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Abstract

Reconstructing a galaxy’s mass distribution from
a single observed lensed image is a challeng-
ing nonlinear inverse problem with many degen-
eracies, typically requiring strong prior assump-
tions. We propose a deep generative approach
that learns a flexible prior over lens mass maps
using a Wasserstein Autoencoder (WAE) trained
on simulated data. To correct for misspecification
of the initial prior, which is trained on a simpler
surrogate model, we iteratively refine the prior
by generating posterior samples, obtained from
new simulated lenses, under the current model
and retraining the WAE on these samples. In
experiments on synthetic lensed images, this itera-
tive scheme increases the model’s data likelihood
and yields more accurate recovery of lens param-
eters such as ellipticity, despite starting from a
biased prior lacking this feature. These results
demonstrate that data-driven prior adaptation can
mitigate model misspecification in nonlinear lens-
ing inversion and potentially improve inference
in other complex inverse problems.

1. Introduction
Strong gravitational lensing is a prominent example of an
inverse problem in astrophysics. Given a distorted image of
a background source, one needs to infer both the foreground
mass distribution, i.e. the lens that produced the observed
deflection, as well as the background source. This problem
is very challenging since lensing involves a highly nonlin-
ear mapping for the mass distribution (κ-map) and permits
many possible mass profiles and background source config-
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urations that fit the data. To mitigate this degeneracy, lens
modelers have long relied on either simple parametric forms
or free-form reconstructions. While the parametric mod-
els are computationally convenient, they lack the flexibility
needed to capture complex or irregular mass distributions.
On the other hand, free-form models need to be strongly
regularized, a process which is usually done by enforcing
manually specified priors (Birrer et al., 2015; Merten, 2016;
Galan et al., 2022). These assumptions are usually relatively
simple, but hard to encode. Alternatively, flexible, learned
priors offer a compelling alternative: by leveraging data or
simulations to learn a distribution over realistic mass maps,
we can regularize the lens inversion with a richer model of
plausible structures (Morningstar et al., 2019; Adam et al.,
2023; Wagner-Carena et al., 2023).

In particular, deep generative models like Variational Au-
toencoders (VAEs) or their extensions like the Flow-VAE
or Wasserstein Autoencoders (WAEs) can learn complex
distributions of parameters from simulated data and serve as
high-dimensional priors (Kingma & Welling, 2014; Ruben-
stein et al., 2018; Lanusse et al., 2021). VAEs learn a latent
representation of the data by maximizing an evidence lower
bound, providing an efficient way to encode and sample
high-dimensional distributions. WAEs are a more recent
variant that minimizes the Wasserstein distance between the
model distribution and the data distribution for its optimal
transport objective, often yielding improved sample quality
and a closer match to the true distribution (Rubenstein et al.,
2018). These learned priors can improve lens modeling as
they embed learned regularities of mass profiles rather than
imposing simplistic forms.

However, a critical difficulty arises when the generative
model is trained on an imperfect or mismatched dataset
(Huang et al., 2023; Wehenkel et al., 2025). In practice, one
does not have access to true κ-maps drawn from the actual
distribution of galaxy mass distribution and instead, must
rely on imperfect simulations or simplified models. This
can lead to model misspecification where the prior encoded
by the WAE does not exactly match reality. If not taken
into account, such a mismatch could bias posteriors and
lead to incorrect inferences (Grünwald, 2012; Grünwald
& Van Ommen, 2017; Miller & Dunson, 2019). Recent
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work on posterior-corrected priors has proposed using the
observed data itself to iteratively refine a misspecified prior
(Bissiri et al., 2016; Barco et al., 2025; Rozet et al., 2024).
Their approaches showed that, even when starting from
a biased prior, repeatedly retraining the generative model
on samples drawn from the posterior obtained with that
prior, or by using specialized loss functions, allows the
prior to asymptotically converge toward a data-explaining-
distribution that attains the same evidence as the ground-
truth prior.

