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Abstract
Generative machine learning models have been
demonstrated to be able to learn low dimensional
representations of data that preserve information
required for downstream tasks. In this work, we
demonstrate that flow matching-based generative
models can learn compact, semantically rich la-
tent representations of field level cold dark matter
(CDM) simulation data without supervision. Our
model, CosmoFlow, learns representations 32x
smaller than the raw field data, usable for field
level reconstruction, synthetic data generation,
and parameter inference. Our model also learns
interpretable representations, in which different
latent channels correspond to features at different
cosmological scales.

1. Introduction
The large-scale structure of the Universe provides one of
the most stringent tests of gravity on cosmological scales.
Over the past decades, the ΛCDM cosmological model
has emerged as the standard framework for understanding
our cosmos, where Λ represents the cosmological constant
(associated with dark energy) and CDM denotes cold dark
matter—which together comprise approximately 95% of
the Universe’s energy budget. Theoretical predictions of
ΛCDM can now be implemented with remarkable precision
in numerical simulations, which capture the formation of
the cosmic web: an intricate network where galaxies reside
in dense clusters, connected by filamentary structures and
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Figure 1. We compare reconstruction quality of our model, Cos-
moFlow, to the reconstructions produced by a VAE with the same
size latent code. While standard VAEs produce blurry reconstruc-
tions, our model is able to capture fine detail. We note that the
model still deviates from the ground truth at high frequencies.

separated by vast cosmic voids.

This success, however, presents cosmology with a new chal-
lenge. High-resolution simulations like AbacusSummit gen-
erate datasets exceeding 2000 TB, severely constraining our
ability to scale training datasets for machine learning ap-
plications. Moreover, extracting meaningful insights from
these high-dimensional datasets requires models that can
effectively navigate the curse of dimensionality.

Representation learning offers a promising solution by map-
ping high-dimensional simulation data into low-dimensional
representations suitable for downstream tasks such as cos-
mological parameter inference, anomaly detection, i.e., look-
ing for deviations to ΛCDM, and data compression. How-
ever, the application of representation learning to cosmology
faces a fundamental tension between two competing objec-
tives: faithful data reconstruction and semantic information
extraction.
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Traditional compression prioritizes minimizing information
loss for perfect reconstruction, but many cosmological anal-
yses do not require pixel-level fidelity. Instead, the goal is
to capture scientifically relevant information—analogous
to how the power spectrum discards spatial phase informa-
tion while preserving the statistical properties crucial for
parameter inference.

Existing approaches to cosmological representation learn-
ing fall into two broad categories. Contrastive approaches
learn representations by distinguishing between positive
and negative example pairs, requiring explicit definitions
of which examples should be proximate or distant in latent
space. For instance, [Akhmetzhanova et al. (2023)] defines
positive pairs as simulations sharing identical cosmological
parameters but differing in initial conditions, while negative
pairs correspond to simulations with different cosmological
parameters.

Generative approaches, conversely, learn representations by
reconstructing the original data distribution from the latent
space. While Variational Autoencoders (VAEs) [(Kingma
& Welling, 2022)] have been widely adopted for this pur-
pose and achieve strong downstream task performance, they
typically produce blurry reconstructions that lose critical
high-frequency details. Unlike natural images where high
frequency details can be perceptually insignificant, a signifi-
cant amount of cosmological information is present in the
small scale structure.

We adopt a generative framework for the following reasons.
First, generative methods eliminate the need for assump-
tions about what constitutes positive and negative pairs,
whereas in constrastive approaches the choice of pairing
strategy can substantially impact learned representations.
Second, generative models serve multiple purposes: they
enable data compression through dimensionality reduction,
facilitate fast generation of new, synthetic data, and produce
semantically rich representations suitable for downstream
cosmological analyses.

Recently, the flow matching paradigm [Lipman et al. (2023;
2024); Albergo et al. (2023)] has been demonstrated to
achieve state-of-the-art performance for generation across
image, audio, and other domains. A flow matching model
learns to map a noise sample to a data sample, via a time-
dependent vector field. In this paper, we apply flow match-
ing to the representation learning problem for cosmology,
and demonstrate that it enables the learning of useful and
interpretable latent representations.

