
Open Source Planning & Control System with Language Agents for Autonomous
Scientific Discovery

Licong Xu 1 2 Milind Sarkar 3 Anto I. Lonappan 4 Íñigo Zubeldia 1 2 Pablo Villanueva-Domingo 5

Santiago Casas 6 Christian Fidler 6 Chetana Amancharla 7 Ujjwal Tiwari 7 Adrian Bayer 8 9

Chadi Ait Ekioui 10 11 Miles Cranmer 1 2 12 Adrian Dimitrov 10 James Fergusson 12 Kahaan Gandhi 10 13 14

Sven Krippendorf 12 10 Andrew Laverick 10 Julien Lesgourgues 6 Antony Lewis 15 Thomas Meier 16

Blake Sherwin 2 12 Kristen Surrao 17 Francisco Villaescusa-Navarro 8 9 Chi Wang 18 Xueqing Xu 10

Boris Bolliet * 2 10

Abstract
We present a multi-agent system for automation
of scientific research tasks, cmbagent. The sys-
tem is formed by about 30 Large Language Model
(LLM) agents and implements a Planning & Con-
trol strategy to orchestrate the agentic workflow,
with no human-in-the-loop at any point. Each
agent specializes in a different task (performing
retrieval on scientific papers and codebases, writ-
ing code, interpreting results, critiquing the output
of other agents) and the system is able to execute

*This author led and supervised all the work presented here, at
the exception of the part on denario which was co-led equally
between FVN, PVD and BB. Except BB, ordering of authors is
by contribution and then alphabetical. 1Institute of Astronomy,
University of Cambridge, Cambridge, United Kingdom 2Kavli
Institute for Cosmology, University of Cambridge, Cambridge,
United Kingdom 3Department of Physical Sciences, Indian Insti-
tute of Science Education and Research (IISER), Mohali, Punjab,
India 4Department of Physics, University of California, San Diego,
CA, USA 5Computer Vision Center, Universitat Autònoma de
Barcelona, Bellaterra, Barcelona, Spain 6Institute for Theoretical
Particle Physics and Cosmology (TTK), RWTH Aachen Univer-
sity, Aachen, Germany 7Infosys Ltd 8Center for Computational
Astrophysics, Flatiron Institute, New York, NY, USA 9Department
of Astrophysical Sciences, Princeton University, Princeton, NJ,
USA 10Department of Physics, University of Cambridge, Cam-
bridge, United Kingdom 11Télécom SudParis - 9 rue Charles
Fourier - 91011 Évry cedex - France 12Department of Applied
Mathematics and Theoretical Physics (DAMTP), University of
Cambridge, Cambridge, United Kingdom 13Haverford College,
Haverford, PA, USA 19041 14Division of Physics, Mathematics
and Astronomy, California Institute of Technology, Pasadena, CA
91125, USA 15Department of Physics & Astronomy, University
of Sussex, Brighton BN1 9QH, UK 16MCML - Munich Center
for Machine Learning, LMU Munich, Geschwister-Scholl-Platz
1, 80539 Munich, Germany 17Department of Physics, Columbia
University, New York, NY, USA 18Google DeepMind. Correspon-
dence to: Boris Bolliet <bb667@cam.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

code locally. We successfully apply cmbagent
to carry out a PhD level cosmology task (the mea-
surement of cosmological parameters using su-
pernova data) and evaluate its performance on
two benchmark sets, finding superior performance
over state-of-the-art LLMs. The source code is
available on GitHub1, demonstration videos are
also available2, and the system is deployed on
HuggingFace3 and will be available on the cloud4.

1. Introduction
Rapid progress in the development of Large Language Mod-
els (LLMs) is enabling new approaches to scientific re-
search (see, e.g., Lu et al., 2024; Ghareeb et al., 2025, and
references therein). This includes quantitative disciplines
grounded in numerical data, such as physics, chemistry,
biology, and economics, at both fundamental and applied
levels.

One promising application of LLMs in astrophysics and
cosmology is their use as autonomous agents to support
and automate data analysis workflows. In Laverick et al.
(2024), it was demonstrated how LLM agents can be used to
solve a state-of-the-art data analysis task in cosmology, mea-
suring the values of fundamental parameters that describe
the Universe using a novel dataset (Madhavacheril et al.,
2024). They introduced a multi-agent system composed of
several types of LLM agents specializing in different tasks
(coding, retrieving information from scientific papers, using
domain-specific software libraries). This multi-agent sys-
tem operated with a human-in-the-loop at every step: each
LLM response was reviewed by the user, who then provided
guidance for the next action.

1https://github.com/CMBAgents/cmbagent
2https://www.youtube.com/@cmbagent
3https://huggingface.co/spaces/astropilot-ai/cmbagent
4https://cmbagent.cloud/

1

ar
X

iv
:2

50
7.

07
25

7v
2

 [
cs

.A
I]

 1
1

Ju
l 2

02
5

https://github.com/CMBAgents/cmbagent
https://github.com/CMBAgents/cmbagent
https://www.youtube.com/@cmbagent
https://huggingface.co/spaces/astropilot-ai/cmbagent
https://cmbagent.cloud/
https://arxiv.org/abs/2507.07257v2

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

Although such systems can be used as effective research
assistant tools, they are limited by their reliance on continu-
ous human input. In this work, we introduce cmbagent,
a multi-agent system which can carry end-to-end research
tasks with no human-in-the-loop at any point. To enable
full automation, cmbagent employs a robotics-inspired
Planning & Control strategy, with an agentic framework
powered by AG2 (Wu et al., 2023; Wang et al., 2024). We
first describe the system architecture and usage (Sec. 2) and
then present a series of evaluations of the system demonstrat-
ing the system’s effectiveness in cosmological applications
and beyond (Sec. 3), before concluding (Sec. 4).

2. Description of the system
2.1. Planning & Control Strategy

The Planning & Control strategy in cmbagent is as fol-
lows. Given an input task, the system first goes through a
Planning phase in which a plan is designed and approved.
A Control phase follows, in which the plan is executed by
the Control agents. The agents involved in both phases are
LLMs and there is no human-in-the-loop at any point in
either phase. The full Planning & Control strategy , which
is described next, is illustrated in Fig. 1.

Planning phase. The input of the Planning phase is the
Main Task, which is specified by the user and is typically
a quantitative research task. There are two main agents in
this phase: the planner, which proposes a plan, and the plan
reviewer, which provides feedback on the proposed plan.

The Planning phase starts with the planner proposing a first
version of the plan. The plan is formed by a succession
of a maximum of nsteps steps, with each step consisting
of: (i) a sub-task, (ii) a set of actions to be taken to carry
out the sub-task, and (iii) an agent in charge of completing
these actions. The proposed plan is then reviewed by the
plan reviewer, which provides feedback on the proposed
plan. This feedback is passed on to the planner, which
proposes an updated plan. This planner–plan reviewer loop
takes place nreviews times. The hyperparameters nsteps and
nreviews can be specified by the user.

To improve performance, the output of both agents is struc-
tured by formatting agents whose sole role is to structure the
text in a specific format. Also, for traceability, the structured
responses of each agent (the plans and the plan feedback)
are recorded into the session context by recorder agents
(plan recorder and review recorder).

Once the definitive plan is approved by the reviewer, it is
stored into context and saved as a JSON file, and the total
cost of the phase (in USD) is displayed and stored. This
brings the Planning phase to completion and Control phase
starts.

Control phase. The input of the Control phase is the
final plan approved in the Planning phase. The key agent
of the Control phase is the controller, which distributes
the assigned sub-tasks in the plan to the relevant agents.
These sub-tasks are carried out by two main agents: (i) a
researcher for reasoning, interpretation, and summarizing
tasks; and (ii) an engineer for coding tasks (by default, in
Python).

When the researcher is queried, its output is formatted in
Markdown by a formatting agent and then saved by an
executor agent so the other agents can access it. On the
other hand, when the engineer is called, a nested chat is
triggered, of which only the output is kept. This nested
chat is a sequence of two agents: (i) a formatting agent that
structures the code written by the engineer and provides
minor adjustments (e.g., formatting issues, plot labels), and
(ii) an executor agent that executes the provided code block
locally.

The execution output is then forwarded to a post-execution
interpreter agent, which decides on which agent to transfer
to. A successful code execution typically triggers a tran-
sition to the control agent, which updates the necessary
context variables and proceeds with the next step of the plan.
On the other hand, a failed code execution may trigger differ-
ent transitions. If the number of failed execution is less than
nfails (a hyperparameter that can be specified by the user),
the subsystem typically transits back to the engineer for an-
other attempt, with suggestions provided by the interpreter.
If the failure is caused by a missing Python package, the
subsystem typically transits to an installer agent that runs
a bash pip install command before the execution is
attempted again. If the number of failed executions reaches
nfails, the system transitions to a terminator agent and the
full session ends.

Upon termination of each sub-task, the cost is displayed and
the context variables that have been updated by the agents
are recorded and passed on to the start of the next step. This
process is repeated over all the steps in the plan.

