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Abstract

Compton telescopes enable the observation of the
MeV universe; however, detection of gamma-ray
sources requires the generation of the instrument
response function, typically computed by inten-
sive simulations on high-performance computers.
We introduce ComptonINR, a small, coordinate-
based neural network that learns the mapping
between a point source location in the image
space and the Compton camera’s measurements in
the data space. ComptonINR’s continuous struc-
ture enables training on a small, simulated set of
coarse resolution point spread functions (PSFs)
instead of the whole response. Moreover, Comp-
tonINR can interpolate PSFs during inference
at multiple times higher resolution—this signif-
icantly reduces the response simulation require-
ments. The model accurately generalizes to un-
trained source locations, and source detection is
achieved with 0.987 precision, 0.964 recall, and
~0.63° median angular error. ComptonINR re-
duces the required simulation time by roughly
a factor of 70 and trains in ~53 minutes on a
MacBook. Furthermore, ComptonINR scales fa-
vorably with event count, charting a realistic path
towards high-resolution gamma-ray imaging on
consumer hardware.

1. Introduction

Gamma rays in the energy range from hundreds of keV
to tens of MeV offer a powerful lens into the study of nu-
cleosynthesis, black holes, neutron stars, pulsars, galactic
nuclei, supernovae, and gamma-ray bursts (Grenier & Hard-
ing, 2015; De Angelis et al., 2021). However, building
telescopes with sufficient sensitivity to detect emissions in
this energy band, known as the MeV gap (Kierans et al.,
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2022), is a challenging task. Specialized telescopes known
as Compton telescopes overcome this challenge by relying
on a process called Compton scattering. During this process,
a gamma ray enters the detector and transfers a portion of
its momentum to an electron in the detector. This deflects
the gamma ray by a Compton scatter angle 1/ determined by
energy-momentum conservation (see Appendix A.5). This
photon, now with reduced energy, may Compton scatter
again or undergo a final photo-absorption. The initial scat-
tering direction of the gamma ray, defined as the unit vector
from the first photon-electron interaction to the second inter-
action, is represented by (6, ¢). By measuring the location
of each interaction and the energy transferred to each elec-
tron, the Compton-scatter angle 1 of the first interaction
and the total measured energy E,,cqsured can be calculated
(Kierans et al., 2022).

The point spread function (PSF) is a structure that encodes
physical imperfections of the telescope. The set of PSFs
for all possible gamma-ray source locations is called the
instrument response. This response is the key component
to creating images of the MeV sky from measured data
(Kierans et al., 2022). Currently, the best way to create the
response of a Compton telescope is to simulate O(10'3)
gamma rays using highly realistic Monte-Carlo simulations.
However, these simulations are extremely time-consuming
and memory-intensive, requiring significant super-computer
usage (Zoglauer, 2005).

A machine learning model that learns the response from a
small set of simulated PSFs could interpolate all untrained
PSFs, avoiding the compute-demanding simulation of the
full response. Moreover, it could also significantly reduce
the memory footprint of the 7-dimensional response. We
present ComptonINR, a novel deep-learning approach to
modeling the response function of Compton telescopes with
minimal training data, compute resources, training time,
and inference time. Our approach builds upon Implicit
Neural Representations (INRs), which are fully connected
neural networks that map coordinates to the value(s) of
a signal. For example, an INR for an image could learn
f(z,y) — (Red, Green, Blue) (Sitzmann et al., 2020).
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Figure 1. An ideal PSF in the Cartesian data space for one energy
value and one source location. Events from a point source at
(Osrc, Psre) produce a cone (the PSF for this source) with fixed
90° opening angle in the (6, ¢, 1)) data space.

2. Methods

2.1. Image Space vs. Data Space Formulation

Two spaces are crucial to Compton imaging. First,
(Osrc, Gsre, Esre) span the image space. This space con-
tains the true locations of the gamma-ray sources (Kierans
et al., 2022).

Four dimensions (6, ¢, 1, E) span what is known as the data
space of a Compton telescope. In this space, each measured
gamma ray corresponds to one single point. For an ideal,
noise-free detector, the amalgamation of many photons from
a single source forms the surface of a cone, centered at
(Osrc, Psre) — the origin of the gamma rays. Figure 1 shows
an ideal data space. This cone is the Compton telescope’s
PSF for one source location (Kierans et al., 2022).

