chosen regionsR.

C. Pokie algorithm

Algorithm 1 Computing Pokie score for modelM
1: Input: Number of fiducial draws L, region samples Lr,

posterior samples N
2: Output: Pokie score PPokie(M)
3: Initialize score← 0
4: for j = 1 to L do
5: Draw y∗j ∼ p(y | x∗,M∗)
6: Draw {yi,j}Ni=1 ∼ p(y | x∗,M)
7: for ℓ = 1 to Lr do
8: Sample cj,ℓ ∼ πc

9: rj,ℓ ← d(cj,ℓ, yi,j)
10: Rj,ℓ ← {y : d(y, cj,ℓ) ≤ rj,ℓ}
11: n←

∑
i 1[yi,j ∈ Rj,ℓ]

12: k ← 1[y∗j ∈ Rj,ℓ]

13: Update score + = n+1
N+2 if k = 1, else + =

N−n+1
N+2

14: end for
15: end for
16: return PPokie(M) = score

L·Lr

When Z = (y∗, x∗, {y}Ni=1) is limited, one can run Pokie
with L = 1; however, this provides limited information
about how well the posterior model is calibrated to the true
posterior. In this scenario, we outline two practical strategies
to improve the estimation of calibration.

To mitigate the limited number of fiducial samples, we
adopt a Monte Carlo approximation of the Pokie score by
fixing the fiducial sample y∗, x∗ across draws L, while in-
dependently resampling posterior samples {yj}Nj=1 ∼ p(y |

x∗,M). This approach, aligned with Equation 5, marginal-
izes over posterior variability while preserving the i.i.d. as-
sumptions required for Pokie. Note that this approach can
be considerably more computationally intensive.

An alternative approach is to consider reusing y∗ and
{yj}Nj=1 across Monte Carlo iterations when it is too com-
putationally intensive to resample Z. In this case, we rerun
Pokie by generating new regions R, defined by keeping c
the same, drawing new yj , and recomputing the distances
∥c− yj∥, while holding the posterior samples fixed. While
this reuse violates independence assumptions, it offers sub-
stantial computational savings. Empirically, and similarly
to PQMass, we find that this approximation can still yield
useful assessments of posterior calibration. We leave the
choice to the user to determine if this approach is sufficient
for their use case.

D. Proofs
D.1. Pokie statistic derivation

Proposition D.1 (Pokie statistic). LetR be a hypersphere
centered at c with radius ∥c − yj∥ where yj ∼ p(y). Let
n ∼ B(N,λn) and k ∼ B(1, λk) with λn =

∫
p(y)1(y ∈

R)dy and λk =
∫
q(y)1(y ∈ R)dy, be two random vari-

ables. Then, under the null hypothesis "λn = λk, ∀R", the
conditional distribution of k given n andR is given by:

p
(
k = 1 | n,R

)
=

n+ 1

N + 2
,

p
(
k = 0 | n,R

)
=

N − n+ 1

N + 2
. (9)

Proof. We begin by marginalizing over the shared param-
eter λ, where we defined λ = λn = λk under the null
hypothesis:

p(k | n,R) =
∫

p(k, λ | n,R)dλ,

=

∫
p(k | n, λ,R)p(λ | n,R)dλ. (10)

Since k is independent of n given λ andR the probability
becomes

p(k | n,R) =
∫

p(k | λ,R)p(λ | n,R)dλ. (11)

By applying Bayes theorem we obtain

p(k | n,R)

=
1

p(n | R)

∫
p(k | λ,R)p(n | λ,R)p(λ | R)dλ. (12)

By assuming an uninformative distribution p(λ | R) =

8
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U [0, 1], we derive

p(k | n,R) = 1

p(n | R)

∫ 1

0

p(k | λ,R)p(n | λ,R)dλ.