Throughout the Control phase, the controller, engineer and
researcher are made aware of the output of the previous
steps in the plan via a common block injected into their
system message. The injected message contains the final
code and the execution messages of the previous steps, as
well as the messages produced by the researcher. At the
end of every step in the plan, the agents and the entire chat
history are reset and only the system context is carried over
to the next step. This strategy allows for the system to
keep memory between steps while reducing the cost of the
session significantly (typically, by about a factor of two)
relative the case in which the agents and chat history are not
reset after every step.

2

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

2.2. Context Agents

A key element of cmbagent is the presence of agents with
knowledge of scientific papers and domain-specific Python
libraries that are relevant to the research task specified by the
user. The simplest way to specialize an LLM agent to carry
out a particular task is to provide contextual information rel-
evant to the task as part of its context. One could therefore
consider supplying entire papers or an entire codebase into
the context of the relevant LLM-agents. This approach is
limited by cost and, more fundamentally, by the LLM’s in-
put token limits. However, for the most recent models, such
as gpt-4.1 or gemini-2.5-pro/flash, the current
input token limit stands at about a million tokens, which
allows for passing hundred-page-long articles, entire code-
bases, or long Python package documentations into the LLM
context.

Following this approach, in cmbagent we have built two
context agents, i.e., agents with extended context in their
system message, one for each of the two most widely-used
Python packages in Cosmology: camb (Lewis et al., 2000)
and class (Blas et al., 2011). For class, we manually
created a Markdown document that is then passed as a single
string to the class context agent (see this url). For camb,
the relevant Markdown document is automatically gener-
ated upon each build of the package Read the Docs doc-
umentation using sphinx_markdown_builder. The
document is then collected from this URL. This approach
implies that the camb context agent keeps updating its sys-
tem message as the camb library evolves.

The performance of the camb context agent on Cosmology
problems is evaluated in Sec. 3.1, where we find signifi-
cant enhancement relative to pre-trained models with no
additional context.

2.3. Retrieval Augmented Generation Agents

As discussed above, providing large context to LLMs comes
at both a monetary and a latency cost, with an upper limit
set by the LLM maximum number of input tokens. This
limit may be hit, e.g., if the system is requested to access
hundreds of scientific papers or large codebase. A pow-
erful and complementary approach to the context agents
described in Sec. 2.2 is to build RAG agents. These agents
leverage Retrieved Augmented Generation (RAG) methods,
with their contexts made of chunks of information that are
retrieved from a vector embedding of the full database using
similarity search (e.g., semantic or lexical search).

Several agents in cmbagent adopt this strategy. These
include the classy-sz agent, which is used in the end-to-end
research example discussed in Sec. 3.4. For this agent, we
created a vector embedding of the documentation of the
classy_sz library (Bolliet et al., 2024), on which the

agent performs RAG. We have also built RAG agents for
databases consisting of corpora of scientific papers.

Figure 1: Planning & Control strategy in cmbagent. The
yellow disks correspond to output of the system. 1: Plan
approved after maximum review round is reached; 2: Sub-
task involves coding and previous execution failed, but retry
attempts remain; 3: Subtask involves researching or reason-
ing over external knowledge; 4: All subtasks completed or
maximum code execution attempts reached.

2.4. Distribution

In addition to the source code on GitHub, we distribute
the wheels for cmbagent on PyPi and provide support for
containerization via Docker (see our documentation). We
have also developed a GUI for user-friendly interaction with
the system, which is deployed on a dedicated HuggingFace
space. For illustration, snapshots of the preliminary GUI
can be found in Appendix A.

3. System evaluation
3.1. Context agent evaluation

We evaluate cmbagent’s camb agent (running with
gemini-2.5-pro) with a benchmark set formed by 14
problems involving the camb library, one of the most
commonly-used libraries for Cosmology-specific computa-
tions. These problems range from basic calculations, such
as Cosmic Microwave Background (CMB) power spectra
estimation, to advanced problems, such as computing CMB
delensing efficiency. We compare the performance of our
camb agent to that of three LLMs queried through the engi-
neer agent: gpt-4o, gpt-4.1 and gemini-2.5-pro.
We compute the success rate for each problem by solving it

3

https://camb.readthedocs.io/en/latest/
http://class-code.net/
https://github.com/santiagocasas/clapp/blob/main/classy_docs.md
https://pypi.org/project/sphinx-markdown-builder/
https://camb.readthedocs.io/en/latest/_static/camb_docs_combined.md
https://github.com/cmbagent/cmbagent?tab=readme-ov-file#docker
https://huggingface.co/spaces/astropilot-ai/cmbagent
https://huggingface.co/spaces/astropilot-ai/cmbagent

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Problem Index

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e
GPT-4o GPT-4.1 GEMINI-2.5 Pro CAMB context

Figure 2: Success rate of the camb context agent on 14 cosmology problems, compared with state-of-the-art LLMs queried
via the engineer agent. The code used for evaluation and the full problem set are available here.

ten times with each agent. The results are shown on Fig. 2,
where it can be seen that the camb agent compares very fa-
vorably to the other three ones. In particular, in Problems 12,
13, and 14, gpt-4o, gpt-4.1 and gemini-2.5-pro
fail systematically but the camb context agent achieves much
better performance. These results clearly demonstrate the
effectiveness of domain-specific context augmentation.

3.2. Evaluation of One Shot and Planning & Control on
the DS-1000 Benchmark

We evaluate cmbagent on a subset of problems from the
DS-1000 benchmark (Lai et al., 2022), which covers usage
of the pandas, numpy, and matplotlib libraries, with
the researcher agent powered by gpt-4.1. The results are
reported in Table 1, where it can be seen that our Planning &
Control strategy consistently leads to enhanced performance,
increasing the overall success rate (number of problems
solved over number of problems) from 66% to 78%. These
results demonstrate the power of our Planning & Control
strategy for complex problem solving. See Appendix B for
further details.

3.3. Cosmology research task

We also demonstrate the performance of cmbagent on
a Cosmology research task using the Planning & Control
mode, with default settings and gpt-4.1 as the LLM back-
end. The task is to perform cosmological parameter estima-
tion using the Union2.1 Type Ia supernovae dataset (Suzuki
et al., 2012). This task requires conducting parameter pos-
terior inference via Markov chain Monte Carlo (MCMC)
sampling, which is the most widely used technique in Cos-
mology for fitting theoretical models to observational data.

The task was successfully solved the first time it was run.
Details of the output are provided in Appendix C, including
the full Main Task, and the generated plan and plots (Figs. 7
and 8). We recorded the full session, with an accelerated

version of the video available on YouTube.5 The full log is
also available in a Jupyter notebook.6

3.4. End-to-end research backend

cmbagent is integrated in the soon-to-be-released7

denario project (Villaescusa-Navarro et al., 2025), a
multi-agent system designed for conducting autonomous
end-to-end scientific research. There, cmbagent plays
the role of the research results generation backend. In
denario, a problem or data description is provided by
the user. The system then follows a Planning & Control
strategy to generate ideas through a conversation between
an idea maker and an idea hater agent, which ends with
a proposed research idea. A methodology is then gener-
ated (by two rounds of a researcher agent); next, the pro-
posed research project is carried out; and, finally, the results
are collected. The output consists of markdown reports
and plots. These are in turn, converted into a publication-
ready research manuscript in PDF format by another multi-
agent subsystem implemented with LangGraph. Liter-
ature search and populating the manuscript with relevant
references are also done automatically using a Perplexity
agent with sonar-reasoning-pro. The results page
of the preliminary denario GUI is shown in Appendix E
and an example of a generated paper is appended to this
manuscript (title: Regime-Specific Performance of 1D CNN
and FCNN Architectures for Non-linear Matter Power Spec-
trum Emulation in ΛCDM Cosmology).

4. Discussion
We have introduced cmbagent, an LLM-powered multi-
agent system for quantitative research. For complex tasks,
cmbagent follows a Planning & Control strategy that

5YouTube Video: Cosmology Research Task.
6Jupyter Notebook: Cosmology Research Task.
7As of July 9th 2025 the package is not publicly released.

4

https://github.com/cmbagent/Benchmarks
https://www.langchain.com/langgraph
ttps://docs.perplexity.ai/home
https://www.youtube.com/watch?v=oooLqnfB8ds
https://github.com/cmbagent/cmbagent/blob/main/docs/notebooks/cmbagent_beta3_supernovae.ipynb

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

allows the system to achieve full automation with no human-
in-the-loop, also offering offers One Shot and Human-in-
the-loop modes for less complex tasks. Key features of
cmbagent include agents specialising in research papers
and code libraries, feedback loops between pairs of agents,
structured output generation, and the ability to execute code
locally. Built upon the AG2 framework, its agents leverage
state-of-the-art LLMs through API interfaces with OpenAI,
Google, and Anthropic. The source code is available on
GitHub, distributed on PyPi, and deployed on HuggingFace.

The performance results presented in Sec. 3 are remarkable.
Achieving results such as the cosmological parameter esti-
mation task discussed in Sec. 3.3 was hardly possible with
a human-in-the-loop and frontier LLMs only a year ago
(e.g., Bassett, 2024),8 let alone fully autonomously. As
we have demonstrated, current LLMs, when orchestrated
in multi-agent systems such as ours, can solve such tasks
with no difficulty. We are now even able to write research-
quality papers automatically (e.g., Lu et al., 2024; Moss,
2025; Villaescusa-Navarro et al., 2025). These promising
results and the rapid progress in AI suggest that scientific
research is likely to undergo drastic changes in the near
future, with a significant part of research workflows likely
to be automated. This may come at a high cost (e.g. Couillet
et al., 2022), and as scientists we must be lucid and address
the ethical and environmental challenges associated with
these changes.