We summarize our contributions as follows:

• We present CosmoFlow, the first cosmological represen-
tation learning model usable for both high quality recon-
struction and downstream tasks. We show that our model
is able to compress 256× 256 pixel field data down to an
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Figure 2. An overview of CosmoFlow. A ResNet encodes the in-
put image to compressed fields. During each time step of iterative
decoding, the compressed field is masked and passed through a
global pooling layer to generate a compact summary statistics vec-
tor. Both the masked compressed field and the summary statistics
are used as conditions for the UNet-based velocity field prediction.
See more details in Sec. 3.

8 element vector that can be used to estimate the cosmo-
logical parameters with equivalent accuracy as estimation
on the raw field data.

• We show that our model can be used to generate recon-
structions of field data from a latent 32x smaller than the
original images, and to generate new, synthetic data for
parameter values not in the dataset.

• We demonstrate that the inductive biases of flow matching
can be used to build a latent space where different parts
of the representation correspond to features at different
cosmological scales.

2. Background and Related Work
Flow Matching Flow matching [Lipman et al. (2023)]
is a framework for generative modelling, closely related to
continuous normalizing flows [Chen et al. (2018)] and the
diffusion family of models [Song et al. (2021; 2020)]. In
flow matching, data is mapped from a prior distribution to
the data distribution via a probability flow, defined via a time-
dependent vector field, called the velocity field. Samples
are then generated by solving the probability flow ordinary
differential equation (ODE), with an initial condition X0,
randomly sampled from the prior:

d

dt
Xt = uθ

t (Xt). (1)

While in general, flow matching allows the prior distribution
to take any form, in this work, we use the standard Gaussian,
X0 ∼ N (0, I). During training, the model attempts to learn
a velocity field that maps a sample from the prior to the
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Figure 3. (a) The initial CDM field (b) We interpolate the channels corresponding to high frequencies. The generated image contains many
more granular features. Only the high frequency components in the power spectrum rise. (c) We interpolate the channels corresponding to
low frequencies. The image smooths, and only the low frequency components in the power spectrum rise.(d) The target CDM field data.

training sample. This gives rise to the conditional flow
matching loss,

LCFM = Et,q(X1),pt(X|X1)||vt(x)− ut(X|X1)||22. (2)

In our case, we choose the mapping to be a straight line path.
Then, the flow matching loss can be written as a regression
loss, between the model output and the difference between
the training sample and initial condition:

L =
1

N

N∑
n

||uθ
t (Xt, t)− (X1 −X0)||2. (3)

The CAMELS Dataset The CAMELS Multifield Dataset
[Villaescusa-Navarro et al. (2021)] is a dataset comprised of
thousands of hydrodynamic simulations across a wide range
of cosmological and astrophysical parameters. The primary
goal of CAMELS is to elucidate the connection between
the various cosmological and astrophysical parameters, and
observable features of the universe by enabling the training
of machine learning models.

CAMELS contains multiple different simulation suites, each
with a different implementation of small scale physics. Each
simulation suite captures a range of cosmological fields,
including the dark matter distribution, gas distribution, tem-
perature, etc. We train our model using cold dark matter
maps from the Astrid hydrodynamic simulation suite [Ni
et al. (2023)].

Representation Learning in Cosmology Recent work in
cosmological representation learning has explored both gen-
erative and contrastive paradigms. Andrianomena & Hassan

(2023) developed VAEs for cosmological fields, showing
strong performance in parameter inference but suffering
from the characteristic VAE limitation of blurry reconstruc-
tions. Akhmetzhanova et al. (2023) focused on contrastive
approaches, defining positive pairs as simulations with iden-
tical cosmologies but different initial conditions, and nega-
tive pairs as simulations with different cosmologies.

3. Method
Model Architecture CosmoFlow is composed of two
parts: a) a ResNet [He et al. (2016)] based encoder, which
produces a lower dimensional representation of the input,
used to condition the decoder, and b) a UNet [Ronneberger
et al. (2015)] based decoder, which attempts to reconstruct
the input image through velocity field estimation. The de-
tails of the architecture are shown in Fig. 2.