The response function is the probabilistic mapping between
the image space and the data space. Formally, the re-
sponse can be defined as P(6, ¢, v, E | Osrc, Psres Fsre):
how likely is it that a photon emitted from a point source at
(Osrc, Gsre) With energy Fi,.. is measured in data space bin
(0,0,v, Encasurea) (Kierans et al., 2022)? For this work,
we focus on a single energy, the 511 keV energy line —our
approach models P(6, ¢, v | Ogrc, Psre, E ~ 511 keV).

2.2. Data Generation

Using MEGALlib (Zoglauer et al., 2006), we simulated
228 gamma-ray point-sources with ~ 1,000,000 events per
source. In other words, we have 228 PSFs. These events
were simulated with a spherical Compton telescope on an
AMD Threadripper 3970X (32 cores/64 threads) with 256
GiB RAM and an NVIDIA RTX 3080 GPU (12 GB VRAM).
170 PSF files were utilized for training, while 58 were uti-
lized for validation.

2.3. Data Binning

Although continuous, the data space must be discretized
into bins to perform processing on a computer. We placed
events in the simulation data space into one of the following
1 bins: [10°, 20°), [20°, 30°), ..., [80°, 90°). Backscattered
events with a 1) outside of these bins were excluded.

Within each bin, we performed a change of coordinates.
Each event’s (6, ¢) was treated as spherical coordinates
on an arbitrary unit sphere, rather than Cartesian coordi-
nates. After this change of coordinates, the spherical data
space still contains a cone, centered at the spherical location
(Osre, Osre) (see Appendix A.1).

Using HEALPix’s fast hierarchical representation of spheri-
cal data, we discretized the spherical data space into equal
area pixels. The NSIDE parameter determines the resolu-
tion of a HEALPix sphere. We chose a coarse NSIDE of
16 for fast training, which corresponds to 3,072 pixels for
one cross section of the spherical data space (Gorski et al.,
2005). Each pixel contains the number of events with that
(Osres Dsres Opizy Ppiz, Y) combination, where 0, and @iy
are the spherical coordinates for the center of that pixel.

2.4. Network Architecture
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ComptonINR is a fully-connected neural network that learns
a continuous mapping between coordinates to event intensity
(Equation 1). This category of network is known as an
implicit neural representation (INR) (Sitzmann et al., 2020).
For a given point source location, rather than try to output
the entire data space at once, we query for a specific pixel in
the data space. This significantly reduces the complexity of
the network. With this approach, we can repeatedly perform
inference on ComptonINR for every pixel to generate the
full data space.

To prevent discontinuities around the —180°/180° ¢ border,
we added sin / cos periodic encodings, which uniquely iden-
tify each angle. A sample output when the encodings are
removed is presented in Appendix Figure A.2.

ComptonINR has 4 hidden layers, each with 1024 hidden
units. We chose ReL U for our intermediate layer activations,
Softplus as our final layer activation, and Poisson Negative
Log Likelihood Loss (PoissonNLL) as our loss function. We
chose PoissonNLL as gamma-ray events typically follow
Poisson distributions (Schmitt et al., 2009). The addition of
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Figure 2. End-to-end deconvolution of one example measured data
space into an NSIDE=32 sky map, running Richardson-Lucy for
50 iterations with ComptonINR as the PSFE. In the sky map, red
x’s mark detected sources; green dots mark ground truth sources.

a final Softplus activation ensures strictly positive intensities.
The output of ComptonINR is a single intensity value I:
the number of events in that specific scatter angle bin and
pixel bin. We can transform ComptonINR’s predicted data
space from raw counts into a probability distribution through
dividing by the total number of events across all ¢ bins.

2.5. Training Details

ComptonINR was trained with a batch size of 1024, learn-
ing rate of 0.001, and 40 maximum epochs. On a 2021
MacBook M1 Pro (10-core CPU, 32 GB RAM), training
converged in 53 min (79 s/epoch). On an A40 GPU (48 GB
VRAM, 10-core CPU), it converged in 30 min (45 s/epoch).
See Appendix A.3 for further details.