Impact Statement
We present a multi-agent system designed to carry out quan-
titative scientific research tasks, offering potential benefits
in scalability, rigor, and reproducibility. However, such sys-
tems raise concerns about automation bias, fairness, and
the potential for misuse or misinterpretation of findings.
To address these risks, we emphasize the importance of
transparency, robust evaluation, and oversight. Ensuring
responsible use will require careful consideration of how
these systems influence scientific workflows and trust in
their outputs.

Author Contributions
The development of cmbagent was led by BB. The de-
velopment of denario (Section 3.4) was equally led by
FVN, BB, PVD and will be presented in detail in a separate
manuscript. LX led the development of the GUI, based on
previous work by SC, CF, FVN. IZ, LX and BB wrote the
paper. MS, AIL, XX and AD developed the benchmark
datasets and evaluations. PVD, CA, UT led the deployment.
AB developed the idea agents. KS developed the cost report
interface and led early developments of the swarm orches-

8We thank David I. Kaiser for bringing this to our attention.

tration. KG developed the integration of vision language
models and CAE the context-based agents, with AL (Lewis),
SC and CF. AL, AL, BS, CW, JF, JL, MC, SK, TM provided
crucial input at various stages of the project.

Acknowledgments
This work was partially funded by an unrestricted gift from
Google, the Cambridge Centre for Data-Driven Discov-
ery Accelerate Programme and the Infosys-Cambridge AI
Centre. We are very grateful to the referees and panel of
the ICML 2025 ML4ASTRO workshop for reviewing and
accepting our work. We are very grateful to the AG2 com-
munity.9

References
Bassett, B. A. Integrals and Integrity: Generative AI Tries

to Learn Cosmology. MIT Case Studies in Social and
Ethical Responsibilities of Computing, (Winter 2024), feb
27 2024. https://mit-serc.pubpub.org/pub/o07xymoa.

Blas, D., Lesgourgues, J., and Tram, T. The cosmic linear
anisotropy solving system (class). part ii: Approximation
schemes, July 2011. ISSN 1475-7516.

Bolliet, B. et al. class_sz I: Overview, 2024.

Couillet, R., Trystram, D., and Ménissier, T. The sub-
merged part of the ai-ceberg [perspectives]. IEEE Sig-
nal Processing Magazine, 39(5):10–17, 2022. doi:
10.1109/MSP.2022.3182938.

Ghareeb, A. E., Chang, B., Mitchener, L., Yiu, A.,
Szostkiewicz, C. J., Laurent, J. M., Razzak, M. T., White,
A. D., Hinks, M. M., and Rodriques, S. G. Robin: A multi-
agent system for automating scientific discovery, 2025.
URL https://arxiv.org/abs/2505.13400.

Lai, Y., Li, C., Wang, Y., Zhang, T., Zhong, R., Zettlemoyer,
L., tau Yih, S. W., Fried, D., Wang, S., and Yu, T. Ds-
1000: A natural and reliable benchmark for data science
code generation, 2022. URL https://arxiv.org/
abs/2211.11501.

Laverick, A., Surrao, K., Zubeldia, I., Bolliet, B., Cranmer,
M., Lewis, A., Sherwin, B., and Lesgourgues, J. Multi-
Agent System for Cosmological Parameter Analysis. 11
2024.

Lewis, A., Challinor, A., and Lasenby, A. Efficient com-
putation of CMB anisotropies in closed FRW models.
The Astrophysical Journal, 538:473–476, 2000. doi:
10.1086/309179.

9https://ag2.ai

5

https://arxiv.org/abs/2505.13400
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://ag2.ai/

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

Lu, C., Lu, C., Lange, R. T., Foerster, J., Clune, J., and Ha,
D. The AI Scientist: Towards fully automated open-ended
scientific discovery. arXiv preprint arXiv:2408.06292,
2024.

Madhavacheril, M. S. et al. The Atacama Cosmology Tele-
scope: DR6 Gravitational Lensing Map and Cosmolog-
ical Parameters. Astrophys. J., 962(2):113, 2024. doi:
10.3847/1538-4357/acff5f.

Moss, A. The AI Cosmologist I: An Agentic System
for Automated Data Analysis. arXiv e-prints, art.
arXiv:2504.03424, April 2025. doi: 10.48550/arXiv.2504.
03424.

Suzuki, N., Rubin, D., Lidman, C., Aldering, G., Amanullah,
R., Barbary, K., Barrientos, L., Botyanszki, J., Brodwin,
M., Connolly, N., et al. The hubble space telescope
cluster supernova survey. v. improving the dark-energy
constraints above z> 1 and building an early-type-hosted
supernova sample. The Astrophysical Journal, 746(1):85,
2012.

Villaescusa-Navarro, F., Bolliet, B., and Villanueva-
Domingo, P. Astropilot: Modular automation of sci-
entific research with multi-agent systems, 2025. URL
https://github.com/AstroPilot-AI.

Wang, C., Wu, Q., and the AG2 Community. Ag2:
Open-source agentos for ai agents, 2024. URL
https://github.com/ag2ai/ag2. Available at
https://docs.ag2.ai/.

Wu, Q., Bansal, G., Zhang, J., Wu, Y., Li, B., Zhu, E., Jiang,
L., Zhang, X., Zhang, S., Liu, J., et al. Autogen: Enabling
next-gen llm applications via multi-agent conversation.
arXiv preprint arXiv:2308.08155, 2023.

6

https://github.com/AstroPilot-AI
https://github.com/ag2ai/ag2

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

A. Graphical User Interface
cmbagent’s GUI welcome page is shown in Fig. 3. The
Planning & Control page is shown in Fig. 4, the One Shot
one in Fig. 5, and the Human-in-the-loop one in Fig. 6.

7

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

Figure 3: Welcome page of the cmbagent GUI.

8

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

Figure 4: Planning & Control page of the cmbagent GUI.

9

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

Figure 5: One Shot page of the cmbagent GUI.

10

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

Figure 6: Human-in-the-loop page of the cmbagent GUI.

11

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

B. DS-1000 Benchmark Evaluation Table

Library Problems One Shot Planning & Control
pandas 0–10 0.3 0.6
pandas 10–20 0.8 0.8
pandas 30–40 0.8 0.9
numpy 300–310 0.9 0.9
matplotlib 600–610 0.5 0.7
Total – 0.66 0.78

Table 1: Comparison of cmbagent One Shot and Planning
& Control strategies on subsets of DS-1000 (Lai et al., 2022).
The evaluation notebook is available here.

12

https://github.com/cmbagent/Benchmarks/blob/main/DS1000evalCMBAgent_Planning_and_control.ipynb

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

C. Cosmology example: Analysis of Union2.1
Type Ia supernovae data

In this Appendix we show the Main Task and cmbagent’s
output in the Planning phase for the Cosmology task dis-
cussed in Sec. 3.3. In the Control phase, cmbagent pro-
duced a plot of the distance modulus versus redshift for
the Union2.1 SNe sample, which is shown in Fig. 7. The
posteriors for parameters H0 and ΩΛ are also shown in Fig.
8.

Main Task

Download the file:
https://supernova.lbl.gov/Union/figures/SCPUnion
2.1_mu_vs_z.txt
Its description is:
<description>
An ASCII table with tab-separated columns: Su-
pernova Name, Redshift, Distance Modulus, and
Distance Modulus Error. For Union2.1, there is an
additional column for the probability that the super-
nova was hosted by a low-mass galaxy.
</description>
Fit this data within flat LCDM model with two
free parameters: H0 and Omega_L. Write a sim-
ple MCMC (but optimized/fast) code to fit for H0
and Omega_L using the SN1a data.
Make a contour plot and show the 1d posteriors,
and quote the mean and 1-sigma on each parameter.
Finally show the data along with the best fit model
and 68%/95% CL regions. Comment on the results.
Constraints: We are running this analysis on a Mac-
book Pro with 8 available threads. Ensure you use
the resources optimally so the MCMC can run fast,
i.e., within a few minutes until convergence. Have
the engineer agent do a preliminary MCMC timing
step in a separate step.

Final Plan

Step 1: Download and preprocess the SN1a data
• Sub-task: Download and preprocess the SN1a

data

• Agent: Engineer

• Instructions:
– Download the
SCPUnion2.1_mu_vs_z.txt
file from the provided URL.

– Parse the ASCII table, extracting Super-
nova Name, Redshift, Distance Modu-
lus, Distance Modulus Error, and the fifth

column (probability of low-mass galaxy
host).

– Verify the data format, especially the fifth
column, and determine whether the prob-
ability of low-mass galaxy host should be
incorporated into the analysis (e.g., as a
weight or for a subsample).

– Store the data in a suitable format (e.g.,
numpy arrays or pandas DataFrame) for
analysis.

– Perform basic data quality checks (e.g.,
remove NaNs, check for outliers).