Our key contribution is demonstrating that this approach
can mitigate prior misspecification even when the lensing
forward model is nonlinear and the generative model must
learn a distribution over mass maps while being much less
flexible than score-based models. In the following, we
outline the lensing forward model and our inference method.
We then detail the iterative WAE retraining procedure that
progressively adapts the κ-map prior towards a distribution
explaining the data despite the initial mismatch.

2. Methodology
2.1. Lensing Forward Model

We consider the standard forward model of strong gravita-
tional lensing, in which a background source with intensity
distribution s is lensed by a foreground mass distribution
characterized by its convergence field κ. When κ, s and η
are pixelated, we can state our problem as in Warren & Dye
(2003):

y = Aκs+ η (1)

where y ∈ Rm is an observation, Aκ ∈ Rm×n is the Jaco-
bian of the forward model describing the distortion to source
s ∈ Rn and η ∈ Rm is a noise realization. Although s and
κ are usually inferred jointly, we instead fix s to a known
2-D Gaussian centered in the image. This turns the task into
recovering only the convergence field κ, which remains a
nonlinear problem.

In this work, all lenses are simulated with the package
Caustics (Stone et al., 2024). We simulate synthetic ob-
servations y by drawing convergence maps κ ∼ p∗(κ) from
a 6-parameter Elliptical Power-Law (EPL) (Barkana, 1998)
mass profile and inject Gaussian noise η ∼ N (0, σηI),
ση = 1.

2.2. WAE Prior

We employ an over-parametrized Wasserstein Autoencoder
(WAE) to learn a flexible prior over the κ-maps. The WAE
consists of an encoder Eϕ(κ) that maps a high-dimensional
κ-map to a latent sample, z ∈ R16, and a decoder Gθ(z)
that generates a reconstructed κ̂ (Rubenstein et al., 2018).
Training is done on a set of misspecified mass distributions,

here, drawn from a simpler surrogate model. The initial
training set is composed of κ-maps simulated from the Sin-
gular Isothermal Sphere (SIS) parametric model, which
lacks ellipticity: κ ∼ pSIS(κ). The parameters for both the
true and initial convergence map distributions are given in
Annex A.

The WAE training objective includes a reconstruction term,
ensuring Gθ(z) produces accurate mass maps, and a diver-
gence term that encourages the model’s latent-space output
to match a prior distribution (Rubenstein et al., 2018). By
minimizing the Wasserstein distance between the model
output distribution and the empirical data distribution, the
WAE learns to generate κ samples that mimic the training
set statistics. After training, the decoder Gθ(z) defines an
implicit prior pWAE(κ) = p1(κ). We can draw random
latent vectors z ∼ N (0, I) and map them through Gθ to
obtain random realistic mass maps. See Annex B for more
information on the WAE.

2.3. Posterior Inference

This WAE prior is then used in our inference of κ. Specif-
ically, we treat pWAE(κ) as the prior in a posterior p(κ |
y, s) ∝ p(y | κ, s)pWAE(κ). Directly sampling the posterior
is non-trivial because the posterior in the high-dimensional
latent space might be complex and multi-modal due to de-
generacies. Standard MCMC methods could be applied
but might struggle with the higher dimensionality of z and
complex likelihood surface (Yao et al., 2022). Instead, we
adopt a latent optimization approach. The idea is to find la-
tent vectors z whose decoded mass maps produce simulated
lenses that closely match the observation. Specifically, we
define a loss function for a given latent z:

L(z) = 1

2σ2
η

∥yobs −AGθ(z)s∥
2
2 +

ση
2
∥z∥22 (2)

where AGθ(z) is the forward model for the decoded κ̂ =
Gθ(z). Minimizing L(z) seeks a maximum a posteriori
(MAP) estimate of z, and corresponding κ, that best ex-
plains the observation. We use the gradient-based optimizer
Adam to minimize L(z), leveraging the fact that our forward
model and decoder are differentiable. Importantly, to pre-
vent the optimizer from converging to a single mode, we em-
ploy a multi-start strategy: we draw N = 20 random initial
latent vectors z(1)i i=1...N from p1(z), run N separate Adam
optimizers and keep the one with the lowest loss. Then, start-
ing from the MAP estimate, we obtain posterior samples
with stochastic gradient Langevin dynamics (SGLD) and a
decreasing step size (Welling & Teh, 2011). It should be
noted that using a MAP estimate for the latent z in place of a
posterior sample would correspond to a hard-EM approach
(Laarhoven & Marchiori, 2018). Hard-EM effectively maxi-
mizes the complete-data posterior p(κ, z | y, s) rather than
the marginal posterior p(κ | y, s), hence it does not con-
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serve EM’s usual guarantees such as the non-decreasing of
the marginal likelihood (Gupta & Chen, 2011).

