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Abstract
Astronomical time-series analysis faces a critical
limitation: the scarcity of labeled observational
data. We present a pre-training approach that
leverages simulations, significantly reducing the
need for labeled examples from real observations.
Our models, trained on simulated data from mul-
tiple astronomical surveys (ZTF and LSST), learn
generalizable representations that transfer effec-
tively to downstream tasks. Using classifier-based
architectures enhanced with contrastive and ad-
versarial objectives, we create domain-agnostic
models that demonstrate substantial performance
improvements over baseline methods in classifi-
cation, redshift estimation, and anomaly detec-
tion when fine-tuned with minimal real data. Re-
markably, our models exhibit effective zero-shot
transfer capabilities, achieving comparable per-
formance on future telescope (LSST) simulations
when trained solely on existing telescope (ZTF)
data. Furthermore, they generalize to very dif-
ferent astronomical phenomena (namely variable
stars from NASA’s Kepler telescope) despite be-
ing trained on transient events, demonstrating
cross-domain capabilities. Our approach provides
a practical solution for building general models
when labeled data is scarce, but domain knowl-
edge can be encoded in simulations.

1. Introduction
Time-series analysis in astronomy often requires substantial
labeled data for supervised learning approaches. Models
have been developed to classify variable stars and transient
events (e.g. Muthukrishna et al., 2019; Hložek et al., 2023;
Audenaert, 2025), detect anomalies (Villar et al., 2021;
Muthukrishna et al., 2022; Perez-Carrasco et al., 2023),
and estimate physical parameters such as redshift (e.g Qu &
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Sako, 2023; Zhang et al., 2024). However, these models are
typically trained for specific telescopes or individual tasks,
with limited ability to transfer learned representations across
different instruments. Furthermore, they require extensive
labeled data from new telescopes to achieve adequate perfor-
mance, limiting their effectiveness during the initial survey
stages.

Foundation models (FMs) have transformed natural lan-
guage processing and computer vision by learning general-
izable representations from large quantities of data (Bom-
masani et al., 2022). However, astronomical data presents
unique challenges: (1) limited publicly available labeled
data; (2) instrument-specific characteristics that hinder cross-
survey generalization (Audenaert et al., 2025); and (3) com-
plex physical phenomena that require domain expertise to
model effectively. Recent work has begun to develop foun-
dation models for astrophysical data (e.g. Parker et al., 2024;
Donoso-Oliva et al., 2023; Smith et al., 2024; Zhang et al.,
2024; Audenaert et al., 2025). While these approaches
demonstrate cross-modal learning, no existing approach
achieves zero-shot transfer between different telescopes for
time-domain phenomena. Moreover, existing FMs typically
use self-supervised methods that do not take advantage of
the astronomical class structure that is fundamental to astro-
nomical understanding.

Astronomy has a significant advantage over many domains:
decades of physical understanding encoded in simulations.
Astronomers have developed detailed models of astrophys-
ical phenomena that generate synthetic light curves (e.g.
PLAsTiCC Modelers, 2019). While these simulations con-
tain systematic differences from real observations, they cap-
ture the underlying physical processes and can provide ef-
fective pretraining for transfer to real data (Gupta et al.,
2025).

Motivated by the success of supervised classifier-based
methods for anomaly detection (Gupta et al., 2024), we
propose a novel approach to learning generalizable repre-
sentations for astronomical time series that:

1. Leverages the latent space of classifiers pretrained on
simulations from multiple astronomical surveys

2. Develops domain-agnostic representations through ad-
versarial and contrastive learning objectives
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Figure 1. Overview of our simulation-based pre-training methodology showing three model variants (Classifier, Adversarial, Contrastive)
and evaluation on both in-domain and cross-domain tasks. We first pre-train various classifiers and domain-agnostic models using
simulated data. We then evaluate these models on various downstream tasks, including zero-shot estimation for new telescopes.

3. Enables effective downstream task performance with
minimal labeled real data

4. Demonstrates zero-shot transfer capabilities between
different survey telescopes

Unlike existing approaches that focus on single-survey appli-
cations, our method specifically targets cross-survey transfer
learning using physics-informed simulations.