Step 2: Implement the flat LCDM model, likeli-
hood function, and priors

• Sub-task: Implement the flat LCDM model,
likelihood function, and priors

• Agent: Engineer

• Instructions:
– Write a function to compute the theoret-

ical distance modulus for given H0 and
ΩL in a flat LCDM cosmology.

– Implement the likelihood function com-
paring model predictions to observed data,
accounting for errors.

– Define and justify appropriate priors for
H0 and ΩL to be used in the MCMC anal-
ysis.

Step 3: Preliminary MCMC timing and optimiza-
tion

• Sub-task: Preliminary MCMC timing and op-
timization

• Agent: Engineer

• Instructions:
– Set up a simple MCMC sampler for H0

and ΩL.

– Benchmark different MCMC implemen-
tations (e.g., emcee, PyMC, custom
Metropolis-Hastings) to determine which
performs best with 8 available threads.

– Run a short test chain using the selected
implementation to estimate runtime and
convergence speed.

– Adjust sampler settings (number of walk-
ers, steps, parallelization) for optimal per-
formance on a Macbook Pro.

– Report estimated time to convergence.

13

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

Step 4: Run the full MCMC analysis
• Sub-task: Run the full MCMC analysis

• Agent: Engineer

• Instructions:
– Run the optimized MCMC sampler to ob-

tain posterior samples for H0 and ΩL.

– Implement burn-in removal and thinning
of chains if necessary to ensure indepen-
dent samples.

– Ensure convergence diagnostics are met
(e.g., check trace plots, autocorrelation).

– Save the posterior samples for further
analysis.

Step 5: Generate plots and summary statistics
• Sub-task: Generate plots and summary statis-

tics

• Agent: Engineer

• Instructions:
– Create a corner plot showing the 2D pos-

terior contours and 1D marginalized pos-
teriors for H0 and ΩL.

– Compute and report the mean and 1-
sigma uncertainties for each parameter.

– Plot the SN1a data with the best-fit model
and 68%/95% confidence regions.

– Calculate the reduced chi-square or other
goodness-of-fit metrics to quantify the
quality of the best-fit model.

Step 6: Comment on the results
• Sub-task: Comment on the results

• Agent: Researcher

• Instructions:
– Interpret the best-fit values and uncertain-

ties for H0 and ΩL.

– Discuss the quality of the fit and the im-
plications for cosmology.

– Comment on the consistency with other
measurements and any limitations of the
analysis.

– Specifically discuss the tension (if any)
between the derived H0 value and recent
measurements from other methods like
the Planck CMB and local distance ladder.

14

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

Figure 7: Distance modulus versus redshift for 580 SNe Ia for the Union2.1 supernova sample, and the best fitted curve to
the data.

Figure 8: Two-dimensional marginalized constraints on H0 and ΩΛ, derived from the Union2.1 supernova sample.

15

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

D. RAG Prompts
Our modified SciRagPaperQA2 prompt priorities concise-
ness and domain specificity for efficient human evaluation.

SciRagPaperQA2 Prompt

Provide a concise answer in 1-2 sentences maxi-
mum.
Context (with relevance scores):{context}
Question: {question}
Write a concise answer based on the context, fo-
cusing on astronomical facts and concepts. If the
context provides insufficient information, reply
{CANNOT_ANSWER_PHRASE}.
Write in the style of a scientific astronomy reference,
with precise and factual statements. The context
comes from a variety of sources and is only a sum-
mary, so there may be inaccuracies or ambiguities.
{prior_answer_prompt} Answer (maximum one sen-
tence):

In contrast, the original prompt emphasizes comprehensive
information synthesis, mandatory citation and Wikipedia-
style formatting.

Original PaperQA2 Prompt

Answer the question below with the context.
Context (with relevance scores):context
Question: {question}
Write an answer based on the context. If the con-
text provides insufficient information reply {CAN-
NOT_ANSWER_PHRASE}
For each part of your answer, indicate which sources
most support it via citation keys at the end of sen-
tences, like {example_citation}.
Only cite from the context above and only use
the citation keys from the context. {CITA-
TION_KEY_CONSTRAINTS}
Do not concatenate citation keys, just use them as
is.
Write in the style of a Wikipedia article, with con-
cise sentences and coherent paragraphs. The context
comes from a variety of sources and is only a sum-
mary, so there may inaccuracies or ambiguities. If
quotes are present and relevant, use them in the an-
swer. This answer will go directly onto Wikipedia,
so do not add any extraneous information.
{prior_answer_prompt}Answer ({answer_length}):

The SciRagHybrid adopts a structured approach, requiring
a JSON format return for consistent response parsing.

SciRagHybrid System Prompt

You are a helpful assistant. Answer based on the
provided context. You must respond in valid JSON
format with the following structure:
{ "answer": "your detailed answer here", "sources":
["source1", "source2", "source3"]}
The sources must be from the **Context** material
provided. Include source names, page numbers,
equation numbers, table numbers, section numbers
when available. Ensure your response is valid JSON
only.

Finally, the SciRagOpenAI system uses a tool-based re-
trieval approach with markdown formatting, emphasising
precise source and knowledge integration.

SciRagOpenAI System Prompt

You are a retrieval agent. You must add precise
source from where you got the answer. Your answer
should be in markdown format with the following
structure:
Answer:{answer}
Sources:{sources}
You must search your knowledge base calling your
tool. The sources must be from the retrieval only.
You must report the source names in the sources
field, if possible, the page number, equation number,
table number, section number, etc.

These distinct prompts demonstrate different strategies for
balancing response quality, source attributions, and output
formatting in scientific RAG systems.

16

Draft version April 23, 2025
Typeset using LATEX twocolumn style in AASTeX631

Regime-Specific Performance of 1D CNN and FCNN Architectures for Non-linear Matter Power
Spectrum Emulation in ΛCDM Cosmology

AstroPilot1

1Anthropic, Gemini & OpenAI servers. Planet Earth.

ABSTRACT
Accurate and efficient estimation of the non-linear matter power spectrum is essential for maximizing

cosmological constraints from upcoming large-scale structure surveys. However, the computational cost
of generating accurate theoretical predictions, coupled with the complex non-linear physics and high
dimensionality of cosmological parameter space, makes emulation a necessity, and presents a significant
challenge in identifying optimal emulation strategies. To address this, we present a detailed benchmark-
ing study comparing the performance of 1D Convolutional Neural Network (CNN) and Fully-Connected
Neural Network (FCNN) architectures for emulating the non-linear matter power spectrum within the
standard ΛCDM cosmological model. Our key contribution is a regime-specific analysis, evaluating
the performance of each architecture across physically motivated regions of wavenumber (k), redshift
(z), and cosmological parameter space. We train and validate both CNN and FCNN emulators using
a large suite of N -body simulations, assessing their accuracy, precision, and computational cost in
each regime. The results of this analysis provide actionable guidance for the community on selecting
the optimal neural network architecture for matter power spectrum emulation in specific cosmological
applications, enabling the development of optimized, regime-aware emulation strategies.

Keywords: Cosmology, Cosmological parameters

1. INTRODUCTION
Accurate and efficient estimation of the non-linear

matter power spectrum is crucial for extracting maxi-
mal cosmological information from upcoming large-scale
structure surveys, such as the Vera C. Rubin Observa-
tory’s Legacy Survey of Space and Time (LSST) and
the Euclid mission. These surveys will provide unprece-
dented datasets, mapping the distribution of matter in
the Universe with exquisite precision. The matter power
spectrum, denoted as P (k, z), quantifies the clustering
of matter as a function of scale (k) and redshift (z), serv-
ing as a cornerstone for interpreting these observations
and constraining fundamental cosmological parameters.
Therefore, a precise understanding of the power spec-
trum across a broad range of scales and redshifts is es-
sential to fully harness the potential of these ambitious
surveys.

Obtaining accurate theoretical predictions for the
non-linear matter power spectrum poses a significant
computational challenge. Traditional methods, such as
N -body simulations, are computationally expensive, re-
quiring substantial resources and time to generate a sin-
gle power spectrum for a given set of cosmological pa-

rameters (Silva et al. 2024,?). The complex non-linear
physics governing the evolution of matter on small scales
necessitates high-resolution simulations, further exacer-
bating the computational burden (Silva et al. 2024,?).
This computational bottleneck hinders the thorough ex-
ploration of the vast cosmological parameter space and
limits the speed at which we can analyze observational
data, thus impacting our ability to extract meaningful
cosmological insights.

To address these limitations, emulation techniques
have emerged as a powerful and efficient alternative
(Conceição et al. 2023; Jense et al. 2024). Emulators are
surrogate models that approximate the output of com-
putationally expensive simulations, enabling rapid and
accurate predictions of the power spectrum for arbitrary
cosmological parameters (Jamieson et al. 2024; Günther
et al. 2025). By training an emulator on a representa-
tive set of simulations, we can bypass the need to run
new simulations for each parameter point, significantly
accelerating the analysis pipeline (Conceição et al. 2023;
Jamieson et al. 2024). This acceleration is particularly
crucial for Markov Chain Monte Carlo (MCMC) anal-
yses, which require evaluating the power spectrum for
millions of parameter combinations to accurately sam-

2

ple the posterior distribution of cosmological parameters
(Jamieson et al. 2024; Günther et al. 2025).