(13)

Recalling that p(k | λ,R) = p(k | λ) = B(1, λ) and
p(n | λ,R) = p(n | λ) = B(N,λ) we have

p(k | n,R) =(
1
k

)(
N
n

)∫ 1

0
p(n | λ,R)dλ

∫ 1

0

λk+n(1− λ)1−k+N−ndλ. (14)

Recognizing the Beta distribution we end up with

p(k | n,R)

=

(
1

k + 1

)
β(k + n+ 1, 2− k +N − n)

β(n+ 1, N − n+ 1)

=
Γ(k + n+ 1)Γ(2− k +N − n)

Γ(2− k)Γ(k + 1)Γ(n+ 1)Γ(N − n+ 1)(N + 2)
(15)

Finally, we have for k = 0

p(k = 0 | n,R) = N − n+ 1

N + 2
, (16)

and for k = 1

p(k = 1 | n,R) = n+ 1

N + 2
. (17)

D.2. Pokie calibration convergence

Theorem D.2 (Pokie Calibration Convergence). LetM∗

denote the true model, and let M be a candidate model.
Suppose that for all simulation x ∼ p(x | M∗), the pos-
terior distributions agree: p(y | x,M) = p(y | x,M∗).
Then, the Pokie score ofM satisfies

PPokie(M) = 2
3 .

Proof. Using the law of total expectation and the fact that
the expression of p(k | n,R) (Equation 3) does not explic-
itly depend onR, Equation 4 becomes:

PPokie(M) = Ep(k,n,R) [p(k|n,R)]
= Ep(k,n) [p(k|n,R)] .

Given that k|λk and n|λn are independent we write:

p(k, n) =

∫
p(k, n, λn, λk)dλndλk (18)

=

∫
p(k|λk)p(n|λn)p(λn, λk)dλndλk. (19)

Replacing p(k, n) into the expectation, we derive

Ep(k,n,R) [p(k|n,R)]
= Ep(λk,λn)

[
Ep(k|λk)p(n|λn) [p(k|n,R]

]
.

By substituting the explicit expressions of the Bernoulli and
Binomial distributions, we derive

PPokie(M)

= Ep(λk,λn)p(k|λk)p(n|λn)[
n+ 1

N + 2
· 1(k = 1) +

N − n+ 1

N + 2
· 1(k = 0)

]
= Ep(λk,λn)[
Nλn + 1

N + 2
· λk +

N −Nλn + 1

N + 2
· (1− λk)

]
.

After simplifying this expectation, we find:

PPokie(M)

=
2N E[λnλk]−N E[λn]−N E[λk] +N + 1

N + 2
. (20)

Under equality of posterior distributions for all observations,
we have that λn = λk for all R and p(λn, λk) = δ(λn −
λk)p(λn). Substituting into the Pokie expectation formula
we get

PPokie(M) =
2NEp(λn)[λ

2
n]− 2NEp(λn)[λn] +N + 1

N + 2
.

(21)

According to the Probability Integral Transform theorem,
the continuous random variable

λn =

∫
p(y | x,M)1 (∥y − c∥ ≤ ∥yj − c∥) dy, (22)

with yj ∼ p(y | x,M), follows a uniform distribution on
[0, 1]. Hence, by using λn ∼ U [0, 1], we derive

PPokie(M) =
2N · 13 − 2N · 12 +N + 1

N + 2

=
2N + 3

3(N + 2)
→ 2

3
as N →∞.

We note that this result is a necessary condition. Determin-
ing whether this condition is also sufficient is left as future
work.

D.3. Pokie score lower-bound

Proposition D.3 (Pokie score lower-bound). Let M∗ be
the true model and M a candidate model. Suppose that
for every x ∼ p(x|M∗), yM ∼ p(y|x,M) and yM∗ ∼
p(y|x,M∗) satisfies yM ⊥⊥ yM∗ , then

PPokie(M) = 1
2 .

9
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Proof. Recall the Pokie score from Eq. (20):

PPokie(M)

=
2N E[λnλk]−N E[λn]−N E[λk] +N + 1

N + 2
.

Under independence of posterior distributions, we have that
λn|R ⊥⊥ λk|R. Additionally, by choosing an uninforma-
tive uniform distribution on [0, 1] for p(λn|R) (as used in
the derivation of the Pokie statistic), and recalling that p(λn)
is uniform on [0, 1], we can simplify the expression of Equa-
tion 20 as follow

PPokie(M)

=
2N Ep(R)

[
Ep(λn,λk|R) [λnλk]

]
−N E[λk] +

N
2 + 1

N + 2

=
2N Ep(R)

[
1
2Ep(λk|R) [λk]

]
−N E[λk] +

N
2 + 1

N + 2

=
N E [λk]−N E[λk] +

N
2 + 1

N + 2

=
N
2 + 1

N + 2

=
1

2
.