This approach is particularly valuable for upcoming sur-
veys like the Vera C. Rubin Observatory’s Legacy Survey
of Space and Time (LSST), which will produce millions
of time-series alerts nightly (Ivezić et al., 2019). Having
models ready to analyze LSST data from day one—without
requiring extensive new labeled datasets—would dramati-
cally accelerate scientific discovery.1

2. Datasets and Benchmarks
2.1. Pretraining Data

We pretrain our models using 151,468 simulated astronomi-
cal transients from two survey telescopes: 87,080 from the
Zwicky Transient Facility (ZTF; Bellm et al., 2018) and
64,388 from LSST. We evaluate three distinct pretraining
configurations: (1) ZTF simulations only, (2) combined ZTF
and LSST simulations, and (3) combined ZTF and LSST
simulations with domain-agnostic objectives (adversarial or
contrastive training).

The simulated transients encompass eight astronomical
classes: Type Ia, Ib/c, II, Iax, and Ia-91bg supernovae; Tidal
Disruption Events; Super-Luminous Supernovae Type I; and

1The code used in this work is publicly avail-
able: https://github.com/Rithwik-G/astrofm2.0 and
https://github.com/Rithwik-G/Kepler-FM

Active Galactic Nuclei (see Table 3 for class distributions).

ZTF simulations use established astrophysical models
(Kessler et al., 2019; Muthukrishna et al., 2019) reflect-
ing the currently operational survey’s characteristics includ-
ing two photometric bands (gr) with limiting magnitude
r ∼ 21 mag. LSST simulations (Narayan & ELAsTiCC
Team, 2023) model the Rubin Observatory beginning op-
erations in late 2025: six photometric bands (ugrizy) with
significantly deeper sensitivity (r ∼ 25 mag).

Each transient is represented as a multichannel variable-
length time series (light curve2) with observations formatted
as [λp, ti, fi], where λp indicates the median passband wave-
length, ti is the time since the first observation (in days), and
fi is the normalized flux (brightness measurement). This
standardized representation enables cross-survey compati-
bility by encoding temporal and spectral information in a
telescope-agnostic format.

2.2. Evaluation Datasets and Downstream Tasks

We evaluate pretrained models by fine-tuning on down-
stream tasks using real observational data and additional
simulated datasets to assess in-domain performance, cross-
domain generalization, and zero-shot transfer capabilities.

ZTF Real Data: 3,747 spectroscopically confirmed tran-
sients from the ZTF Bright Transient Survey (Rehemtulla
et al., 2024) spanning three task types:

• Classification: Macro-averaged Area Under the ROC
Curve (AUROC) for distinguishing Type Ia (771 ob-
jects), Type Ib/c (2,828 objects), and Type II (148

2See Figure 1 for a plot of example light curves
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objects) supernovae

• Redshift Estimation: Mean Squared Error (MSE) for
predicting spectroscopic redshifts using photometric
light curve data from the same 3,747 objects

• Anomaly Detection (AD): Binary classification AU-
ROC treating 38 rare transient types as anomalies. The
models are not provided any anomalous data during
training.

Simulated Redshift Estimation: 10,000 ZTF and 9,990
LSST simulated objects with redshift labels for regression
tasks (MSE evaluation). These datasets are distinct from
the pretraining classification data and the pretrained models
have no prior exposure to redshift information and must
learn this novel regression task during fine-tuning. For zero-
shot evaluation, we use a subset of 2,596 LSST objects
restricted to ZTF’s redshift range (z < 0.4), where models
fine-tuned exclusively on ZTF redshift data predict LSST
redshifts without any LSST-specific training redshifts.

Kepler Real Data (Cross-Domain): 9,501 variable stars
from NASA’s Kepler telescope (Audenaert et al., 2021)
spanning eight stellar variability classes (aperiodic, con-
stant, contact binaries, Delta Scuti, Beta Cephei, eclipsing
binaries, Gamma Doradus, SPB variables) to test general-
ization from transient to variable star classification (macro-
averaged AUROC). Kepler is a space telescope designed
for high-cadence (30-minute) photometric monitoring in
a single broad optical band, contrasting sharply with the
multi-band, 3-day cadence observations of ground-based
transient surveys like ZTF and LSST.

2.3. Evaluation Scenarios

To simulate realistic deployment challenges when apply-
ing pretrained models to new surveys with varying data
availability, we evaluate under three scenarios:

Limited Scenario: Fine-tunes pretrained models using
only 512 randomly selected labeled objects per task.
We repeat experiments with five different random sam-
ples to account for selection variance.

Full Scenario: Fine-tunes pretrained models using all
available labeled data for each task, representing per-
formance after extensive labeling efforts.

Zero-Shot Scenario: Applied exclusively to LSST redshift
estimation, where models fine-tuned only on ZTF red-
shift data are directly applied to LSST simulations
without any LSST-specific fine-tuning data. This tests
immediate model deployment capability on new sur-
veys before domain-specific labeling becomes avail-
able.