2.4. Iterative Prior Adaptation

The core of our method is an iterative scheme that progres-
sively adapts the WAE prior toward the true distribution
of κ-maps despite starting from a misspecified SIS-trained
model. The procedure is as follows:

1. Initial Prior & Inference: We train the WAE on the
surrogate SIS dataset to obtain an initial prior p1(κ).
Then, for each observed image yj , simulated with κ-
maps drawn from the true prior, p∗(κ), we perform
posterior sampling with the current prior p1(κ). This
yields a collection of samples κ(1)i,j for each observation
j. Due to prior misspecification, these samples may
not perfectly match the true EPL distribution, but they
provide corrective updates toward fitting the data. In
this work, we sampled j = 500 different observations
and obtained the posterior samples for each (i = 1),
a relatively modest dataset that should suffice here
since we are fine-tuning an existing model rather than
training a new one from scratch.

2. Retraining the Prior: With the new posterior-drawn
dataset, the WAE is fine-tuned to learn a new prior
p2(κ) that better reflects these posterior samples. In-
tuitively, this adjusts the prior towards mass config-
urations that were actually needed to explain the ob-
servations, thereby shifting it closer to a distribution
better explaining those observations. Importantly, this
retraining does not require any knowledge of the true
EPL form. It uses only the results of inference on
real/simulated data.

3. Iterate: Using the updated prior p2(κ), we repeat the
posterior inference on fresh observations, though ide-
ally using additional lenses prevents overfitting to spe-
cific systems. This E-step / M-step loop, in analogy to
EM algorithms, is iterated for a few cycles to obtain
pn(κ), n = 20.

This iterative adaptation approach is inspired directly by
Barco et al. (2025), who applied a similar cycle to source re-
construction with diffusion models, and similarly, by Rozet
et al. (2024), who applied it to natural images in an inpaint-
ing task. Crucially, while both prior studies used expressive
diffusion models, we use a WAE instead, a choice that
may limit the method since sampling could wander into the
WAE’s untrained regions or be constrained by its narrower
support.

3. Results
3.1. Likelihood Improvement

When applying the method, the likelihood improves signif-
icantly in the first few iterations as the WAE prior adapts
to better fit the data. By about the 6th iteration, however,
the gains plateau, suggesting the prior has converged to the
most descriptive distribution achievable within the WAE’s
architectural limits. Beyond iteration 6, further retraining
yields marginal improvements at best. This diminishing
return is evident in Figure 1, where the log-likelihood curve
flattens out.

Figure 1. Mean log-likelihood of the training samples for each
retraining iteration. Iteration 1 corresponds to the prior encoded
by the WAE after its training on samples drawn from the SIS prior.

We assess prior fidelity with the PQMass metric (Lemos
et al., 2025), which quantifies the statistical consistency
between two sets of samples by estimating the probability
that they originate from a common underlying distribution.
Per iteration, we draw 1000 posterior samples from the
WAE and 1000 from the true EPL prior, partition the image
into 100 random Voronoi cells, and compute a χ2 between
the sample counts in matching cells. Averaging this over
1000 such tessellations gives the final statistic, where lower
values signal a closer match between learned and target
distributions. Figure 2 shows the resulting χ2

PQM curves.
The statistic for unprocessed samples slowly increases with
retraining, indicating that the WAE-generated samples do
not significantly approach the true EPL distribution in fine
detail and, in fact, diverge from it. In contrast, when both
the WAE and EPL κ-maps are smoothed with a Gaussian
kernel (σ = 2, 7 × 7), χ2

PQM steadily declines with each
iteration, until reaching a plateau. This outcome implies that
while the WAE prior is unable to exactly replicate the true
distribution, likely due to architectural limitations, sampling
limitations, and the contained information in the data, it
does converge in terms of large-scale structure. Crucially,
smoothed EPL κ-maps yield similar observations to the raw
EPL, their residual differences falling below the noise level,
indicating that learning the high-frequency information in
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the true distribution would be very difficult.