E. Model Misspecification Images
Here we provide additional details about the data setup
in 3.3. The true distribution, p(y|x∗,M), is defined to
be an EPL with 3 Sérsic sources. We then define our ob-
served images as y∗ with Gaussian noise is added with
η ∼ N (0, 12), yielding Iobs. All generated lenses are ren-
dered on a 100× 100 grid with pixel scale 0.05.

Table 5 lists all parameters inferred during posterior estima-
tion. In setups with three Sérsic sources, we independently
sample source-specific parameters, x0, y0, and Ie, for each
component. MALA inference is run using 100 walkers, with
200 steps for burn-in and 200 steps for sampling, yielding
20,000 posterior samples per model. When running Pokie,
all models are evaluated in the 13-dimensional parameter
space. For single-source configurations, the second and
third source positions and intensities (x0, y0, Ie) are fixed
to zero, ensuring a consistent parameter structure across
models and allowing for fair posterior comparisons.

All posterior inferences were run using MALA sampling on
a single AMD Milan CPU core for approximately 8 minutes
(wall-time) per configuration, using up to 10 GB of memory.
Across 100 synthetic observations, the total inference cost
was approximately 13.33 CPU-hours.

Figure 3 shows one example of the clean ground truth image

Table 5. Parameter ranges for lens and source parameters that are
inferred. All other parameters are held constant across models.
SIE models implicitly fix γ = 2.0.

Parameter Distribution

EPL Lens
Einstein radius b U [1.0, 1.5]
Axis ratio q U [0.5, 0.9]
Orientation angle ϕ U [0.0, π]
Power-law slope γ U [1.75, 2.25]
SIE Lens
Einstein radius b U [1.0, 1.5]
Axis ratio q U [0.5, 0.9]
Orientation angle ϕ U [0.0, π]
Sérsic Source
Source center x̂src U [−0.5, 0.5]
Source center ŷsrc U [0.05, 0.10]
Effective intensity Ie U [0.4, 0.8]

(EPL + 3 Sérsic sources), the corresponding noisy obser-
vation (σ = 1), and posterior means from each candidate
model: EPL+3, SIE+3, EPL+1, and SIE+1. Each posterior
mean is computed by averaging 100 MALA samples. The
final column shows residuals between the observation and
posterior mean. Only the correctly specified model (EPL+3,
top row) produces residuals consistent with Gaussian noise.
All others exhibit structured residuals, revealing mismatches
due to incorrect lens profile, source count, or both.

F. Lensed galaxy images
In Figure 4, we showcase some ground truths x⋆ and pos-
terior samples x ∼ pi(x | y) for the 4 different posterior
sampling configurations explained in 3.4.

Here, we describe the model and training hyperparameters
of the SBM priors, ps(x) and pe(x), taken from (Barco
et al., 2025) for reproducibility. We also refer the reader to
the corresponding work for details of the training datasets.
The models were created using the score-models2 pack-
age, and follow a NCSN++ architecture (Song et al., 2021).
The model hyperparameters, within the score-models
package, are:

"beta_min": 0.01,
"beta_max": 20.0,
"channels": 3,
"nf": 64,
"ch_mult": [1, 2, 2, 2],
"sde": "vp"

The SBMs were trained with an Adam optimizer (Kingma

2github.com/AlexandreAdam/score_models
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Figure 3. Left to right: clean ground truth image (EPL + 3 Sérsic
sources), observed data with Gaussian noise (σ = 1), posterior
means from four candidate models, and corresponding residuals
(observation minus posterior mean). Only the correctly specified
model (top row: EPL + 3 Sérsic source) produces residuals consis-
tent with Gaussian noise. Other models show structured residuals,
revealing mismatches due to incorrect lens type and/or source
count.

& Ba, 2015), with lr = 1e−4, batch size of 256, and
ema_decay = 0.999, for approximately 2.5 × 105 opti-
mization steps. All hyperparameters not specified here were
left to the score-models default values. Each SBM was
trained on an A100 GPU for 20 hours (wall-time) and with
32Gb of VRAM allocated.

y = Ax? + η x? x ∼ p0(x | y) x ∼ p1(x | y) x ∼ p2(x | y) x ∼ p3(x | y)

Figure 4. Plotted in order of left to right is the result of the forward
model noised up. The 2nd column is the ground truth, next is the
first posterior model with elliptical galaxy prior and σn = 2.0,
the next column is the posterior given elliptical galaxy prior and
σn = 2, the 5th column is the posterior model with a spiral galaxy
prior and σn = 0.5, and lately the last column is the posterior
model given a spiral galaxy prior and σn = 0.5.