The zero-shot redshift evaluation deliberately restricts LSST
objects to ZTF’s redshift range because our goal is leverag-

ing existing telescope knowledge for immediate application
to new surveys. While LSST will observe significantly
higher redshifts than ZTF (see Figure 2), zero-shot models
cannot reasonably extrapolate beyond their training distribu-
tion.

3. Methods
We develop three simulation-based pretraining approaches
for learning generalizable representations of astronomical
time series: a classifier trained on ZTF and LSST simula-
tions, and a classifier enhanced with domain-agnostic objec-
tives using either an adversarial objective or a contrastive
objective for explicit survey alignment.

3.1. Base Classifier

Neural network classifiers have demonstrated the ability to
learn meaningful representations of astronomical phenom-
ena that transfer effectively to tasks beyond their original
classification objective, including anomaly detection and
morphological analysis (Walmsley et al., 2022; Etsebeth
et al., 2023; Gupta et al., 2025). Building on these successes,
our base model trains a classifier on simulated transients
from both ZTF and LSST to distinguish between the eight
astronomical transient classes.

Architecture: We employ a Gated Recurrent Unit (GRU;
Cho et al. 2014) network that processes variable-length
time series inputs. Each observation [λp, ti, fi] is processed
sequentially through the 100-unit GRU layers, with the final
hidden state passed through two fully-connected mutlilayer
perceptron (MLP) layers to produce class predictions. The
model is trained using a standard categorical cross-entropy
loss H on the final softmax predictions. We extract the
penultimate MLP layer as our learned latent representation
zi ∈ R128 for downstream tasks. We refer to the classifier
with its final classification layer removed as the encoder
CL throughout this work, such that zi = CL(Xi) for each
input light curve Xi.

While this classifier learns structured representations that
distinguish astronomical classes within each survey (see
Fig. 4 of Gupta et al., 2024), it does not produce a telescope-
agnostic latent space. Objects from the same class but differ-
ent surveys remain separated in the latent space (see Figures
4 and 5 for UMAP visualizations of the latent space).

3.2. Adversarial Training

Different telescopes have distinct observational characteris-
tics (photometric bands, sensitivity, cadence, noise) that can
cause models to learn survey-specific artifacts rather than
the underlying physics. To create domain-agnostic represen-
tations that work across different astronomical surveys, we
implement an adversarial training framework that encour-
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ages the model to learn telescope-invariant features useful
for astronomical classification.

Architecture: We extend the base classifier with an ad-
ditional discriminator network D that attempts to predict
whether a representation came from ZTF or LSST simu-
lations. The discriminator is a two-layer MLP that takes
the latent representation zi as input to predict the survey
telescope.

Training: The classifier C(Xi) and the discriminator D(zi)
are trained simultaneously with competing objectives,

Classifier loss: LC = H(C(Xi), ci) (1)
Discriminator loss: LD = H(D(zi), Oi) (2)

where H denotes the cross-entropy loss, ci is the class label,
and Oi ∈ {ZTF,LSST} indicates the source survey. The
model is trained to both classify the transient correctly and
to confuse the discriminator, thereby learning a latent space
that is useful for classification yet agnostic to the survey
domain. The adversarial training process is detailed further
in Appendix B.2.

3.3. Supervised Contrastive Training

While adversarial training encourages domain-agnostic rep-
resentations, it does not explicitly enforce that objects of
the same class cluster together across surveys. Hence, as a
comparative method, we use supervised contrastive learning
(Khosla et al., 2020), which explicitly pulls together repre-
sentations of the same class from different surveys while
pushing apart different classes. We use a variant of the
contrastive loss proposed in Chen et al. (2020) for model
pretraining where we treat all samples belonging to the same
class as positive pairs. This modification provides a more
explicit signal for class-based alignment and naturally en-
courages unification across domains, as long as examples
from the same class are drawn from both surveys. The total
loss is the sum of the classifier loss LC and the supervised
contrastive loss LSCL. The training details and algorithm is
described in Appendix B.3.

3.4. Baselines

We compare our pretrained models against models trained
directly on downstream tasks without pretraining, which
reflects the standard approach in prior work. We also train
classifiers on individual surveys (notably ZTF-only) as ad-
ditional baselines to isolate the benefits of multi-survey
pretraining.