Learning Spatially Meaningful Latents with Progressive
Masking Our goal is to design the latent space such that
different channels in the compressed field correspond to
different scales in the reconstructed image. We do this
by employing a version of the framework from Yue et al.
(2024). A channel-wise mask is applied to the compressed
field such that at t = 0 (start of generation), all channels are
unmasked. As t increases, latent channels are progressively
masked out, until at t = 1, only one remains. This approach
is inspired by the inference process in the flow matching
family of models (see Appendix B), in which a noise sample
is iteratively denoised. Low frequency, large scale structure
is reconstructed first, while the smaller scale features are
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Figure 4. We show the effect of varying the number of channels
in the compressed field on parameter inference and reconstruction
quality. Error bars show the standard error across the validation
set.

refined closer to t = 1. Thus, the latent channel that remains
at t = 1 encodes the latent information corresponding to the
highest frequency.

4. Results
Reconstruction We demonstrate that our model is able
to produce significantly higher fidelity reconstructions than
other standard generative models. In particular, we com-
pare against a VAE with the same size latent. We show
that CosmoFlow achieves significantly more realistic recon-
structions, which is also reflected in the power spectra plot—
VAE loses high-frequency information while CosmoFlow
preserves all frequencies (see Fig. 1). We note, however,
that our models reconstructions are still lossy; while they are
realistic, there are still deviations at high frequency, which
can be seen by comparing filaments between the original
and reconstruction.

Parameter Inference One of the primary applications of
representation learning models to cosmology is to learn low
dimensional representations which still allow estimation of
the posterior distribution of cosmological parameters. We
demonstrate that the summary statistics, produced by the
encoder can be used for parameter inference with similar
accuracy to inference on the raw field data. In this work, we
focus on predicting the posterior mean of the cosmological
parameters instead of the full distribution.

As a baseline, we train a ResNet-18 for parameter inference
using the raw field data. This achieves 4.96% and 2.94%
mean relative errors for Ωm and σ8 respectively. We did
not spend much time on hyperparameter optimization for
this network, so it is possible that marginally better results
could be achieved. We achieve 5.24% and 4.03% using
the 8 channel version of our model. We highlight that the
information bottleneck here is just 8 floating point numbers,
as compared to the 65,536 pixels in the original field data.
The full output of the encoder (compressed field in Fig. 2)

is not used for parameter inference, only the 8 element
summary statistics. The 16-channel model’s latents achieve
3.72% and 3.00% mean relative errors, but exhibits worse
frequency disentanglement. We plot the results of parameter
inference as we vary the number of latent channels in Fig. 4.

Anomaly Detection Another task of interest is anomaly
detection. In particular, we attempt to distinguish between
cold dark matter and warm dark matter (WDM) maps using
summary statistics. We observe that a) the model takes input
WDM images, and then converts them to be in-distribution,
CDM maps, as illustrated in Fig. 5 and b) the latent repre-
sentations of WDM maps are not easily separable from the
latent representations of CDM maps.
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Figure 5. Warm dark matter maps are converted to “nearest” cold
dark matter maps. In particular, we observe CosmoFlow artificially
adds in fine structure, and the power spectrum over-represents high
frequencies. The latent representations of CDM and WDM are not
separable by UMAP.

Frequency-Based Interpolation/Latent Space Disentan-
glement Our model is designed to provide a disentangled
representation, where different channels in the compressed
field correspond to different spatial scales in the reconstruc-
tion. This gives us the ability to modulate the large scale
structures independently of the fine details, simply by in-
terpolating the latent channels corresponding to those fre-
quencies (See Fig. 3). As we increase the number of latent
channels, this separability degrades; this is likely due to the
latent space having “too much” capacity, leading to latent
channels encoding somewhat redundant information.

