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Abstract
The shortcomings of existing astronomical tran-
sient classification tools are extremely pressing as
the the Legacy Survey of Space and Time (LSST)
will demand performant classifiers to exploit its
capabilities after commencing imminently. (i)
Classifiers trained on simulations struggle with
real data; (ii) models developed for one survey
do not generalize to others; and (iii) new sur-
veys require prohibitively large amounts of la-
beled training data. We demonstrate that transfer
learning can overcome these challenges by repur-
posing models trained either on simulations or
data from other surveys. We show that transfer
learning from a model trained on simulated ZTF
light curves reduces the amount of real labeled
ZTF examples needed by 95% relative to a model
trained from scratch and yielding similar perfor-
mance. Similarly, when adapting ZTF models for
LSST simulations, transfer learning achieves 94%
of the baseline performance while requiring only
30% of the training data. These findings have
significant implications for the early operations
of LSST, suggesting that reliable automated clas-
sification will be possible soon after the survey
begins, rather than waiting months or years to
accumulate sufficient training data.

1. Introduction
With the development of advanced survey telescopes, we
are entering a new era for astronomical study. The Vera C.
Rubin Observatory’s LSST (Ivezić et al., 2019) is expected
to generate tens of millions of transient alerts per night, an
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order of magnitude more than current state-of-the-art sur-
veys. This unprecedented volume of data has motivated the
development of numerous machine learning-based alert and
light-curve classification methods (e.g. Charnock & Moss,
2017; Muthukrishna et al., 2019; Möller & de Boissière,
2020; Boone, 2019; Gomez et al., 2020; Villar et al., 2019;
2020; Carrasco-Davis et al., 2021; Boone, 2021; Qu et al.,
2021; Gagliano et al., 2021; Pimentel et al., 2023; Gomez
et al., 2023; Sheng et al., 2023; de Soto et al., 2024; Rehem-
tulla et al., 2024; Shah et al., 2025).

Past studies have been limited by three key constraints. First,
classification pipelines are often trained and validated on
simulated data, but struggle to generalize to real observa-
tions due to subtle differences between simulated and ob-
served light curves (e.g., Muthukrishna et al., 2019). Sec-
ond, models developed for specific surveys typically require
complete retraining when applied to data from different
telescopes, despite the underlying physics of the transients
remaining unchanged. Third, achieving robust classifica-
tion performance requires large amounts of labeled training
data— a resource-intensive process requiring considerable
time and expensive spectroscopic follow-up observations.

To address these limitations, we explore transfer learning,
a method that has been successfully applied across many
fields in machine learning to adapt models trained for one
task to similar applications (Zhuang et al., 2021). The tech-
nique works by reusing features and relationships that a
model has already learned, even when the specific data
distributions differ. This is particularly effective in two sce-
narios that directly address the challenges in astronomical
classification: (i) when labeled data in the target domain
is limited or (ii) when training new models from scratch is
computationally expensive. By reusing learned features and
fine-tuning only specific components of the model, transfer
learning can dramatically reduce both the amount of labeled
data and computational resources needed to achieve high
performance on new tasks.

The potential of transfer learning is particularly relevant as
we prepare for LSST as it provides a solution to the gap
between simulated and real data. Deep learning models
require large amounts of training data, which has led to the
development of sophisticated light curve simulations (e.g.,
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Kessler et al., 2019; Narayan & ELAsTiCC Team, 2023)
and numerous classifiers trained on these simulations (e.g.,
Boone, 2019; Hložek et al., 2023). However, simulations
do not perfectly capture real observations, making training
on labeled survey data necessary to actually use models
in production (e.g., Rehemtulla et al., 2024). While previ-
ous work has treated simulated and real data independently,
with models often struggling to generalize between the two,
transfer learning provides a framework to leverage features
learned from simulations while adapting to real observa-
tions. Similarly, while most classifiers are built for specific
surveys, transfer learning enables models trained on existing
facilities to be adapted for new ones, significantly reducing
the data requirements for achieving high performance. How-
ever, the initial model architecture determines the feasibility
of transfer learning across different surveys. In this work,
we incorporate the observation wavelength directly in the
model input to facilitate transfer learning across different
surveys with varying passbands.

We demonstrate two key benefits of transfer learning for
astronomical transient classification: (i) transfer learning
reduces the amount of data needed to generalize from sim-
ulated data to real observations, and (ii) transfer learning
reduces the amount of labeled data needed to generalize
from one survey to another.