3.5. Downstream Tasks

For downstream tasks, we freeze the pretrained encoder and
attach task-specific multi-layer perceptrons (MLPs). This
preserves the learned cross-survey representations while

adapting to specific objectives (classification, regression,
anomaly detection). The fine tuning for each task is set up
as follows (see Appendix B.4 for further details):

Classification/Redshift estimation: Two-layer MLP with
appropriate output activation (softmax for classifica-
tion, linear for regression).

Anomaly Detection: Following Gupta et al. (2025), we
train an isolation forest on frozen latent representations,
treating rare transient classes as anomalies

Cross-Domain Tasks (Kepler): For novel domains, we
unfreeze the encoder layers to allow limited adapta-
tion while preserving the core learned representations

Zero-Shot Transfer: For zero-shot evaluation on LSST
redshift estimation, we use a two-layer MLP to fine-
tune the pretrained models on ZTF redshift data only,
and then evaluate on LSST simulations without any
LSST training data. We test two approaches: di-
rect MLP prediction and kNN (k=100) using distance-
weighted averaging of the closest ZTF embeddings.

4. Results
We evaluate our simulation-based pretraining models on
multiple downstream tasks using real observational data
from ZTF (3,747 transients) and Kepler (9,501 variable
stars), as well as simulated redshift estimation data from
ZTF (10,000 objects) and LSST (9,990 objects). We com-
pare both using the “Full” dataset for fine-tuning and using
only a “Limited” set of 512 objects. Our experiments demon-
strate that pretraining on simulations provides substantial
improvements over training from scratch (no pretraining),
with particularly pronounced benefits for cross-survey gen-
eralization and zero-shot transfer.

4.1. Simulation-Based Pretraining Effectiveness

Substantial Improvements from Simulation Pretraining:
Table 1 shows that the pretrained models consistently outper-
form no-pretraining baselines across all downstream tasks.
Most remarkably, our pretrained models fine-tuned with
only 512 labeled examples (Limited scenario) outperform
baseline models trained on the full dataset (3747 labeled
transients) for both classification and anomaly detection
tasks on real data.

Cross-Domain Generalization: Our models demonstrate
impressive generalization capabilities, successfully trans-
ferring from explosive transient phenomena to stellar vari-
ability. On Kepler variable star classification, the best pre-
trained classifier achieves 0.968±0.018 AUROC compared
to 0.901 ± 0.003 without pretraining. This cross-domain
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Model
ZTF Real Data Kepler Simulations

Classification Redshift Anomaly Det. Classification Redshift
(AUROC) (MSE ×103) (AUROC) (AUROC) (MSE)

Lim. Full Lim. Full Lim. Full Full ZTF LSST

Baseline: No Pretraining 0.637 0.853 6.02 3.85 0.498 0.527 0.901 0.079 0.289
±0.005 ±0.013 ±0.05 ±0.31 ±0.013 ±0.027 ±0.003 ±0.022 ±0.018

Classifier (ZTF only) 0.875 0.904 4.91 3.87 0.605 0.596 — 0.028 0.252
±0.020 ±0.012 ±0.10 ±0.36 ±0.025 ±0.008 ±0.003 ±0.004

Classifier (ZTF + LSST) 0.879 0.910 4.79 3.82 0.622 0.616 0.968 0.026 0.177
±0.011 ±0.013 ±0.06 ±0.39 ±0.018 ±0.036 ±0.006 ±0.002 ±0.008

Classifier + Contrastive 0.886 0.914 4.87 3.73 0.584 0.576 0.946 0.028 0.191
±0.026 ±0.005 ±0.03 ±0.17 ±0.018 ±0.028 ±0.021 ±0.002 ±0.013

Classifier + Adversarial 0.844 0.853 5.20 4.19 0.559 0.546 0.925 0.030 0.197
±0.016 ±0.012 ±0.04 ±0.42 ±0.024 ±0.077 ±0.015 ±0.003 ±0.014

Table 1. Performance comparison across downstream tasks for each pretrained model. We report mean ± standard deviation from
five different random fine-tuning samples. Bold indicates best performance per task. The Classifier (ZTF + LSST), Contrastive, and
Adversarial models represent our main contributions. For Kepler classification, “—” indicates the model was not evaluated on this
cross-domain task.