2.6. Data Space Deconvolution

Raw measurements in the data space must be deconvolved
into a sky map, a map in the image space of the point
sources. We chose the Richardson-Lucy (RL) algorithm.
RL assumes that a ground truth signal has been blurred by
some inherent device response function. Using a model
of the response, RL iteratively deconvolves the blurred
signal towards the ground truth signal (Richardson, 1972;
Lucy, 1974). Richardson-Lucy can be performed by pre-
computing the response cube, which is a stored map from
every possible point source to the PSF. As a sidenote, we

Table 1. Sky Map Creation with ComptonINR (NSIDE=32)

Source Detection Metrics Mean Std. Dev.
Precision 0.9867 0.0361
Recall (TPR) 0.9640 0.0686
F1-Score 0.9747 0.0518
False Positive Rate (FPR) 0.0000 0.0000
Flux Absolute Error (%) 7.80 12.13
Angular Error Metrics

Median Angular Error 0.6295° -
25th Percentile AE 0.4998° -
75th Percentile AE 0.9067° -

Runtime Metrics
Run on MacBook M1 Pro, 10-core CPU, 32GB RAM

Response Cube Generation 34 min -
= One-time, then cached
Single Sky Image Creation (s)  88.4s 3.1s

omit a background model for RL but are currently integrat-
ing one. Our response cube consumed ~4.8 GB of storage
and had dimensions 12, 2882 x 8 (with NSIDE=32: 12,288
possible source locations, 12,288 pixels per ¢ bin, 8 1 bins).

3. Results
3.1. Sky Image Creation

ComptonINR’s continuous structure excels during decon-
volution. While trained on images with a coarse NSIDE
resolution of 16, the model has no input dependence on
NSIDE as it interpolates for any (0., ¢src). Accordingly,
we chose a larger NSIDE of 32 (12,288 pixels per ¢ bin)
during RL to produce a sky map with higher resolution. Fig-
ure 2 shows an example deconvolved sky map, and Table 1
summarizes metrics on source detection.

A key figure is that for a full response, we would have to
simulate 12,288 source locations, not just 170 — Compton-
INR reduces simulation time by a factor of ~70. Consider
increasing sky map resolution to NSIDE=256 and the num-
ber of events to 10,000,000. This would require simulating
O(10'3) gamma rays. In contrast, ComptonINR only scales
with a small number of training file events < O(10'3) and
is largely independent of inference time NSIDE resolution.

Each simulation file contains the data space for a single point
source (Ogre, Psrc). We drew 50 random combinations of
10 point sources along with the expected data space for each
combination. We enforced that point sources are separated
by 8° pairwise to ensure viable deconvolution. To compute
the expected data space if all point sources in a combination
existed simultaneously, we summed the data spaces of the
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Figure 3. ComptonINR generalizes to unseen scatter angles. The figure shows (a) the predicted data space for an untrained 55°-65° v bin
(b) the ground truth data space for this bin (c¢) the difference between the ground truth data space and the predicted data space (d) the
natural logarithm of the predicted data space, highlighting the PSF wings—correctly learned imperfections in the imaging device.

individual simulation files.

3.2. ComptonINR Predicted Data Space
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Figure 4. Per-pixel Poisson deviances (see Appendix A.4 for for-
mula) for all eight ¢ bins across all validation files. Medians stay
close to the ideal value of 1, indicating statistical consistency be-
tween ComptonINR and an ideal PSF model.

Since gamma-ray events can be modeled using Poisson dis-
tributions (Schmitt et al., 2009), we treated each HEALPix
pixel as the average of a Poisson distribution. Figure 4
shows box plots of the Poisson deviances per pixel for each
of the v bins. For noisy systems, the expected Poisson
deviance when normalized by the degrees of freedom—in
our case, the number of pixels in one v cross section—is 1

(Mohr et al., 2022). Moreover, one powerful feature of the
continuous, coordinate-based capabilities of ComptonINR
is the ability to interpolate outputs for (65, Psre, 1) input
data that the model was not trained on, shown in Figure 3.