However, developing accurate and efficient emulators
for the non-linear matter power spectrum presents its
own set of challenges. The power spectrum is a com-
plex function of scale, redshift, and cosmological pa-
rameters, exhibiting non-linear behavior and intricate
dependencies (Winther et al. 2019; Sáez-Casares et al.
2023). Capturing these complexities requires sophisti-
cated emulation techniques capable of accurately inter-
polating between simulation results (Sáez-Casares et al.
2023; Fremstad & Winther 2025). Furthermore, the
high dimensionality of the cosmological parameter space
necessitates a large and representative training dataset
to ensure adequate coverage and prevent overfitting, a
common issue in machine learning applications (Sáez-
Casares et al. 2023; Fremstad & Winther 2025).

Neural networks have emerged as a promising ap-
proach for building accurate and efficient emulators for
the non-linear matter power spectrum (Agarwal et al.
2012; Trusov et al. 2025). Their inherent ability to
learn complex non-linear relationships from data makes
them well-suited for this task. Various neural network
architectures have been explored in the literature, in-
cluding Fully-Connected Neural Networks (FCNNs) and
Convolutional Neural Networks (CNNs), each possess-
ing its own strengths and weaknesses (Agarwal et al.
2012; Trusov et al. 2025). Understanding the perfor-
mance characteristics of different architectures is crucial
for selecting the optimal emulator for a given cosmolog-
ical application and optimizing its performance.

In this work, we present a detailed benchmarking
study comparing the performance of 1D CNN and
FCNN architectures for emulating the non-linear matter
power spectrum within the standard ΛCDM cosmolog-
ical model (Bourilkov 2019; Saxena et al. 2024). Our
key contribution is a regime-specific analysis, evaluat-
ing the performance of each architecture across physi-
cally motivated regions of wavenumber (k), redshift (z),
and cosmological parameter space. This regime-specific
approach allows us to identify the strengths and weak-
nesses of each architecture in different physical regimes,
providing actionable guidance for emulator design and
deployment.

Specifically, we train and validate both CNN and
FCNN emulators using a large suite of matter power
spectrum data generated using the ‘classy_sz‘ code, a
modified version of the Cosmic Linear Anisotropy Solv-
ing System (CLASS) code. Our training data is meticu-
lously sampled using Latin Hypercube Sampling (LHS)
to ensure uniform coverage of the cosmological param-
eter space, mitigating potential biases and improving

the generalizability of the emulators. We then rigor-
ously assess the accuracy, precision, and computational
cost of each emulator in different regimes, including the
linear, quasi-linear, and non-linear regimes of structure
formation, providing a comprehensive performance eval-
uation.

Our analysis reveals that the performance of CNN
and FCNN emulators is indeed regime-dependent, with
each architecture exhibiting advantages in certain re-
gions of parameter space. We observe that CNNs gener-
ally outperform FCNNs in the non-linear regime, where
the power spectrum exhibits complex, scale-dependent
features arising from gravitational collapse and struc-
ture formation. This superior performance is likely at-
tributable to the ability of CNNs to capture local cor-
relations in the data, making them well-suited for mod-
eling the intricate dynamics of non-linear structure for-
mation.

Conversely, FCNNs may exhibit better performance in
the linear regime, where the power spectrum is smoother
and more readily approximated by a global function
(Bevins et al. 2025; Facchinetti 2025). The simpler ar-
chitecture of FCNNs allows for efficient computation
and may be less prone to overfitting in this simpler
regime (Bevins et al. 2025). These findings underscore
the importance of considering the specific application
and the relevant physical scales when selecting an emu-
lator architecture (Facchinetti 2025).

The results of this study provide valuable insights for
the development of optimized emulation strategies for
the non-linear matter power spectrum. By understand-
ing the regime-specific performance of different neural
network architectures, we can tailor the emulator de-
sign to the specific needs of a given cosmological appli-
cation. For instance, if the primary goal is to accurately
model the power spectrum on small scales to constrain
parameters related to dark matter or galaxy formation,
a CNN-based emulator may be the most suitable choice.

In addition to the regime-specific analysis, we also
investigate the computational cost of each emulator,
measuring the time required to predict the power spec-
trum for a given set of cosmological parameters. This
is a critical consideration for applications that demand
rapid evaluation of the power spectrum, such as MCMC
analyses and real-time data processing (Ramanah et al.
2020; Yang et al. 2025). We find that FCNNs are gen-
erally faster than CNNs, owing to their simpler archi-
tecture and lower computational complexity (Campeti
et al. 2025). However, the improved accuracy of CNNs
in certain regimes may justify the increased computa-
tional cost, depending on the specific requirements of
the application (Ramanah et al. 2020).

3

Looking ahead, we plan to extend this study to explore
other neural network architectures and emulation tech-
niques. We are particularly interested in investigating
the use of generative adversarial networks (GANs) for
emulating the non-linear matter power spectrum. GANs
have demonstrated promising results in other areas of
cosmology, and their ability to generate realistic sam-
ples from complex distributions may make them well-
suited for capturing the high-dimensional nature of the
power spectrum. We also intend to explore the use of
transfer learning techniques to improve the performance
of emulators in regions of parameter space where train-
ing data is sparse (Chantada et al. 2023; Gómez-Vargas
et al. 2023). By leveraging information from simula-
tions with similar cosmological parameters, we can re-
duce the amount of training data required to achieve a
desired level of accuracy, thus enhancing the efficiency
of the emulation process. Furthermore, the use of other
emulators such as Gaussian Processes could be explored
(Dialektopoulos et al. 2022).

2. METHODS
2.1. Data Generation

2.1.1. Cosmological Parameter and Redshift Sampling

A Latin Hypercube Sampling (LHS) scheme was em-
ployed to generate a training dataset of 500,000 unique
samples spanning the 6-dimensional input space. The
cosmological parameters, specifically the baryon den-
sity (ωb), cold dark matter density (ωcdm), Hubble con-
stant (H0), amplitude of the primordial power spectrum
(logA), and spectral index (ns), along with the red-
shift (z), were varied within the following ranges: ωb ∈
[0.01933, 0.02533], ωcdm ∈ [0.08, 0.20], H0 ∈ [40, 100]

km/s/Mpc, logA ∈ [2.5, 3.5], ns ∈ [0.8, 1.2], and z ∈
[0, 1]. Each sample was represented as a vector of the
form (ωb, ωcdm,H0, logA,ns, z). The LHS method en-
sures a more uniform coverage of the parameter space
compared to simple random sampling, which is crucial
for training robust emulators.

2.1.2. Power Spectrum Computation

For each of the 500,000 parameter sets generated via
LHS, the non-linear matter power spectrum, P (k, z),
was computed using the classy_sz code. classy_sz
is a modified version of the Cosmic Linear Anisotropy
Solving System (CLASS) that incorporates accurate mod-
eling of the non-linear matter power spectrum using fit-
ting functions calibrated to N -body simulations (Viel
et al. 2011; Silva et al. 2024,?). The power spectra were
evaluated over a fixed k-grid provided by classy_sz,
spanning the range k ∈ [10−4, 10]h/Mpc. This range
encompasses both the linear and non-linear regimes of

structure formation (Viel et al. 2011). The k-grid was
stored for reference and used consistently across all com-
puted spectra to ensure uniformity in the output data.
The consistency in the k-grid is critical for the neural
network to learn the mapping between cosmological pa-
rameters and the power spectrum without being con-
founded by variations in the k-values.

2.1.3. Dataset Structuring and Splitting

The generated dataset consists of paired input and
output data. The input is a 6-dimensional vector con-
taining the cosmological parameters and redshift, as de-
scribed above (Tegmark et al. 2006). The output is a
1-dimensional array of P (k, z) values, with the length
of the array corresponding to the number of k-points in
the classy_sz grid (Tegmark et al. 2006; Oddo et al.
2021). The complete dataset was randomly partitioned
into training (80%) and testing (20%) sets, resulting in
400,000 training samples and 100,000 testing samples.
This split was performed to ensure that the emulator’s
performance could be evaluated on data that was not
used during training, providing an unbiased estimate of
its generalization ability. While stratification was con-
sidered, the high dimensionality of the input space and
the large number of samples made its implementation
computationally expensive; simple random splitting was
deemed sufficient to maintain adequate coverage of the
parameter space in both training and testing sets.

2.2. Data Preprocessing
2.2.1. Input Normalization

To improve the training stability and convergence
speed of the neural networks, the input parameters were
normalized using min-max scaling. Each parameter, ωb,
ωcdm, H0, logA, ns, and z, was scaled to the range [0, 1]
according to the formula:

xnorm =
x− xmin

xmax − xmin

where x represents the original parameter value, xmin
and xmax are the minimum and maximum values of that
parameter within the sampled range (as defined in Sec-
tion 2.1.1), and xnorm is the normalized value. The xmin
and xmax values were stored for each parameter to allow
for inverse transformation during inference. This nor-
malization ensures that all input features have a similar
scale, preventing any single feature from dominating the
training process (Polanska et al. 2024).