2. Data
In this work, we use three distinct datasets to evaluate
transfer learning for transient classification: simulated light
curves that match the observing properties of the Zwicky
Transient Facility (ZTF; Bellm et al., 2019), real observa-
tions from the ZTF Bright Transient Survey (BTS; Fremling
et al., 2020; Perley et al., 2020; Rehemtulla et al., 2024),
and simulated light curves matching the expected LSST
observing properties (Narayan & ELAsTiCC Team, 2023).
Each dataset provides different opportunities to test transfer
learning between simulated and real data, as well as between
different surveys. The class distribution for each dataset is
summarized in Table 1. Further details about each dataset
used can be found in Appendix B.

3. Methods
3.1. Classifiers

We build a Recurrent Neural Network (RNN) classifier with
Gated Recurrent Units (GRU; Cho et al., 2014) following
the architecture used in Muthukrishna et al. (2019) and up-
dated in Gupta et al. (2024; 2025). As illustrated in Figure
2, we include a parallel fully-connected (dense) neural net-
work to process any available metadata, which in this work
consists only of Milky Way extinction. While we do not
use other host information in our work, our classification

framework is designed to incorporate both time-dependent
and time-independent features. We present results using this
architecture, but we expect transfer learning results to be
broadly consistent across other classification architectures
that use flexible input formats capable of handling data from
different surveys.

To enable transfer learning in this work, we use a survey-
agnostic input representation. The input vector, Xs, for a
transient s, is a 4×Nt matrix, where Nt is the maximum
number of timesteps for any light curve in our datasets.
Nt = 656 in this work, however most light curves have
far fewer observations. Each row i of the input matrix Xs

contains the following information:

Xsi = [λp, tsi, fsi, ϵsi], (1)

where tsi is the time of the ith observation scaled between
0 and 1, λp is the median wavelength of the passband, fsi
is the flux scaled by dividing by 500, and ϵsi is the cor-
responding flux error with the same scaling. We select a
constant scaling factor of 500 as it is close to the mean
flux in our dataset and enables real-time classification by
avoiding peak-based scaling, which would depend on obser-
vations that may not yet be available in real-time scenarios.
Our model does not require redshift information, making
it useful in the early observations of LSST when redshifts
may not be known for many sources.

Using this input method has two key advantages. First, it
circumvents the need for interpolation between observations,
which can be problematic for sparsely sampled light curves.
Second, it passes all passband information through the same
channel, which allows us to easily repurpose a trained model
for a different survey with a different number of passbands.

To counteract class imbalances in our dataset, we use a
weighted categorical cross-entropy loss to train our model.
The weight of a training object wc is inversely proportional
to the fraction of transients from the class c in the training
set. We train our models using the Adam optimizer (Kingma
& Ba, 2014) over 100 epochs using EarlyStopping im-
plemented in keras (Chollet, 2015).

3.2. Transfer Learning

To assess the effectiveness of transfer learning, we define a
source dataset and a target dataset. We first train a classifier
on the source dataset, and then adapt it for the target dataset
with the specific focus of analysing how much labelled data
we need from the target dataset to achieve good performance.
For all analyses in this work, ZTF Sims serves as the source
dataset.

We are particularly interested in transfer learning from sim-
ulated to real data (ZTF to BTS) and, in preparation for the
Vera Rubin Observatory, from ZTF to LSST data. Thus, we
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Class SNIa SNIa-91bg SNIax SNIb SNIc SNIc-BL SNII SNIIn SNIIb TDE SLSN-I AGN
ZTF Sims 11587 13000 13000 5267 1583 1423 13000 13000 12323 11354 12880 10561

LSST Sims 51745 12272 12012 37261 24513 10331 71806 34016 23408 28285 28322 32681
BTS Data 4628 (SNIa) 339 (SNIb/c) 1212 (SNII) 22 46 –

Table 1. Class distribution for the datasets used in this work, namely the ZTF Sims (Muthukrishna et al., 2021), LSST Sims (ELaSTiCC;
Narayan & ELAsTiCC Team, 2023), and BTS Data (Rehemtulla et al., 2024).

run two experiments, using either BTS Data or LSST Sims
as the target dataset. In both cases, we intentionally limit
the amount of labelled data available in the target dataset.

Figure 2 summarises our model architecture and experimen-
tal setup for transfer learning. We initially train a model to
classify a transient into one of the n classes in the ZTF Sims.
After pretraining on the ZTF Sims, we replace the classifi-
cation layer with a Multi-Layer Perceptron (MLP) followed
by a new classification layer. The new classification layer
varies in size depending on the number of classes, m, in the
target dataset. The complexity of the MLP is determined by
how different the target dataset is from the source dataset.
We describe the details of each of these experiments in the
following subsections.