Model Redshifting Data LSST MSEZTF LSST

D
ir

ec
t No Pretraining No Yes 0.0750± 0.0252

No Pretraining Yes Yes 0.0614± 0.0033
Classifier Yes Yes 0.0579± 0.0061

Z
er

o-
sh

ot

No Pretraining Yes No 0.1869± 0.0127
Classifier Yes No 0.1035± 0.0081
Classifier + Contrastive Yes No 0.0727 ± 0.0056
Classifier + Adversarial Yes No 0.0744 ± 0.0063
Classifier + Contrastive kNN Yes No 0.0854± 0.0040

Table 2. Zero-shot redshift estimation performance on LSST simu-
lations. Direct training methods use LSST labels during training,
while zero-shot methods are trained only on ZTF data and evalu-
ated on LSST without any LSST training redshifts. Bold indicates
best zero-shot performance. Domain-agnostic models (Contrastive,
Adversarial) achieve performance comparable to direct training
methods.

transfer is particularly remarkable given the distinct observa-
tional characteristics of space-based Kepler versus ground-
based ZTF/LSST surveys and the fundamental differences
between explosive transients and variable stars. The sub-
stantial performance improvement on very different data
demonstrates an unexpected emergent capability of our pre-
training method.

4.2. Zero-Shot Transfer Performance

Table 2 reveals that the additional contrastive and adver-
sarial objectives provide their most significant advantages
in zero-shot scenarios. Most remarkably, our contrastive
zero-shot approach achieves 0.0727±0.0056 MSE, actually
outperforming a model trained directly on LSST redshift
data (0.0750 ± 0.0252 MSE) and approaching the perfor-
mance of models trained on both ZTF and LSST redshifts
(0.0614± 0.0033 MSE).

This performance demonstrates a clear trade-off between
fine-tuning and zero-shot capabilities. While the standard

classifier outperforms contrastive and adversarial variants
on supervised fine-tuning tasks (Table 1), it shows substan-
tially degraded zero-shot performance (0.1035 ± 0.0081
MSE versus 0.0727± 0.0056 MSE for contrastive). These
results indicate that explicit cross-survey alignment through
domain-agnostic objectives is essential for effective zero-
shot transfer but may introduce constraints that limit perfor-
mance when target-domain fine-tuning data is available.

5. Conclusion
We present a simulation-based pretraining approach that
addresses the scarcity of labeled astronomical data by lever-
aging synthetic light curves from multiple surveys. Our
models demonstrate substantial improvements over train-
ing from scratch, with pretrained models using only 512
real labeled examples significantly outperforming baselines
trained on full datasets with 7× more data for classification
and anomaly detection tasks.

Key findings include: (1) effective cross-domain transfer
from explosive transients (ZTF and LSST ground-based
surveys) to stellar variability (Kepler space telescope) de-
spite fundamental astrophysical and instrumental differ-
ences, revealing unexpected emergent capabilities, and (2)
domain-agnostic training objectives that enable zero-shot
performance matching models trained directly on target sur-
vey data, with our contrastive model achieving comparable
LSST redshift performance without any LSST training data.

These findings have immediate relevance for LSST begin-
ning operations in late 2025. Our models can be deployed
from day one without extensive domain-specific labeling,
dramatically accelerating early science returns. The demon-
strated improvement in data efficiency addresses the peren-
nial challenge of limited expert annotations in astronomy.
Our approach provides a practical framework for scientific
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domains where simulations encode substantial domain ex-
pertise but labeled observational data remains scarce.
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A. Dataset Details
A.1. ZTF and LSST simulations

Table 3 provides the detailed class distribution for our simu-
lated pretraining datasets. The redshift distribution is illus-
trated in Figure 2.

A.1.1. ZERO-SHOT REDSHIFT RANGE RESTRICTION

We implement a redshift cut (z < 0.4) for zero-shot LSST
evaluation to match the ZTF training distribution and to
prevent distribution shift. This reduces the LSST evaluation
set from 9,990 to 2,596 objects but ensures that performance
differences reflect instrumental transfer rather than extrapo-
lation failure.

LSST will observe transients up to z ∼ 1.2 (Figure 2), but
zero-shot models trained only on ZTF data (z < 0.4) can-
not reliably predict redshifts beyond their training range.
Evaluating on the full LSST redshift range would conflate
two distinct problems: instrumental differences between
surveys and extrapolation to unseen redshift regimes. For
higher-redshift LSST objects, we perform survey-specific
fine-tuning (Table 1) for each pretraining approach.