Finally, we use the same SDE solver setup for prior and pos-
terior sampling as (Barco et al., 2025), which is a predictor-
corrector solver (Song et al., 2021) with 1024 solver steps.
We obtain 16 prior samples to simulate the ground truths
x⋆, and get 64 posterior samples per observation per config-
uration. Inference of these 4 112 samples was carried out
in a single A100 GPU for 4 hours (wall-time) and 40Gb of
VRAM allocated.

G. Bayes Factor Comparison
In this appendix, we compare Pokie with the Bayes Factor
across two settings: the linear regression experiment from
Section 3.1 and the distributional shift experiment from
Section 3.2. In both cases, the goal is to compare Pokie and
the Bayes Factor in identifying well-calibrated posteriors
and assessing models that are poorly calibrated.

G.1. Linear Regression

We compute Bayes Factors for the linear regres-
sion setup described in Section 3.1, where models
are perturbed by varying the posterior mean (η =
{0.001, 0.01, 0.1, 0.15, 0.2, 0.25}) while keeping the co-
variance fixed. We have 5 000 fiducial samples, and from
each model we draw 5 000 samples. We compute Bayes
Factors using:

BF(η) =
p(y | Mη)

p(y | M∗)
,

whereMη is the model with noise η, andM∗ denotes the
model with the least noise (η = 0.001), which we treat as
the ground truth.

Table 6. Comparison of Pokie and Bayes Factor scores in linear
regression. Pokie and BF both rank models consistently with
increasing levels of misspecification. Pokie scores range from 1/2
(poorly specified model) to 2/3 (well specified model). Bayes
Factors near 1 indicate models that are nearly as plausible as the
reference model M∗; lower values indicate less support.

Noise Level Pokie Score BF
0.001 0.6646 0.999
0.01 0.6412 0.990
0.1 0.5656 0.906

0.15 0.5573 0.863
0.2 0.5525 0.821

0.25 0.5493 0.782

As shown in Table 6, both Bayes Factor and Pokie consis-
tently assign higher scores to the models with less noise,
with the ranking degrading smoothly as model misspecifica-
tion increases. This demonstrates that both Pokie and Bayes
Factor can identify, in this experiment, calibrated and poorly
calibrated models.

G.2. Gaussian Mixture Model Shifts

We compute Bayes Factor scores for the GMM shift experi-
ment described in Section 3.2. As this experiment does not
involve Bayesian inference, there is no likelihood or prior.
Instead, we consider the GMM probability density function
(PDF) as our evidence to compute a Bayes Factor score.
Specifically, we evaluate the probability of 5 000 samples
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from the true (unshifted) GMM, under each shifted model’s
PDF. This allows us to compute a density ratio between the
shifted and unshifted GMMs, serving as a proxy for the
Bayes Factor in this likelihood-free setting:

BF(ℓ) =
p(y | Mℓ)

p(y | M)
,

whereMℓ is the GMM with shift magnitude ℓ, andM∗ is
the true GMM with no shift (ℓ = 0).

Table 7. Comparison of Pokie and Bayes Factor scores across
GMM shift magnitudes. Pokie reliably favors the in-distribution
model and penalizes shifted ones. Pokie scores range from 1/2
(poorly specified model) to 2/3 (well specified model). Bayes
Factors near 1 indicate models that are nearly as plausible as the
reference model M∗; lower values indicate less support.

Shift Magnitude Pokie Score Bayes Factor
-6 0.5048 0.000
-3 0.5865 4.55× 10−145

0 0.6661 1.000
3 0.5959 5.45× 10−162

6 0.5045 0.000

As shown in Table 7, both Pokie and the Bayes Factor
correctly identify the unshifted model (ℓ = 0) as the most
accurate and identify increasingly shifted models as less
probable. The Pokie score transitions from the theoretical
maximum of 2/3 for the well-calibrated model toward the
lower bound of 1/2 as the shift increases, while the log
Bayes Factor becomes increasingly smaller. Here we note
that both Pokie and Bayes Factor are sensitive to the fact
that the shifted models are poorly calibrated.