We note that the primary benefit of transfer learning comes
from pretraining rather than from specific choices about
which layers to freeze, as unfreezing the entire network
yields similar performance. The choice of freezing strategy
primarily acts to reduce computational costs during fine-
tuning.

3.2.1. FINE-TUNING FOR BTS

When fine-tuning our model on the BTS data, we replace
the classification layer with a new one for the m = 5 BTS
classes and freeze all other layers of the pretrained model.
Since BTS and ZTF Sims share the same observing proper-
ties, we only retrain the new output layer and freeze the rest
of the model weights. This prevents the network from mod-
ifying the features it has already learned about transients
from its pretraining on the ZTF Sims.

3.2.2. FINE-TUNING FOR LSST

Transferring from ZTF to LSST presents an additional chal-
lenge: adapting from two passbands (gr) to six (ugrizy).
While our input format (see eq. 1) enables the model to
learn a coarse relationship between flux and wavelength,
the model requires retraining to capture transient behaviour
across the new passbands.

For LSST, we unfreeze both the initial GRU layers (blue in
Figure 2) and the final classification layers (yellow in Figure
2). We found that only retraining the final layers, as we did
for BTS, resulted in poor performance. The initial GRU
layers, which process the time-series information, need to

be retrained to effectively handle the more complex and
sparser LSST light curves.

While unfreezing the entire network performs similarly to
our selective freezing approach, we choose to freeze the
dense layers to reduce computational costs while maintain-
ing equivalent performance.

4. Results
To evaluate the effectiveness of transfer learning, we com-
pare classifiers trained with transfer learning against those
trained from scratch on the target dataset. We focus on two
key experiments: transferring from simulated to real data
(ZTF Sims to BTS) and transferring between surveys (ZTF
to LSST). In both cases, we analyse how much labelled
data from the target dataset is needed to achieve good clas-
sification performance. As we vary the amount of labelled
data available while training, we use 80% of the limited
data to train the model, and 20% to validate its performance
and determine optimal training time. The remaining data
(outside of the data provided during training) is used in the
test set to evaluate the model.

4.1. Simulated to Real Data

To evaluate transfer learning from simulations to real data,
we compare two approaches: fine-tuning a model pretrained
on ZTF Sims and training a model directly on BTS data.
For both approaches, we train with varying amounts of BTS
data, sampling from the full dataset to maintain realistic
class distributions.

We evaluate the performance using the Area Under the
macro-averaged Receiver Operating Characteristics Curve
(AUROC). The Receiver Operating Characteristic (ROC)
curve plots the False Positive Rate against the True Positive
Rate over a range of classification probability thresholds.

Figure 1 [left] shows that transfer learning from simulated
data significantly reduces the amount of real labelled data
needed to build an effective classifier. A model pretrained
on ZTF Sims achieves the baseline performance with just
5% of the data. This reduction in required training data is
particularly valuable given the time and expense of obtaining
spectroscopic labels. We restrict our evaluation at 4,000
labelled training samples as going further would leave too
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Figure 1. Transfer learning performance from ZTF sims to BTS [left] and ZTF Sims to LSST Sims [right]. The x-axis shows the number of
randomly sampled training light curves provided to the model and the y-axis shows the classification performance as the macro-averaged
Area under the Receiver Operating Characteristic (ROC) curve for each class (AUROC). The error bars show the standard deviation across
10 independent training runs.

few TDEs in the test set for robust evaluation. Even at this
point, transfer learning provides a significant performance
improvement when compared to direct training.

The performance improvement in low-data scenarios is pri-
marily driven by minority classes, particularly TDEs and
SLSNe-I, which transfer learning can effectively classify de-
spite having very few labelled examples. These rare classes
also account for the large variance observed at small training
set sizes in Figure 1, where classifiers become highly sensi-
tive to each additional training sample. The class-specific
results in Figure 3 confirm that most performance variability
stems from the TDE and SLSN-I classes. Importantly, trans-
fer learning still provides substantial benefits when applied
to only the common transient classes, as demonstrated in
Appendix D.

4.2. ZTF to LSST

To evaluate transfer learning between surveys, we compare
models pretrained on ZTF Sims with those trained directly
on LSST simulations.