A.2. ZTF Real Data

Table 4 details the class distribution for our real ZTF evalu-
ation dataset from the Bright Transient Survey (BTS). All
objects have spectroscopic confirmation with the redshift
distribution illustrated in Figure 3. The redshift distribution
is much lower as the BTS preferences classifying brighter,
and hence lower redshift transients. We do not use any
real light curves for pretraining and reserve them solely for
evaluation

For anomaly detection experiments, we designate the fol-
lowing rare transient classes as anomalies: Tidal Disruption
Events (TDE), Calcium-rich transients, Intermediate Lu-
minosity Red Transients (ILRT), Luminous Blue Variables
(LBV), Luminous Red Novae (LRN), Super-Luminous Su-
pernovae Types I and II (SLSN-I, SLSN-II), peculiar Type
Ia subtypes (SN Ia-91T, SN Ia-91bg), Type Ibn supernovae
(SN Ibn), Broad-Line Type Ic supernovae (SN Ic-BL), and
Type Icn supernovae (SN Icn). These classes represent
< 1% of our real transient dataset and were selected as
anomalies because of their low observation rates.

A.3. Kepler Variable Stars

We evaluate cross-domain generalization using 9,501 vari-
able star light curves from the Kepler mission (Koch et al.,
2010; Borucki et al., 2010), processed by Audenaert et al.
(2021). The dataset spans eight stellar variability classes
from aperiodic variables to regular pulsators (Table 5).

To ensure compatibility with our transient survey pretraining
data, we downsample the high-cadence Kepler observations
from 1024 measurements (30-minute sampling) to ∼205
measurements by averaging every five consecutive observa-
tions. This preprocessing matches the typical observation
count in ZTF and LSST light curves while preserving the
essential variability signatures needed for classification.

This cross-domain evaluation tests whether models pre-
trained on explosive transients can generalize to fundamen-
tally different astrophysical phenomena—stellar pulsations
and eclipsing systems—despite having no exposure to peri-
odic variability during training.

B. Model and Training Details
B.1. Classifier Training

We enable cross-survey compatibility by using a survey-
agnostic input [λp, ti, fi] format described in Section 2. This
input method (Huang et al., 2023; Gupta et al., 2024; 2025)
specifically allows for the usage of the same model across
surveys, something not facilitated by many previous input
methods.

Training uses categorical cross-entropy loss with early stop-
ping when validation loss plateaus for 5 epochs. We
extract representations from the penultimate layer (128-
dimensional) as our learned embeddings zi = CL(Xi) for
downstream tasks.

B.2. Adversarial Training Algorithm

Our adversarial pretraining is summarized in Algorithm
1. Here, Xi denotes the input light curve, ci is its class
label, and Oi ∈ {ZTF,LSST} indicates the observatory.
The latent representation is extracted as zi = CL(Xi),
where CL is the penultimate layer of the classifier. The
categorical cross-entropy loss is denoted by H(p, q), where
p is a predicted distribution and q is a target one-hot vector.

B.3. Contrastive Training Algorithm

For our supervised contrastive loss, we use the contrastive
objective proposed in Chen et al. (2020) for model pretrain-
ing. It is formally defined as follows:

ℓi,j = − log
exp (sim (zi, zj) /τ)∑2N

k=1 1[k ̸=i] exp (sim (zi, zk) /τ)
(3)

where: zi, zj are the latent representations from the clas-
sifier, sim(zi, zj) denotes cosine similarity: sim(a,b) =

a·b
∥a∥∥b∥ , τ > 0 is a temperature parameter that scales the
similarity scores, and the loss is computed for all pairs (i, j)
where Xi and Xj share the same class label.
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Dataset Astronomical Transient Classes Total
SNIa SNIa-91bg SNIax SNIb/c SNII TDE SLSN-I AGN

Pretraining Data (Classification)
ZTF Simulations 9,436 10,663 10,681 6,769 31,193 9,260 10,451 8,627 87,080
LSST Simulations 8,427 6,079 8,298 7,664 9,465 9,686 6,947 7,822 64,388

Downstream Task Data (Redshift Estimation)
ZTF Simulations 967 1,140 1,124 702 3,213 932 1,053 869 10,000
LSST Simulations 1,236 1,238 1,226 1,286 1,248 1,279 1,253 1,234 9,990

Zero-Shot LSST Subset 265 273 535 258 333 215 446 271 2,596

Table 3. Class distribution of simulated astronomical transients. Classification data is used for pretraining, while redshift data (completely
separate objects) tests downstream transfer learning. The zero-shot subset contains LSST objects within ZTF’s redshift range (z < 0.4)
for realistic evaluation.