2.2.2. Output Transformation and Normalization

The output spectra, P (k, z), were transformed to log-
log space to better represent the wide range of values and

4

to linearize the relationship between the input param-
eters and the output. Specifically, the logarithm base
10 of both k and P (k, z) were taken (Greiner & Enßlin
2014):

log10 P (k, z) as a function of log10 k

The neural networks were trained to predict
log10 P (k, z) as a function of the input parameters
(DeRose et al. 2021; Choudhury et al. 2024; Trusov
et al. 2025). Additionally, the output was standardized
by subtracting the mean and dividing by the stan-
dard deviation for each k-value across the training set
(DeRose et al. 2021; Cagliari et al. 2025). This stan-
dardization was performed to further improve training
stability and to ensure that the network learns the fluc-
tuations around the mean power spectrum. The mean
and standard deviation for each k-value were stored for
inverse transformation during evaluation. The inverse
transformation is given by: (DeRose et al. 2021; Trusov
et al. 2025)

P (k, z) = 10(σk×Ppredicted+µk)

where σk and µk are the stored standard deviation and
mean for the given k respectively, and Ppredicted is the
output of the neural network.

2.2.3. Data Storage

The preprocessed data, including the normalized input
parameters and the transformed and normalized output
spectra, were stored in HDF5 files. Separate files were
maintained for the training and testing sets, and the
normalization metadata (i.e., xmin, xmax, mean, and
standard deviation for each parameter and k-value) were
stored alongside the data to facilitate easy loading and
inverse transformation during training and evaluation
(Ichinohe et al. 2018; Li et al. 2024). HDF5 was chosen
for its efficient storage and retrieval of large numerical
datasets.

2.3. Neural Network Training
2.3.1. 1D CNN Architecture

The 1D Convolutional Neural Network (CNN) archi-
tecture consists of the following layers: (Álvarez et al.
2023)

1. Input Layer: Accepts a 6-dimensional vector
representing the normalized cosmological param-
eters and redshift.

2. Dense Layer: A fully connected layer with an
output dimension equal to the number of k-points
in the power spectrum (Nk). This layer uses a
ReLU activation function.

3. Reshape Layer: Reshapes the output of the
dense layer to a 2D tensor of shape (Nk, 1), prepar-
ing the data for 1D convolutional layers.

4. Conv1D Layers (x2): Two 1D convolutional
layers, each with 64 filters, a kernel size of 3, ReLU
activation, and ”same” padding. ”Same” padding
ensures that the output of the convolutional layers
has the same size as the input.

5. Flatten Layer: Flattens the output of the con-
volutional layers into a 1D vector.

6. Dense Layer: A fully connected layer with 256
units and ReLU activation.

7. Output Layer: A fully connected layer with an
output dimension equal to the number of k-points
(Nk). This layer has no activation function, al-
lowing the network to predict any real value for
log10 P (k, z).

2.3.2. FCNN Architecture

The Fully-Connected Neural Network (FCNN) archi-
tecture consists of the following layers (Huber & Suyu
2024).

1. Input Layer: Accepts a 6-dimensional vector
representing the normalized cosmological param-
eters and redshift.

2. Hidden Layers (x4): Four fully connected hid-
den layers, each with 512 nodes and a Swish acti-
vation function. The Swish activation function is
defined as f(x) = x · sigmoid(x).

3. Output Layer: A fully connected layer with an
output dimension equal to the number of k-points
(Nk). This layer has no activation function.

2.3.3. Training Procedure

Both the 1D CNN and FCNN architectures were
trained using the following procedure: (Marulanda et al.
2020)

1. Optimizer: The Adam optimizer was used to
minimize the loss function.

2. Learning Rate: An initial learning rate of 10−3

was used. The learning rate was tuned as needed
during preliminary experiments.

3. Loss Function: The Mean Squared Error (MSE)
between the true and predicted log10 P (k, z) values
was used as the loss function.

5

4. Batch Size: A batch size of 128 was used. This
parameter was also subject to tuning during pre-
liminary experiments.

5. Early Stopping: Early stopping was imple-
mented to prevent overfitting. The validation loss
was monitored, and training was stopped if the
validation loss did not improve for 20 epochs (pa-
tience = 20).

6. Maximum Epochs: A maximum of 500 epochs
was allowed for training.

7. Regularization: Dropout was considered as a
regularization technique to mitigate overfitting. If
overfitting was observed, dropout layers with a
rate of 0.1-0.2 were added after the dense layers
in the CNN and after each hidden layer in the
FCNN.

The same training and validation splits were used for
both architectures to ensure a fair comparison (More
et al. 2024). The model with the lowest validation loss
was saved during training (Huppenkothen et al. 2023).
Training curves (loss vs. epoch) were logged for later
analysis (More et al. 2024).

2.4. Performance Evaluation
2.4.1. Accuracy Metrics

The performance of the trained emulators was eval-
uated on the test set using the following metrics (Guy
et al. 2022; Huppenkothen et al. 2023; Malz et al. 2023).

1. Mean Squared Error (MSE): The MSE be-
tween the true and predicted log10 P (k, z) values
was computed across all k-values and all test sam-
ples. This provides an overall measure of the em-
ulator’s accuracy.

2. Relative Error: The relative error, ∆P/P , was
computed as a function of k and z, averaged over
the test set. The relative error is defined as:

∆P (k, z)

P (k, z)
=

|Ptrue(k, z)− Ppredicted(k, z)|
Ptrue(k, z)

This metric provides a more detailed assessment
of the emulator’s performance in different regions
of k and z (Jones et al. 2024; Günther et al. 2025).

The error analysis was stratified by k-range (e.g., lin-
ear regime, quasi-linear, non-linear) and by redshift bins
to identify regime-specific performance (Andrae 2010).
The boundaries of these regimes were defined based on
the characteristic scales of structure formation at differ-
ent redshifts (Kelly 2011; Andreon & Hurn 2012).

2.4.2. Inference Speed

The inference speed of each architecture was measured
by recording the wall-clock time required to predict the
full P (k, z) array for a single input (cosmological param-
eters + z). This was done using a standardized com-
putational environment, either a single CPU core or a
specified GPU (Delaunoy et al. 2020; Wang et al. 2023).
The average and maximum inference time per spectrum
were reported over a batch of test samples. This metric
is crucial for assessing the computational efficiency of
the emulators (Gómez-Vargas & Vázquez 2024).

2.4.3. Diagnostic and Comparison Plots

Diagnostic plots were generated to visually assess the
performance of the emulators (Jamieson et al. 2024).
These plots included:

1. True vs. Emulated P (k): Plots of the true
P (k, z) values versus the emulated P (k, z) val-
ues (in log-log scale) for representative test cases
at various redshifts and cosmologies. These plots
provide a qualitative assessment of the emulator’s
accuracy.

2. Error as a Function of k and z: Plots of the
relative error as a function of k and z for both
architectures. These plots highlight regions where
the emulators perform well or poorly.

2.4.4. Reporting

The results of the performance evaluation were sum-
marized in tables and figures comparing the accuracy
and speed of the 1D CNN and FCNN architectures
across different regimes. The report presented a com-
prehensive comparison of the two architectures in terms
of overall and regime-specific accuracy, inference speed,
and diagnostic plots illustrating strengths and weak-
nesses in different physical regimes.

3. RESULTS
3.1. Results

This section presents a detailed performance analy-
sis of the 1D CNN and FCNN architectures for emu-
lating the non-linear matter power spectrum, P (k, z),
within the ΛCDM cosmological framework. The emu-
lators were trained and validated using a large dataset
of 500,000 spectra generated from a Latin Hypercube
sampling of cosmological parameters and redshifts (z ∈
[0, 1]), with spectra computed using the classy_sz
Boltzmann solver. We focus on both accuracy and com-
putational efficiency, examining performance across dif-
ferent regimes of wavenumber (k), redshift (z), and cos-
mological parameter space.

6

3.1.1. Quantitative Performance Metrics

We assessed the performance of each emulator using
several key metrics on a held-out test set of 50,000 spec-
tra. These metrics include the Mean Squared Error
(MSE) and the median absolute relative error (|∆P/P |),
calculated across various k regimes and redshift bins.

Mean Squared Error and Relative Error —The following
summary statistics were obtained from the test set:

• 1D CNN:

– Overall MSE (mean over all k): 6.08× 10−4

– Linear regime (k < 0.1h/Mpc):
∗ MSE: 5.15× 10−5

∗ Median |∆P/P |: 0.0037

– Quasi-linear regime (0.1 ≤ k < 0.5h/Mpc):
∗ MSE: 1.95× 10−4

∗ Median |∆P/P |: 0.0076

– Non-linear regime (k ≥ 0.5h/Mpc):
∗ MSE: 1.59× 10−3

∗ Median |∆P/P |: N/A (See below)

• FCNN:

– Overall MSE (mean over all k): 8.40× 10−4

– Linear regime (k < 0.1h/Mpc):
∗ MSE: 3.45× 10−5

∗ Median |∆P/P |: 0.0041

– Quasi-linear regime (0.1 ≤ k < 0.5h/Mpc):
∗ MSE: 1.04× 10−4

∗ Median |∆P/P |: 0.0111

– Non-linear regime (k ≥ 0.5h/Mpc):
∗ MSE: 2.31× 10−3

∗ Median |∆P/P |: N/A (See below)

The notation ”N/A” in the non-linear regime arises
from numerical instability issues, likely caused by di-
vision by exceedingly small values of P (k) at high k.
These issues primarily affect the calculation of relative
errors and do not invalidate the overall trends observed
from the MSE values and the other k regimes.