Figure 2. PQMass χ2 statistics comparing 1000 WAE-generated
posterior samples to 1000 samples from the true EPL prior at each
retraining iteration. The blue (circles) curve shows χ2

PQM for
unprocessed κ-maps. The teal (triangles) curve shows χ2

PQM after
applying a Gaussian blur (σ = 2, 7 × 7 kernel) to both sets of
maps. Applying a Gaussian kernel to both dataset ensures only the
features of the κ-maps bigger than the filter are compared. This
removes effects of small artifacts originating from the generative
model.

3.2. Recovery of Lens Parameters

To evaluate the physical fidelity of the learned models, we
fit each of the 500 posterior sample’s mass maps with a
corresponding parametric EPL model by gradient descent
(lens center (x0, y0), axis ratio q, orientation ϕ, Einstein
radius REin, and mass profile slope τ ).

We then compared these recovered parameters to the ground-
truth values used to generate the simulated data. Figure 3
presents density plots of the error when comparing the recov-
ered to the true parameter values for multiple iterations. We
observe that lens positions and shapes are more accurately
recovered after a few iterations of our method: the offsets
(x0, y0) cluster tightly around zero, and the inferred elliptic-
ity and orientation (q and ϕ) for each lens is very close to
the true value. This indicates that after sufficient iterations,
the generative model has learned to represent elliptical mass
distributions, despite starting from a non-elliptical SIS prior.
On the other hand, we find a systematic bias in the recovered
REin: the model tends to under-predict the Einstein radius.
In Figure 3, the REin error is mostly negative, implying the
reconstructed lenses are slightly less massive than the true
lenses. This bias is slightly reduced across iterations, but is
mostly consistent. Most strikingly, the slope parameter τ is
unconstrained. The inferred τ values show little to no corre-
lation with the true τ . Generally, the error for all parameters
at iteration 10 is slightly smaller than at iteration 20, which
is consistent with the PQMass analysis, where the χ2

PQM

started to diverge from the smooth EPL distribution after
iteration 10, likely due to overfitting on the limited dataset.

Figure 3. Error of the recovered parameters of 500 posterior sam-
ples compared to their true value for six parameters of the EPL
mass model. For the lens-center offsets (x0, y0) and the Einstein
radius (Rein) panels, the axes are in arcseconds (′′). Across retrain-
ing iterations, the error shrinks, indicated by a clustering around 0
(the dotted line). For a more detailed plot, see Annex C.

4. Future Work and Limitations
Future work will employ more sophisticated posterior sam-
ples such as latent normalizing flows, flow-conditioned
Langevin dynamics, or noise-space diffusion methods,
which already reach MCMC-level accuracy with much
shorter run times (Holzschuh & Thuerey, 2024; Venkatra-
man et al., 2025). A more efficient sampler will let us
leverage much larger and more diverse lens datasets, which,
in turn, will let us train deeper and more flexible generative
models.

Extending the iterative scheme to real observations will
require adding instrumental effects (PSF convolution, non-
Gaussian noise, imperfect calibration, and residual lens
light) into the model refinement loop, so that their uncer-
tainties propagate through the posterior. Beyond this, we
plan to generalize the framework to jointly reconstruct the
unknown source light and lens mass. Complementary gen-
erative priors for both components should temper the noto-
rious lens-source degeneracy, although working with this
degeneracy may still prove very challenging.
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Since the prior shifts away from the ground truth distri-
bution when using the prior-refinement method while still
explaining the data better, there exist several prior distribu-
tions that explain the data with equal likelihood. Therefore,
the adoption of a maximum-entropy selection criterion (e.g.
Vetter et al., 2024) could single out the least-informative
distribution consistent with the data.