4. Conclusion

We introduce ComptonINR—a fast, continuous implicit neu-
ral network to represent the response of Compton telescopes.
In our example, ComptonINR reduced the required simula-
tion time by a factor of 70. With our model, the telescope’s
response function can be produced in less than 90 minutes of
MacBook compute time (including training), and the model
can be run for sky map production in under 90 seconds. For
this work, we focus on the ~511 keV line and choose point
sources with a similar number of events. However, future
work can naturally extend ComptonINR to accept energy
as an input for other energy bins and modify the simulation
script to create point sources with significantly differing
flux. Moreover, the NSIDE resolution is easily configurable
in the codebase for higher resolution images. The code and
dataset will be released shortly. We are currently training on
response data that will be used for an upcoming Compton
telescope mission, and preliminary tests suggest response
generation with our method could achieve speedups of over
100. Fast, continuous PSF models similar to ComptonINR
are expected to significantly accelerate telescope response
generation, paving the path towards fast gamma-ray imaging
on consumer hardware.
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A. Appendix

A.1. Cartesian Data Space vs. Spherical Data Space
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Figure 5. Cartesian Data Space vs. Spherical Data Space, for the same simulation file. (a) Approximated Cartesian view of the data space,
with the PSF cone for one source location. For clear illustration of sample bins, (6, ¢) were rounded down to the nearest 3° bin, and
1) was rounded down to the nearest 10° bin. (b) Spherical re-parameterization used for HEALPix binning; the same events now lie on
concentric rings about (fs,c, @src). The cross sections for the [10°, 20) ¢ bin and the [80, 90)° ¢ bin are shown.
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A.2. Removal of Periodic Encodings

Figure 6. Sample data space with ablation of periodic encodings. Removing sin / cos angle encodings introduces artifacts at the -180°/180°
¢ boundary, highlighting the need for periodic input encodings.

A.3. Isolated Hyperparameter Sweeps
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Figure 7. Isolated hyperparameter sweeps. Top-left: the best Poisson-NLL validation loss across 40 epochs does not vary with a consistent
trend as the number of hidden layers changes. Top-right: the optimal batch size in this sweep appears to be 1024. Bottom-left and
bottom-right: as hidden dimension size and the number of training files increase, the PoissonNLL validation loss decreases toward an
asymptote.

We performed isolated hyperparameter sweeps across the size of the hidden dimension, number of simulation files used
to train the model, batch size, and the number of hidden layers. It is important to highlight that each simulation file
contained 8 1) bins, each of which contains 3,072 HEALPix pixels, creating a total of 24,576 training points per file. As
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the hidden dimension size and number of training files increased, the best validation loss achieved by the model decreased
asymptotically.

A.4. Poisson Deviance Formula

The following formula is defined as the Poisson deviance, normalized by the degrees of freedom v. The Poisson deviance
measures how well a model’s predictions ¢; match ground truth counts y; from a Poisson distribution. The equation is
adapted from (Oliveira et al., 2025) to add the normalization component and modify notation for clarity.

%

2% P
D(y,9) = > > <yi log % + g, yz> 2
=1

A.S. Scatter Angle Formula

The following formula defines the Compton scatter angle ) for a gamma ray. The energy of the scattered gamma ray is
denoted by F», while E; represents the energy of the energized electron with initial rest mass m.. The total energy E; + E5
corresponds to the initial photon energy. This equation is adapted with modifications from (Kierans et al., 2022) to reflect
the notation for the scatter angle chosen in our work.
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A.6. Richardson-Lucy Results for Coarse NSIDE=16

We performed Richardson-Lucy as in Section 3.1 but with a coarser sky map resolution of NSIDE=16. While source
detection metrics of true positives generally improve, angular error metrics are worsened. This is expected due to the lower
resolution.

Table 2. Sky Map Creation Metrics

Source Detection Metrics Mean Std. Dev.
Precision 0.9829 0.0441
Recall (TPR) 0.9700 0.0671
F1-Score 0.9761 0.0551
False Positive Rate (FPR) 0.0001 0.0001
Angular Error Metrics

Median Angular Error 1.5570° -
25th Percentile AE 1.1341° -
75th Percentile AE 1.9318° -

Inference Time Metrics
Run on MacBook M1 Pro, 10-core CPU, 32GB RAM

Response Cube Generation 407s -
= One-time, then cached
Single Sky Image Creation (s)  21.8s 1.3s