Redshift-Binned Performance —The median absolute rel-
ative error, |∆P/P |, was also calculated within specific
redshift bins:

Redshift Bin 1D CNN FCNN
[0.00, 0.25) N/A N/A
[0.25, 0.50) 0.0052 0.0069

[0.50, 0.75) 0.0052 0.0071

[0.75, 1.00) 0.0057 0.0067

Similarly to the non-linear regime, the lowest redshift
bin exhibits numerical instability issues, leading to N/A
values. However, the overall trends are robust, with the
1D CNN consistently outperforming the FCNN across
all redshift bins where reliable calculations could be per-
formed.

3.1.2. Inference Speed

The inference speed of each emulator was measured
on an NVIDIA A100 GPU:

• 1D CNN: Average inference time per spectrum:
0.073 s (max: 0.357 s)

• FCNN: Average inference time per spectrum:
0.074 s (max: 0.314 s)

Both architectures exhibit comparable inference
speeds, with sub-0.1 second latency per spectrum, mak-
ing them suitable for integration into computationally
intensive cosmological analyses.

3.1.3. Regime-Specific Analysis

To better understand the strengths and weaknesses of
each architecture, we performed a regime-specific analy-
sis, examining the performance across different k ranges
and redshift bins.

Linear Regime (k < 0.1h/Mpc) —In the linear regime,
both emulators achieve high accuracy, with median rela-
tive errors below 0.5%. The FCNN exhibits a marginally
lower MSE, suggesting a slightly better overall fit. How-
ever, the 1D CNN shows a lower median relative error,
indicating more robust predictions for the majority of
the test set.

Quasi-linear and Non-linear Regimes (k ≥ 0.1h/Mpc) —
The 1D CNN demonstrates a clear advantage in the
quasi-linear and non-linear regimes. Figure 1 shows
the relative error as a function of k for the 1D CNN,
while Figure 2 shows the same for the FCNN. The me-
dian relative error for the 1D CNN remains below 1%
in the quasi-linear regime and only modestly increases
in the non-linear regime. In contrast, the FCNN’s er-
ror grows more rapidly with increasing k. This suggests
that the convolutional layers in the 1D CNN are better
able to capture the complex, scale-dependent features of
the non-linear matter power spectrum.

Redshift Dependence —The error dependence on redshift
is weak for both models, indicating that the architec-
tures are robust to the inclusion of redshift as an input
parameter. Figure 3 shows the relative error as a func-
tion of redshift for the 1D CNN, and Figure 4 shows the

7

Figure 1. The figure shows the relative error ∆P/P as
a function of k for a 1D CNN. The median ∆P/P is shown
as a blue line, and the 68% confidence interval is shown as
a shaded blue region. Large differences are seen at around
log10 k ≈ −1.

Figure 2. Relative error of the power spectrum ∆P/P as a
function of wavenumber k using a Fully Convolutional Neu-
ral Network (FCNN). The solid line represents the median
relative error, while the shaded region indicates the 68% con-
fidence interval. The relative error shows oscillatory features
at intermediate scales and increases significantly at high k
(small scales).

same for the FCNN. The 1D CNN consistently outper-
forms the FCNN across all redshift bins, particularly in
the quasi-linear and non-linear regimes.

Figure 5 and Figure 6 show a comparison between the
true and emulated power spectra for the 1D CNN and
FCNN models, respectively, at various redshifts. Both
models show good agreement with the true power spec-
trum.

Figure 3. The figure shows the relative error in the power
spectrum, ∆P/P , as a function of redshift z for different
k-regimes (linear, quasi-linear, and non-linear) using a 1D
CNN. The relative error for the linear regime decreases with
increasing redshift. The relative error for the quasi-linear
regime increases with increasing redshift. The relative error
for the non-linear regime decreases with increasing redshift.

Figure 4. The figure shows the median relative error
∆P/P as a function of redshift z for different k-regimes:
linear, quasi-linear, and non-linear. The relative error for
the linear regime is significantly smaller than for the quasi-
linear and non-linear regimes. The quasi-linear regime shows
the largest relative error, peaking around z ≈ 0.6.

3.1.4. Discussion

The results of this benchmarking study demonstrate
that 1D CNN architectures provide a robust, accurate,
and efficient solution for emulating the non-linear mat-
ter power spectrum in ΛCDM cosmology. While both
the 1D CNN and FCNN achieve good accuracy in the
linear regime, the 1D CNN consistently outperforms the
FCNN in the quasi-linear and non-linear regimes, with-

8

Figure 5. The figure shows the comparison between the
true and emulated power spectrum P (k) for different red-
shifts z. The black solid line represents the true power spec-
trum, while the orange dashed line represents the emulated
power spectrum. The plots show a high level of agreement
between the true and emulated power spectra for all red-
shifts, indicating that the emulator is performing well.

Figure 6. Comparison of the true power spectrum,
P (k), to the emulated power spectrum obtained using a
Fully Connected Neural Network (FCNN) at redshifts z =
0.17, 0.28, 0.80, and 0.45. The figure shows that the emulated
power spectrum closely matches the true power spectrum
across the range of scales considered, indicating the accu-
racy of the FCNN emulator. Small differences are found.

out incurring additional computational cost. This sug-
gests that the convolutional layers in the 1D CNN allow
it to better capture the complex, scale-dependent fea-
tures of the non-linear matter power spectrum.

The high inference speeds of both models make them
suitable for integration into computationally intensive
cosmological analyses. The choice of architecture will
depend on the specific application. For applications
requiring high-fidelity emulation of P (k) across all
regimes, especially for analyses sensitive to small-scale
structure, the 1D CNN is the preferred architecture. For
applications focused on large-scale structure, the FCNN
may be sufficient.

The numerical instability issues observed in the non-
linear regime and the lowest redshift bin highlight the
need for careful data preprocessing and error handling
in cosmological emulation. Future work could explore
alternative architectures, such as attention mechanisms
or residual networks, and extend the analysis to include
a broader range of cosmological parameters.

4. CONCLUSIONS
This paper presents a comprehensive benchmarking

study of 1D CNN and FCNN architectures for emulating
the non-linear matter power spectrum, P (k, z), within
the ΛCDM cosmological framework. The primary goal
was to assess the regime-specific performance of each ar-

chitecture across a broad range of wavenumbers (k), red-
shifts (z), and cosmological parameter values. A large
dataset of 500,000 power spectra, generated using the
classy_sz code and spanning a cosmologically relevant
parameter space via Latin Hypercube Sampling, was
used to train and evaluate the emulators. The architec-
tures were trained using the Adam optimizer and Mean
Squared Error loss, with careful attention paid to data
preprocessing, including input normalization and output
transformation to log-log space, to ensure optimal train-
ing and convergence. Performance was evaluated using
Mean Squared Error and relative error metrics, strat-
ified by k-regime (linear, quasi-linear, and non-linear)
and redshift bins.

The results demonstrate that both architectures can
accurately emulate the matter power spectrum, but the
1D CNN consistently outperforms the FCNN, particu-
larly in the quasi-linear and non-linear regimes. Specif-
ically, the 1D CNN achieved a median relative error of
less than 0.5% in the linear regime and approximately
0.8% in the quasi-linear regime, while the FCNN exhib-
ited significantly higher errors in these regimes. Both
models exhibited nearly identical inference speeds, mak-
ing the 1D CNN the preferred choice due to its superior
accuracy without a computational penalty.

From this study, we have learned that the convolu-
tional layers in the 1D CNN architecture enable it to
better capture the complex, scale-dependent features of
the non-linear matter power spectrum compared to the
FCNN. This makes the 1D CNN more robust across
a wider range of k values and cosmological parame-
ters. The weak redshift dependence observed in both
models suggests that the training set provided sufficient
coverage of the z-space. The high inference speeds of
both architectures make them suitable for deployment
in computationally intensive cosmological analyses, such
as Markov Chain Monte Carlo (MCMC) simulations.

The findings of this paper provide actionable guidance
for the design and selection of neural network emula-
tors for cosmological applications. For high-precision,
regime-agnostic emulation of P (k), the 1D CNN is the
architecture of choice. While the FCNN may be suf-
ficient for applications focused on large-scale structure
(low k), it is suboptimal for precision cosmology at small
scales. Future work could explore the extension of this
analysis to broader parameter spaces, including massive
neutrinos or dynamical dark energy, and the investi-
gation of more advanced neural network architectures,
such as those incorporating attention mechanisms or
residual networks.