As depicted in Figure 1 [right], transfer learning signifi-
cantly reduces the data requirements for developing LSST
classifiers. A model pretrained on ZTF achieves 94% of
the baseline performance while requiring only 30% of the
training data. Despite the additional complexity of adapting
to LSST’s six passbands (compared to ZTF’s two), pre-
training helps the model learn features and capture some
survey-agnostic patterns that are intrinsic to the astrophysi-
cal phenomena, thus reducing the amount of new training
data required. This suggests that existing classification mod-
els from current surveys such as ZTF can be efficiently

adapted for LSST, enabling the rapid deployment of reliable
classifiers early in the survey.

5. Conclusion
Observations of the transient universe are entering a new
era with the advent of wide-field surveys such as LSST.
The unprecedented data volumes from LSST will require
robust automated transient classification systems that can
be deployed rapidly after the survey begins. Traditionally,
developing reliable classifiers for a new survey requires ac-
cumulating substantial amounts of labeled data over months
or years of operations. In this work, we demonstrate that
transfer learning provides an effective solution to this chal-
lenge.

Our results show a significant advantage of transfer learning
for astronomical transient classification: fine-tuning existing
models requires 70% to 95% less labeled data than train-
ing from scratch. A model pretrained on ZTF simulations
achieves equivalent performance on real data while requir-
ing only 25% of the labeled examples. Similarly, when
adapting ZTF models for LSST, transfer learning maintains
94% of the baseline performance with just 30% of the train-
ing data. These results suggest that classifiers trained on
existing surveys or simulations can be efficiently adapted to
new data sources.

The success of transfer learning between both simulated and
real data, as well as between different surveys, demonstrates
that these models learn generalizable features of astronom-
ical transients. This has important implications for future
surveys such as LSST, suggesting that reliable automated
classification will be possible soon after observations begin.
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Several promising directions remain for future work. First,
combining data from multiple existing surveys could pro-
vide more robust base models that capture a wider range of
transient behavior. Further, applying these techniques to a
broader range of astronomical phenomena could extend the
benefits of transfer learning beyond transient classification.

As we prepare for the era of LSST, our results demonstrate
that transfer learning will be crucial for developing the next
generation of astronomical classification systems, enabling
rapid scientific discovery through efficient adaptation of
existing models. The code used in this work is publicly
available1.
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Hložek, R., Malz, A. I., Ponder, K. A., Dai, M., Narayan,
G., Ishida, E. E. O., Allam, Jr., T., Bahmanyar, A., Bi,
X., Biswas, R., Boone, K., Chen, S., Du, N., Erdem,
A., Galbany, L., Garreta, A., Jha, S. W., Jones, D. O.,
Kessler, R., Lin, M., Liu, J., Lochner, M., Mahabal,
A. A., Mandel, K. S., Margolis, P., Martı́nez-Galarza,
J. R., McEwen, J. D., Muthukrishna, D., Nakatsuka, Y.,
Noumi, T., Oya, T., Peiris, H. V., Peters, C. M., Puget,
J. F., Setzer, C. N., Siddhartha, Stefanov, S., Xie, T.,
Yan, L., Yeh, K. H., and Zuo, W. Results of the Pho-
tometric LSST Astronomical Time-series Classification
Challenge (PLAsTiCC). ApJs, 267(2):25, August 2023.
doi: 10.3847/1538-4365/accd6a.

Hunter, J. D. Matplotlib: A 2d graphics environment. Com-
puting in Science and Engineering, 9(03):90–95, may
2007. ISSN 1558-366X. doi: 10.1109/MCSE.2007.55.
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A. Visual Methodology
Figure 2 summarizes our methodology.

B. Dataset Details
B.1. Simulated ZTF Data (ZTF Sims)

The simulated ZTF dataset is described in §2 of both Gupta
et al. (2025) and Muthukrishna et al. (2021), and is based on
the models developed for the Photometric LSST Astronom-
ical Time-Series Classification (PLAsTiCC; Kessler et al.,
2019). Each transient has flux and flux error measurements
in the g and r passbands with a median cadence of 3 days
in each band2. The dataset includes light curves from 12
transient classes: SNIa, SNIa-91bg, SNIax, SNIb, SNIc,
SNIc-BL, SNII, SNIIn, SNIIb, TDE, SLSN-I, and AGN.

B.2. ELAsTiCC (LSST Sims)

The LSST simulations are drawn from the Extended LSST
Astronomical Time Series Classification Challenge (ELAs-
TiCC; Narayan & ELAsTiCC Team, 2023), which builds
upon the original PLAsTiCC simulations with improved
models and more realistic survey properties. Light curves
are simulated in all six LSST passbands (ugrizy) with the
expected LSST cadence and depth. ELAsTiCC also esti-
mates the frequency of each class to create a realistic dis-
tribution of observation rates with the notable upsampling
of minority classes to make model training more efficient3.
The classes we use from ELaSTiCC directly overlap with
the classes from ZTF.