The present work nevertheless inherits important limita-
tions. The reliance on MAP estimates can hide posterior
volume and understate uncertainty, while SGLD may mix
too slowly. Moreover, because the WAE was initialized on a
narrow SIS training set, its support excludes physically plau-
sible maps lying outside of its manifold. Architectural bias
can, therefore, limit fidelity after many refinement cycles.
Addressing these issues, through provably consistent sam-
plers and richer priors, defines the next milestones toward
truly data-driven, unbiased lens modeling.
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Vetter, J., Moss, G., Schröder, C., Gao, R., and Macke,
J. H. Sourcerer: Sample-based maximum entropy source
distribution estimation. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems, 2024.
URL https://openreview.net/forum?id=
0cgDDa4OFr.

6

http://arxiv.org/abs/2410.22573
https://openreview.net/forum?id=STrXsSIEiq
https://openreview.net/forum?id=STrXsSIEiq
https://openreview.net/forum?id=33X9fd2-9FyZd
https://openreview.net/forum?id=33X9fd2-9FyZd
http://arxiv.org/abs/1803.07634
https://academic.oup.com/mnras/article/504/4/5543/6263655
https://academic.oup.com/mnras/article/504/4/5543/6263655
https://openreview.net/forum?id=n7qGCmluZr
https://openreview.net/forum?id=n7qGCmluZr
https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw1413
https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw1413
https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw1413
https://www.tandfonline.com/doi/full/10.1080/01621459.2018.1469995
https://www.tandfonline.com/doi/full/10.1080/01621459.2018.1469995
https://ui.adsabs.harvard.edu/abs/2019ApJ...883...14M
https://ui.adsabs.harvard.edu/abs/2019ApJ...883...14M
https://openreview.net/forum?id=sbS10BCtc7
https://openreview.net/forum?id=sbS10BCtc7
https://proceedings.neurips.cc/paper_files/paper/2024/file/9f94298bac4668db4dc77ddb0a244301-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/9f94298bac4668db4dc77ddb0a244301-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/9f94298bac4668db4dc77ddb0a244301-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/9f94298bac4668db4dc77ddb0a244301-Paper-Conference.pdf
https://openreview.net/pdf?id=HkL7n1-0b
https://openreview.net/pdf?id=HkL7n1-0b
https://joss.theoj.org/papers/10.21105/joss.07081
https://joss.theoj.org/papers/10.21105/joss.07081
http://www.aanda.org/10.1051/0004-6361/201526773
http://www.aanda.org/10.1051/0004-6361/201526773
https://doi.org/10.48550/arXiv.2502.06999
https://doi.org/10.48550/arXiv.2502.06999
https://openreview.net/forum?id=0cgDDa4OFr
https://openreview.net/forum?id=0cgDDa4OFr


Wagner-Carena, S., Aalbers, J., Birrer, S., Nadler, E. O.,
Darragh-Ford, E., Marshall, P. J., and Wechsler, R. H.
From Images to Dark Matter: End-to-end Inference
of Substructure from Hundreds of Strong Gravitational
Lenses. The Astrophysical Journal, 942:75, January 2023.
ISSN 0004-637X. doi: 10.3847/1538-4357/aca525. URL
https://ui.adsabs.harvard.edu/abs/20
23ApJ...942...75W. Publisher: IOP ADS Bibcode:
2023ApJ...942...75W.

Warren, S. J. and Dye, S. Semilinear Gravitational Lens
Inversion. The Astrophysical Journal, 590(2):673–682,
June 2003. ISSN 0004-637X, 1538-4357. doi: 10.108
6/375132. URL https://iopscience.iop.org
/article/10.1086/375132.

Wehenkel, A., Gamella, J. L., Sener, O., Behrmann, J.,
Sapiro, G., Jacobsen, J.-H., and Cuturi, M. Addressing
Misspecification in Simulation-based Inference through
Data-driven Calibration, May 2025. URL http://ar
xiv.org/abs/2405.08719. arXiv:2405.08719
[stat].