Across both experiments, we find strong agreement between
Pokie and Bayes Factor rankings. This demonstrates that
Pokie can serve as a viable, sample-based metric for model
assessment and comparison, especially valuable in scenar-
ios where likelihood evaluation or evidence computation
is intractable or unavailable. While Bayes Factors operate
through the marginal likelihood in data space, Pokie evalu-
ates posterior alignment directly in parameter space, making
it applicable in a broader range of settings.

H. Sensitivity Analysis
We conduct a sensitivity analysis of the Pokie score to eval-
uate how it responds to variations in key experimental pa-
rameters: (i) the dimensionality of the parameter space, (ii)
the number of hyperspheres per fiducial used for estimation,
(iii) the number of posterior samples per model, and (iv) the
number of distinct ground-truth posteriors. These experi-
ments characterize the robustness of Pokie under practical
constraints.

-6 -3 0 3 6
0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Po
ki

e 
Sc

or
e

Varying Dimensions
2D
5D
10D
100D

-6 -3 0 3 6
Shift Value

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675
Varying Number of Hypersphere

1 runs
20 runs
50 runs
100 runs

-6 -3 0 3 6
Shift Value

0.50

0.55

0.60

0.65

0.70

Po
ki

e 
Sc

or
e

Varying Posterior Samples
10 samples
50 samples
100 samples
200 samples
300 samples
400 samples
500 samples

Well Calibrated Limit
Poorly Calibrated Limit

Figure 5. Pokie score sensitivity under varying experimental con-
ditions. Top-left: effect of dimension on score; Top-right: number
of hyperspheres per fiducial; Bottom-left: number of posterior
samples. Across settings, Pokie scores peak for the well-calibrated
(ℓ = 0) model and fall to the poorly calibrated limit with increas-
ing shift.

To assess sensitivity to posterior characteristics, we use the
experiment introduced in Section 3.2, and vary the follow-
ing: dimensionality, number of hyperspheres per fiducial,
and the number of posterior samples. Results are summa-
rized in Figure 5.

First, we vary the dimensionality of the problem, evaluat-
ing GMMs in 2, 5, 10, and 100 dimensions while fixing
the number of posterior samples to 400 samples and using
100 hyperspheres per fiducial. We find that Pokie scores
remain well-behaved across all tested dimensions: well-
calibrated posteriors score near the theoretical maximum
of 2/3, while miscalibrated posteriors approach the lower
bound of 1/2. Next, we fix the problem to 100D and 400
posterior samples and vary the number of hyperspheres per
fiducial from 1 to 100. The Pokie score stabilizes rapidly
after approximately 10 runs. Finally, we fix the problem to
100D with 100 hyperspheres per fiducial and vary the num-
ber of posterior samples per model between 10 and 500. We
see that with only 10 samples, the model correctly identifies
the best and worst models; however, the Pokie scores are
shifted upwards due to the lack of samples. The 1/2 to 2/3
Pokie score bounds are defined in the limit as the number
of posterior samples approaches infinity, so with only 10
samples, these bounds no longer constrain the score, even
if the model rankings remain correct. Inversely, the results
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Figure 6. Pokie score vs noise level for varying counts of true
posteriors. As the number of true posteriors increases, confidence
in the Pokie estimate improves, and the distinction between well-
and poorly-calibrated models becomes more pronounced.

indicate that even 100 posterior samples are sufficient to
produce consistent scores.

We further investigate how the number of true posterior
distributions affects Pokie. Using the linear regression setup
from Section 3.1, we fix the number of posterior samples per
model to 5 000, and perform 100 hyperspheres per fiducial.
We vary the number of distinct ground-truth draws (θ∗)
from 10 to 1 000, and evaluate Pokie scores at different
noise levels. Results are shown in Figure 6.

As the number of true posteriors increases, the Pokie be-
comes sharper and confidence intervals narrow. Even with
relatively few posteriors, Pokie can still correctly assess the
quality of the posterior and rank models.

Overall, Pokie remains robust given the sensitivity test. It
produces accurate scores with relatively small sample sizes
and maintains consistency across high-dimensional spaces.
The number of samples, whether fiducials or posterior sam-
ples, has the largest influence on stability, though even mod-
est values yield usable estimates. These properties make
Pokie well-suited for practical use in SBI tasks under practi-
cal constraints.
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