Task SNIa SNIb/c SNII Anomaly Total

Classification 771 (107) 2,828 (350) 148 (12) 0 3,747
Redshift Estimation 771 (107) 2,828 (350) 148 (12) 0 3,747
Anomaly Detection 771 (107) 2,828 (350) 148 (12) 0 (38) 3,785

Table 4. Real ZTF transient data distribution across downstream tasks. Numbers in parentheses indicate evaluation set sizes. Limited
scenarios use 512 randomly selected objects per task from the training portion. All tasks share the same underlying object pool from the
ZTF Bright Transient Survey.
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Figure 2. Redshift distributions for ZTF and LSST simulated datasets. Most ZTF simulated transients span z = 0.0− 0.4 while LSST
simulations extend to z ∼ 3.0, reflecting the deeper photometric sensitivity of LSST (r ∼ 25 mag) compared to ZTF (r ∼ 21 mag). For
zero-shot evaluation, we restrict LSST objects to ZTF’s redshift range (z < 0.4) to test transfer learning within the training distribution,
as extrapolation beyond this range would is not easily feasible for zero-shot models.

Task Aperiodic Constant Contact DSCT/BCEP Eclipse GDOR/SPB Instr RR/CEP Solar Total

Kepler Classification 831 1,000 2,260 772 974 630 1,171 63 1,800 9,501

Table 5. Distribution of Kepler variable star data across eight stellar variability classes used for cross-domain evaluation. This dataset tests
generalization from explosive transients (pretraining) to variable star phenomena, representing a fundamentally different astronomical
domain with space-based, high-cadence observations.
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Figure 3. Redshift distribution for our dataset of real ZTF objects

Algorithm 1 Adversarial Training
Require: Dataset {(Xi, ci, Oi)}Ni=1: light curves, class la-

bels, and observatory labels
Require: Classifier C, Discriminator D

1: Initialize C and D with random weights
2: repeat
3: // Step 1: Train the discriminator
4: Freeze the classifier C
5: For each sample, compute latent representation zi =

CL(Xi)
6: Compute discriminator loss:

LD = H(D(zi), Oi)

7: Update D to minimize LD

8: // Step 2: Train the classifier
9: Freeze the discriminator D

10: Compute classifier loss with adversarial objective:

LC = H(C(Xi), ci)−H(D(CL(Xi)), Oi)

11: Update C to minimize LC

12: until convergence

The total supervised contrastive loss is computed by sum-
ming ℓi,j over all valid positive pairs in a batch. This encour-
ages latent vectors from the same class to be close together,
while implicitly pushing apart representations from other
classes.

Our contrastive pretraining is summarized in Algorithm 2.
We set τ = 0.5 similar to the default set in previous work
(Chen et al., 2020).

Algorithm 2 Supervised Contrastive Training
Require: Training set {(Xi, ci)}Ni=1; light curves, class

labels
Require: Classifier C, temperature parameter τ

1: Initialize C with random weights
2: repeat
3: Compute classification loss

LC = H(C(Xi), ci)

4: Compute latent representations zi = CL(Xi)
5: Initialize total contrastive loss LSCL ← 0, counter

M ← 0
6: for each anchor sample i ∈ {1, . . . , N} do
7: Let P (i) = {j ̸= i : cj = ci}
8: for each j ∈ P (i) do
9: Compute pairwise contrastive loss:

ℓi,j = − log
exp (sim (zi, zj) /τ)∑
k ̸=i exp (sim (zi, zk) /τ)

10: Accumulate loss: LSCL ← LSCL + ℓi,j
11: Increment counter: M ←M + 1
12: end for
13: end for
14: Compute mean contrastive loss: LSCL ← LSCL/M
15: Compute total loss: L ← LSCL + LC

16: Update C to minimize L
17: until convergence

B.4. Fine-Tuning

B.4.1. GENERAL TASKS

For in-domain tasks (ZTF/LSST), we freeze the pretrained
encoder and fine-tune only the task-specific MLP head. For
cross-domain tasks (Kepler), we unfreeze the initial GRU
layers to enable domain adaptation while preserving core
learned representations. These is motivated by previous
transfer learning research (Gupta et al., 2025).

B.4.2. ANOMALY DETECTION

Following (Gupta et al., 2024), we use a classifier-based
approach where a fine-tuning classifier is trained on a set of
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Classifier Adversarial Contrastive

Figure 4. UMAP visualization of learned representations across all classes. The standard classifier maintains distinct ZTF (brown) and
LSST (blue) clusters, while domain-agnostic training methods appear to unify surveys within each astronomical class slightly better.
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Figure 5. Class-level alignment for Type II supernovae only. Domain-agnostic methods achieve better survey overlap in the latent
representations while preserving astronomical class structure, indicating at possible cross-survey transfer capabilities.

normal data. The penultimate layer of this classifier is then
used as a latent space for anomaly detection and an isolation
forest (Liu et al., 2008) is trained using this latent space to
detect anomalies. This method has state-of-the-art (SoTA)
performance for anomaly detection on real data.