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient langevin dynamics. In Proceedings of the 28th
International Conference on International Conference on
Machine Learning, ICML’11, pp. 681–688, Madison, WI,
USA, 2011. Omnipress. ISBN 9781450306195.

Yao, Y., Vehtari, A., and Gelman, A. Stacking for non-
mixing Bayesian computations: the curse and blessing
of multimodal posteriors. J. Mach. Learn. Res., 23(1),
January 2022. ISSN 1532-4435. Publisher: JMLR.org.

7

https://ui.adsabs.harvard.edu/abs/2023ApJ...942...75W
https://ui.adsabs.harvard.edu/abs/2023ApJ...942...75W
https://iopscience.iop.org/article/10.1086/375132
https://iopscience.iop.org/article/10.1086/375132
http://arxiv.org/abs/2405.08719
http://arxiv.org/abs/2405.08719


A. Gravitational Lensing Formulation
The lens mass map produces deflection field α⃗ via the lensing potential, ψ, itself related to the convergence field by:

κ =
1

2
∇2ψ . (3)

This deflection field maps the source-plane coordinates β⃗ to image-plane coordinates θ⃗ through the lens equation:

β⃗(θ⃗) = θ⃗ − α⃗(θ⃗) = θ⃗ − ∇⃗ψ(θ⃗) (4)

The lens image I(θ⃗) is given by the source light mapped through this distortion: I(θ⃗) = s(β⃗(θ⃗)) when assuming a thin lens.
Observational noise is then added to I to obtain yobs. In this work, two different lenses are used. The Singular Isothermal
Sphere’s (SIS) convergence field is given by:

κSIS(x, y) =
Rein√

(x− x0)2 + (y − y0)2
(5)

Similarly, the convergence field for the Elliptical Power-Law (EPL), as in Tessore & Benton Metcalf (2015), is given by:

κEPL(x, y) =
2− τ

2

(
Rein

q2(x− x0)2 + (y − y0)2

)τ

(6)

with
ϕ = arctan(qx, y) . (7)

Figure 4. Elliptical Power-Law (EPL) and Singular Isothermal Sphere (SIS) mass profiles from the prior defined in table 1.

Table 1. Priors over the parameters of the Elliptical Power-Law (EPL) mass profile used for the observations and the Singular Isothermal
Sphere (SIS) used as the misspecified initial prior.

EPL SIS

x0 (′′) U [−0.25, 0.25] U [−0.5, 0.5]
y0 (′′) U [−0.25, 0.25] U [−0.5, 0.5]
q U [0.4, 1.0] -
ϕ U [0, π] -
Rein (′′) U [0.5, 2.5] U [0.5, 10]
τ U [0.75, 1.25] -
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B. WAE Training
We trained a Wasserstein Autoencoder (WAE) on 2 × 105 simulated 128 × 128 pixels κ-maps drawn from a spherical
Singular Isothermal Sphere (SIS) prior. This WAE learned a latent representation of SIS mass distributions, which initially
cannot capture elliptical features. The network consists of mirrored convolutional encoder–decoder blocks:

• Encoder Eϕ: four stride-2 convolutions (3×3 kernels, ReLu), halving spatial resolution at each step while doubling
the feature depth starting at 128. Linear layer outputs a latent vector z ∈ R16.

• Decoder Gθ: starting from the 16-D latent sample, a linear projection reshapes to a 8×8×1024 tensor, followed by
bicubic upsampling interleaved with convolutions that halve the channel count at each scale. Bicubic interpolation
avoids the checkerboard artifacts we observed with transposed convolutions or bilinear layers, at the price of decoding
time.

We observe that a 16-dimensional latent space is sufficient to encode the desired mass distribution information (EPL κ-maps).
Bicubic layers raise runtime but preserve the smoothness expected for this surface-density field.