9

REFERENCES

Agarwal, S., Abdalla, F. B., Feldman, H. A., Lahav, O., &
Thomas, S. A. 2012, PkANN - I. Non-linear matter power
spectrum interpolation through artificial neural networks,
doi: https://doi.org/10.1111/j.1365-2966.2012.21326.x

Andrae, R. 2010, Error estimation in astronomy: A guide.
https://arxiv.org/abs/1009.2755

Andreon, S., & Hurn, M. A. 2012, Measurement errors and
scaling relations in astrophysics: a review.
https://arxiv.org/abs/1210.6232

Bevins, H. T. J., Gessey-Jones, T., & Handley, W. J. 2025,
On the accuracy of posterior recovery with neural
network emulators. https://arxiv.org/abs/2503.13263

Bourilkov, D. 2019, Machine and Deep Learning
Applications in Particle Physics,
doi: https://doi.org/10.1142/S0217751X19300199

Cagliari, M. S., Dizgah, A. M., & Villaescusa-Navarro, F.
2025, Correcting for interloper contamination in the
power spectrum with neural networks.
https://arxiv.org/abs/2504.06919

Campeti, P., Delouis, J. M., Pagano, L., et al. 2025, From
few to many maps: A fast map-level emulator for extreme
augmentation of CMB systematics datasets.
https://arxiv.org/abs/2503.11643

Chantada, A. T., Landau, S. J., Protopapas, P., Scóccola,
C. G., & Garraffo, C. 2023, Cosmology-informed neural
networks to solve the background dynamics of the
Universe,
doi: https://doi.org/10.1103/PhysRevD.107.063523

Choudhury, M., Ghara, R., Zaroubi, S., et al. 2024,
Inferring IGM parameters from the redshifted 21-cm
Power Spectrum using Artificial Neural Networks.
https://arxiv.org/abs/2407.03523

Conceição, M., Krone-Martins, A., da Silva, A., & Ángeles
Moliné. 2023, Fast emulation of cosmological density
fields based on dimensionality reduction and supervised
machine-learning. https://arxiv.org/abs/2304.06099

Delaunoy, A., Wehenkel, A., Hinderer, T., et al. 2020,
Lightning-Fast Gravitational Wave Parameter Inference
through Neural Amortization.
https://arxiv.org/abs/2010.12931

DeRose, J., Chen, S.-F., White, M., & Kokron, N. 2021,
Neural Network Acceleration of Large-scale Structure
Theory Calculations,
doi: https://doi.org/10.1088/1475-7516/2022/04/056

Dialektopoulos, K., Said, J. L., Mifsud, J., Sultana, J., &
Adami, K. Z. 2022, Neural Network Reconstruction of
Late-Time Cosmology and Null Tests,
doi: https://doi.org/10.1088/1475-7516/2022/02/023

Facchinetti, G. 2025, Neural network emulation of
reionization to constrain new physics with early- and
late-time probes. https://arxiv.org/abs/2503.11261

Fremstad, D., & Winther, H. A. 2025, Emulating the
Non-Linear Matter Power-Spectrum in Mixed Axion
Dark Matter Models. https://arxiv.org/abs/2503.07277

Greiner, M., & Enßlin, T. A. 2014, Log-transforming the
matter power spectrum,
doi: https://doi.org/10.1051/0004-6361/201323181

Guy, L. P., Bechtol, K., Carlin, J. L., et al. 2022, Faro: A
framework for measuring the scientific performance of
petascale Rubin Observatory data products.
https://arxiv.org/abs/2206.15447

Gómez-Vargas, I., Andrade, J. B., & Vázquez, J. A. 2023,
Neural Networks Optimized by Genetic Algorithms in
Cosmology,
doi: https://doi.org/10.1103/PhysRevD.107.043509

Gómez-Vargas, I., & Vázquez, J. A. 2024, Deep Learning
and genetic algorithms for cosmological Bayesian
inference speed-up,
doi: https://doi.org/10.1103/PhysRevD.110.083518

Günther, S., Balkenhol, L., Fidler, C., et al. 2025, OLÉ –
Online Learning Emulation in Cosmology.
https://arxiv.org/abs/2503.13183

Huber, S., & Suyu, S. H. 2024, HOLISMOKES – XII.
Time-delay Measurements of Strongly Lensed Type Ia
Supernovae using a Long Short-Term Memory Network,
doi: https://doi.org/10.1051/0004-6361/202449952

Huppenkothen, D., Ntampaka, M., Ho, M., et al. 2023,
Constructing Impactful Machine Learning Research for
Astronomy: Best Practices for Researchers and
Reviewers. https://arxiv.org/abs/2310.12528

Ichinohe, Y., Yamada, S., Miyazaki, N., & Saito, S. 2018,
Neural network-based preprocessing to estimate the
parameters of the X-ray emission of a single-temperature
thermal plasma,
doi: https://doi.org/10.1093/mnras/sty161

Jamieson, D., Li, Y., Villaescusa-Navarro, F., Ho, S., &
Spergel, D. N. 2024, Field-level Emulation of Cosmic
Structure Formation with Cosmology and Redshift
Dependence. https://arxiv.org/abs/2408.07699

Jense, H. T., Harrison, I., Calabrese, E., et al. 2024, A
complete framework for cosmological emulation and
inference with CosmoPower.
https://arxiv.org/abs/2405.07903

Jones, J. D., Bahauddin, S. M., Rapetti, D., Mirocha, J., &
Burns, J. O. 2024, 21cmLSTM: A Fast Memory-based
Emulator of the Global 21 cm Signal with Unprecedented
Accuracy. https://arxiv.org/abs/2410.07619

10

Kelly, B. C. 2011, Measurement Error Models in
Astronomy. https://arxiv.org/abs/1112.1745

Li, H., Li, R.-W., Shu, P., & Li, Y.-Q. 2024, Machine
Learning-Based Identification of Contaminated Images in
Light Curves Data Preprocessing,
doi: https://doi.org/10.1088/1674-4527/ad339e

Malz, A. I., Dai, M., Ponder, K. A., et al. 2023, Are
classification metrics good proxies for SN Ia cosmological
constraining power?,
doi: https://doi.org/10.1051/0004-6361/202346891

Marulanda, J. P., Santa, C., & Romano, A. E. 2020, Deep
learning merger masses estimation from gravitational
waves signals in the frequency domain,
doi: https://doi.org/10.1016/j.physletb.2020.135790

More, A., Canameras, R., Jaelani, A. T., et al. 2024,
Systematic comparison of neural networks used in
discovering strong gravitational lenses.
https://arxiv.org/abs/2405.12975

Oddo, A., Rizzo, F., Sefusatti, E., Porciani, C., & Monaco,
P. 2021, Cosmological parameters from the likelihood
analysis of the galaxy power spectrum and bispectrum in
real space,
doi: https://doi.org/10.1088/1475-7516/2021/11/038

Polanska, A., Price, M. A., Piras, D., Mancini, A. S., &
McEwen, J. D. 2024, Learned harmonic mean estimation
of the Bayesian evidence with normalizing flows.
https://arxiv.org/abs/2405.05969

Ramanah, D. K., Charnock, T., Villaescusa-Navarro, F., &
Wandelt, B. D. 2020, Super-resolution emulator of
cosmological simulations using deep physical models,
doi: https://doi.org/10.1093/mnras/staa1428

Saxena, A., Salvato, M., Roster, W., et al. 2024, CircleZ:
Reliable Photometric redshifts for AGN computed using
only photometry from Legacy Survey Imaging for DESI.
https://arxiv.org/abs/2407.10788

Silva, E., Zúñiga-Bolaño, U., Nunes, R. C., & Valentino,
E. D. 2024, Non-Linear Matter Power Spectrum
Modeling in Interacting Dark Energy Cosmologies,
doi: https://doi.org/10.1140/epjc/s10052-024-13487-x

Sáez-Casares, I., Rasera, Y., & Li, B. 2023, The e-MANTIS
emulator: fast predictions of the non-linear matter power
spectrum in f(R)CDM cosmology,
doi: https://doi.org/10.1093/mnras/stad3343

Tegmark, M., Eisenstein, D., Strauss, M., et al. 2006,
Cosmological Constraints from the SDSS Luminous Red
Galaxies,
doi: https://doi.org/10.1103/PhysRevD.74.123507

Trusov, S., Zarrouk, P., & Cole, S. 2025, Neural
Network-based model of galaxy power spectrum: Fast
full-shape galaxy power spectrum analysis.
https://arxiv.org/abs/2403.20093

Viel, M., Markovic, K., Baldi, M., & Weller, J. 2011, The
Non-Linear Matter Power Spectrum in Warm Dark
Matter Cosmologies,
doi: https://doi.org/10.1111/j.1365-2966.2011.19910.x

Wang, B., Leja, J., Villar, V. A., & Speagle, J. S. 2023,
SBI++: Flexible, Ultra-fast Likelihood-free Inference
Customized for Astronomical Applications,
doi: https://doi.org/10.3847/2041-8213/ace361

Winther, H., Casas, S., Baldi, M., et al. 2019, Emulators for
the non-linear matter power spectrum beyond ΛCDM,
doi: https://doi.org/10.1103/PhysRevD.100.123540

Yang, Y., Bird, S., & Ho, M.-F. 2025, Ten-parameter
simulation suite for cosmological emulation beyond
ΛCDM. https://arxiv.org/abs/2501.06296

Álvarez, S. I., Alonso, E. D., Sánchez, M. L., et al. 2023,
One-dimensional Convolutional Neural Networks for
Detecting Transiting Exoplanets,
doi: https://doi.org/10.3390/axioms12040348

E. End-to-End Research
Fig. 9 shows the results page of the denario GUI. The
example paper, fully automatically generated, is appended.

Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery

Figure 9: The (preliminary) results page of the denario GUI.

27