B.5. Architecture and Training

We implement a GRU-based encoder (Cho et al., 2014) with
100 hidden units and two fully-connected layers, producing
128-dimensional latent representations. GRUs provide su-
perior efficiency compared to LSTMs while outperforming
standard RNNs (Chung et al., 2014), making them well-
suited for astronomical time series (Boone, 2019; Gupta
et al., 2024; Muthukrishna et al., 2019).

Training uses the Adam optimizer (Kingma & Ba, 2017)
with early stopping after 5 epochs without validation im-
provement. Convergence times on V100 GPUs: 10 minutes
(Classifier), 20 minutes (Adversarial), 45 minutes (Con-
trastive). The final experiments required an estimated 15-25
GPU hours, however ideation and experimentation required
considerably more.

C. Qualitative Latent Space Analysis
We visualize the learned representations using UMAP
(McInnes et al., 2020) to assess domain alignment quality.
Figure 4 shows that standard classifiers maintain distinct
ZTF and LSST clusters, indicating survey-specific artifacts
in the learned embeddings. In contrast, both adversarial
and contrastive training appear to merge these embedding,
creating slightly more unified representations where survey
identity becomes secondary to astronomical class. Future
work should explore this claim quantitatively.

Figure 5 demonstrates this alignment at the class level, show-
ing Type II supernovae from both surveys occupying the
same latent region. This class-level unification may validate
that our domain-agnostic objectives preserve astronomical
semantics while eliminating instrumental biases - precisely
the behavior required for effective zero-shot transfer.

Fig. 4 and 5 show a UMAP (McInnes et al., 2020) visu-
alization of the penultimate layer of our neural network
classifiers. As seen, contrastive and adversarial models help
unify the distributions of ZTF and LSST in the latent space
down to the class level.
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D. Further Analysis
D.1. Adversarial vs. Contrastive Loss

Incorporating the specialized training techniques proposed
in this work does not improve model performance on super-
vised downstream tasks (Table 1), which is expected since
these loss functions are designed for cross-survey alignment
rather than task-specific optimization. Adversarial training
shows a slight performance decrease compared to standard
classifiers. We attribute this to the adversarial netowrk effec-
tively placing a penalty term for domain alignment, whereas
the contrastive model receives explicit supervision through
class-based positive pairs.

On zero-shot tasks, both adversarial and contrastive mod-
els substantially outperform standard classifiers (Table 2),
demonstrating that the domain-agnostic embedding enables
meaningful cross-survey transfer. We note that training
with both contrastive and adversarial losses simultaneously
does not improve performance in comparison to a purely
contrastive model.

D.2. Performance on Simulations

Fine-tuned models consistently underperform on real data
compared to simulations, highlighting the domain gap be-
tween synthetic and observational data. For redshift estima-
tion, our best model achieves R2 score of 0.431± 0.053 on
real ZTF data versus 0.580 ± 0.011 on simulations. Mod-
els can leverage these physics-based simulations as effec-
tive starting points but still require labeled real data to per-
form well. This gap between real data and simulations
is why there is a significant performance gap between the
Limited and Full evaluation scenarios. In other words,
models trained on simulations need to be fine-tuned on real
data to work well.

D.3. Anomaly Detection

Anomaly detection is the only task in which we do not see
a performance improvement from the Limited to Full
settings (Table 1). By definition, anomalies are objects
that astronomers find interesting. By using human-defined
simulations to pretrain, they are naturally equipped to de-
tect specifically what humans find interesting. The gap
between simulations and real data is what anomaly detec-
tion pipelines are trying to fill. Further analysis of anomaly
detection specifically is out of the scope of this work, how-
ever we hope that future researchers analyze the nature of
this task and how domain expertise can be incorporated into
it.

E. kNN Zero-Shot Estimation
Aside from fine-tuning an MLP, we also evaluate using
a k Nearest Neighbors approach for zero-shot estimation
(Zhang et al., 2024; Parker et al., 2024). To perform zero-
shot redshift estimation for an LSST object, we first find the
k = 100 closest ZTF embeddings to the LSST light curve
embedding in the latent space. Then, we use the distance-
weighted average of the corresponding redshifts to estimate
the final redshift of the LSST object. As seen in Table 2,
this zero-shot estimation method performs worse than using
a directly trained MLP.

14