Instead of an adversarial discriminator, we enforce the latent distribution to match a standard Gaussian via Maximum Mean
Discrepancy (MMD) (Rubenstein et al., 2018; Nakagawa et al., 2023). Therefore, the loss is:

LWAE = Eκ∼pdata

[
ℓ
(
κ,Gθ ◦ Eϕ(κ)

) ]
+ λMMD(qZ , pZ), (8)

where ℓ is the reconstruction loss, the L-2 loss in our case. qZ is the aggregated posterior produced byEϕ, and pZ = N (0, I),
a Gaussian in 16 dimensions. For any kernel k,

MMD(P,Q) = Ex, x′∼P [k(x, x
′)] + Ey, y′∼Q[k(y, y

′)]− 2Ex∼P, y∼Q[k(x, y)]. (9)

We use the inverse-multiquadratic kernel:

kIMQ(z, z
′) =

c

c+ ∥z − z′∥22
, c = 2d (d = 16), (10)

whose slow tail decay yields a more discriminative divergence than an RBF kernel. During the first training phase, we
multiply the reconstruction term by 10, effectively reducing λ so the autoencoder first learns to copy the maps accurately
before being pushed to enforce its latent samples to follow a Gaussian distribution.

We note that the posterior sampling step was computationally expensive: due to the slow bicubic upsampling operations
in our architecture, obtaining MAP estimates for 500 lenses for all iterations required roughly 3 GPU-months of compute
(A100 40Gb).

Figure 5. PQMass comparison between 1000 samples drawn from the prior learned by the WAE, i.e. κ ∼ p1(κ) and 1000 samples drawn
from the initial SIS prior, κ ∼ pSIS(κ). 10000 re-tessellations were used to obtain a mean of 106.98± 15.34.
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After training, we wanted to evaluate how closely the WAE’s learned prior distribution p1(κ) resembles the original SIS prior
pSIS(κ) that it was intended to model. Figure 5 summarizes one such comparison using the PQMass statistic. We generated
1000 random κ-maps from the trained WAE (i.e. z ∼ pZ latent prior, κ = Gθ(z) giving κ ∼ p1(κ)) and compared them to
1000 κ-maps drawn from the true SIS prior (κ ∼ pSIS(κ)). We performed 10,000 re-tessellations. The result was a mean
PQMass value of 106.98± 15.34 for the WAE samples vs SIS samples comparison, with an expected mean of 99 and a
standard deviation of 14.07. This indicates a close, but not perfect, match of the samples from the two sets.

C. Posterior Sample Fitting

Figure 6. True parameter values against the fitted parameter values for six parameters of the EPL mass model: lens-center offsets (x0, y0),
axis ratio q, position angle ϕ, Einstein radius Rein, and radial slope τ . The black dashed line marks perfect recovery. The progressive
clustering of points along this line illustrates how iterative retraining steadily reduces the bias and scatter of the recovered parameters. For
the lens-center offsets and the Einstein radius panels, the axes are in arcseconds (′′). Only 100 posterior samples’ parameter recovery are
shown for better clarity. Red crosses in the ϕ panel indicate lenses for which the true axis-ratio is bigger than 0.95 (q > 0.95).

Figure 6 presents the evolution of the fitted parameters depending on the retraining iteration. The method yields a very
noticeable improvement in the κ-map shape parameters: the axis-ratio, q, and the orientation, ϕ. When the axis-ratio of a
EPL is close to 1, its orientation is loosely unconstrained, thus, we don’t expect to recover the orientation ϕ. Such points are
shown in Figure 6 with red crosses.

The horizontal banding apparent in the lens-center panels reflects the pixelized nature of the WAE output: because each
reconstructed κ-map is defined on a discrete grid, the fitted EPL center is effectively locked to the brightest pixel. Since the
κ-maps field of view is 10 arcseconds wide, the pixel resolution is 0.078125 arcseconds.
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D. Posterior Samples

Figure 7. Posterior samples for different retraining steps. Columns from left to right contain the simulated observations, EPL κ-maps from
the EPL prior, posterior samples from the WAE after retraining steps 1, 3, and 20, and the residuals for the posterior sample at retraining
step 20. The κ-maps are plotted in log-space and normalized per sample (row). Ideal χ2 = 16384.
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Figure 8. Residual of 500 posterior samples obtained during step 1. Residuals are normalized between −5ση and 5ση .
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Figure 9. Residual of 500 posterior samples obtained during step 20. Residuals are normalized between −5ση and 5ση .
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