B.3. Bright Transient Survey Data (BTS Data)

For real observations, we use data from the ZTF BTS.
The aim of BTS is to systematically classify every bright
(m < 18.5 mag) extragalactic transient discovered in the
public ZTF alert stream (Masci et al., 2019), providing a
spectroscopically complete sample. The dataset adopted
is queried and processed following the procedures in (Re-
hemtulla et al., 2024) and considers data up to August 2024.
Light curves are available in the ZTF g and r filters. We
use data from three broad transient classes, SNIa, SNII, and
SNIb/c, and two rarer transient classes, TDE and SLSN-I.
We use these broader classifications due to the small number
of transients classified in most subtypes.

Figure 2. Schematic illustrating our neural network architecture
and transfer learning methodology. The model is first pretrained
on ZTF simulations to output probabilities [Pb1 , Pb2 , ..., Pbn ] for
each of the n classes in the source dataset. For transfer learning,
we replace the output classification layer with a new one that
outputs probabilities [Pt1 , Pt2 , ..., Ptm ] for the m classes in the
target dataset. When transferring to BTS data, we freeze the
pretrained model and only train the new classification layer. When
transferring to LSST, we also unfreeze the initial GRU layers
to learn the additional passbands while keeping the dense layers
frozen. The complexity of the additional Multi-Layer Perceptron
(MLP) layers depends on the similarity between the source and
target datasets - zero neurons for BTS (which is similar to ZTF
sims) and two layers for LSST (which has different passbands).
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Figure 3. Class-specific classification AUROCs for transfer learn-
ing from simulated ZTF data to real BTS data.
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Figure 4. Class-specific classification AUROCs for transfer learn-
ing from ZTF sims to LSST sims.

C. Class-based Performance
C.1. BTS

Figure 3 shows the class-specific performance of transfer
learning compared to direct training on BTS data. Transfer
learning provides significant improvement across all tran-
sient classes, with the most pronounced benefits observed
for rare classes such as SLSNe-I and TDEs, which have
very few training samples.

C.2. LSST

Figure 4 shows the class-specific performance for transfer
learning from ZTF simulations to LSST simulations. The
relative performance across different transient classes re-
flects trends observed in other photometric classifiers such
as RAPID (Muthukrishna et al., 2019), ATAT (Cabrera-
Vives et al., 2024), and ORACLE (Shah et al., 2025).
Classes with distinctive photometric signatures, such as
AGNs with their characteristic stochastic variability over
long timescales, achieve higher classification accuracy than
supernova subtypes with more subtle differences. For ex-
ample, distinguishing between SNIb and SNIc based solely
on photometric rise times remains challenging, as these sub-
tle features do not always manifest clearly in broad-band
observations.
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Figure 5. A recreation of Figure 1 [left] with TDEs and SLSN-Is
omitted.

D. Performance without Minority Classes
The transfer learning performance improvement shown in
Figure 1 [left] is partly attributed to minority classes (SLSN-
I and TDE), which have very few labelled observations but
are relatively easy to classify (Muthukrishna et al., 2019;
Gupta et al., 2025). To test whether transfer learning benefits
extend beyond these rare classes, Figure 5 shows the same
analysis using only the three most common transient types
(SNIa, SNII, and SNIb/c). Transfer learning still provides
substantial improvement even when focusing solely on these
well-represented classes.

E. Training Time and Computational
Efficiency

Another advantage of transfer learning beyond reducing data
requirements is reduced training time, which is especially
important in the era of data-driven astronomy. We find that
models initialised with pretrained weights converge 25%
faster than those trained from scratch for two reasons. First,
the model begins with an understanding of general transient
behaviour, requiring fewer iterations to learn class-specific
features. Second, with many layers frozen, there are fewer
parameters to optimise during training.

The reduction in training time, while not critical on modern
GPUs (training from scratch takes approximately 15 minutes
on a Tesla V100), becomes significant when processing
large datasets or when computational resources are limited.

2The public MSIP ZTF survey has since changed to a 2-day
median cadence

3None of the upsampled classes are used in this work

For example, when testing multiple model architectures or
performing cross-validation with many training runs, the
25% reduction in training time per model can substantially
reduce total computation time.
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