5. Discussion and Future Work
In this work, we demonstrate the utility of flow matching for
learning representations of CDM simulation data. However,
our current representations do not effectively capture fea-
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tures that distinguish CDM from WDM fields, and improv-
ing this remains a key goal, particularly to enable anomaly
detection. We also plan to evaluate our representations in
transfer learning settings, investigating whether they can be
fine-tuned for new datasets with limited samples. To sup-
port compression and reconstruction, we aim to incorporate
neural compression modules [Ballé et al. (2018); Yang &
Mandt (2023)], which may help reduce data size further.
Finally, we see potential in extending the flow matching
approach to other data modalities, such as directly operating
on raw point cloud data instead of field-level maps.

6. Software
The code used to produce these results is accessible at
https://github.com/sidk2/cosmo-compression.
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A. Architecture and Training Details
In this section, we provide more details on the architecture and training hyperparameters.

A.1. CosmoFlow Model

A.1.1. ENCODER

The encoder is a ResNet. Each ResNet block is comprised of [3x3 Conv with circular padding, BatchNorm, 3x3 Conv with
circular padding, BatchNorm]. There is a residual connection from the input to the output. The encoder has 6 such ResNet
blocks, along with an input convolutional layer (3x3 Conv, BatchNorm, MaxPool), and an output convolution layer (3x3
Conv). The input convolution produces 64 channels. The intermediate ResNet Blocks result in [64, 64, 128, 128, 256, 256]
channels, respectively. The output convolution reduces this to 8 channels. This produces the compressed field. We then pass
the compressed field through an adaptive average pooling layer to produce the summary statistics.

A.1.2. DECODER

The decoder is a UNet, with 4 downsampling stages and 4 upsampling stages. Each stage consists of four convolutional
layers interspersed with batch normalization layers and GeLU activations.

We use sinusoidal positional encoding for the timestep embedding. The summary statistics are passed through a linear layer.
These two vectors are used as conditioning for each downsampling and upsampling stage; more precisely, these are passed
through an adaptive group normalization operation, then used for channel-wise modulation of the convolutional layer output,
as described in [Hudson et al. (2023)]. Self attention modules are used after the second and third downsampling layer, as
well as the second upsampling layer.

A.1.3. TRAINING DETAILS

The model is trained for 150 epochs. We use 14,000 samples from the Astrid set for training. The model is trained with the
AdamW optimizer [Loshchilov & Hutter (2019)], with the learning rate γ = 0.00005, λ = 0.01. We schedule the learning
rate to decrease by a factor of 2 whenever the loss plateaus for 10 epochs.

A.2. VAE Model

We compare CosmoFlow to a VAE model with same number of latent dimension. We adopt the encoder and decoder of a
VAE image compression model proposed in [(Ballé et al., 2016)]. The encoder is a sequence of 4 downsampling convolution
layers with 5x5 kernels, each followed by generalized divisive normalization (GDN) layer [Ballé et al. (2016)] except for the
last one. The first three convolution layers each has 128 channels, and the last one has 8 channels, resulting in a encoder
output of size 8 × 16 × 16. Two linear layers each with 1024 outputs are used to estimate the mean µ and log-variance
log(σ2) of the 1024 latent variables. The decoder mirrors the encoder in architecture, and is composed of 4 upsampling
convolutions each followed by an inverse GDN layer.

The model is trained with batch size of 256 for 300 epochs, using AdamW optimizer with reduced learning rate on plateau.

A.3. Parameter Inference

A.3.1. PARAMETER INFERENCE ON THE SUMMARY STATISTICS

For parameter inference on the summary statistics, we use a fully connected network. We employ Optuna [Akiba et al.
(2019)] for hyperparameter optimization. We independently optimize the network hyperparameters for each summary
statistics size. For the 8-channel model, we use a single layer network with 2039 neurons. This is trained with the AdamW
optimizer, with γ = 1.85×10−4, λ = 1.09×10−7, for 200 epochs. However, we observe that the choice of hyperparameters
has little effect on the results.

A.3.2. PARAMETER INFERENCE ON THE RAW FIELDS

To do parameter inference on the raw fields, we use a modified version of the ResNet-18 architecture from [He et al. (2016)].
The output of the ResNet is modified to be a 256-dimensional vector, and then a fully-connected layer is added to project
it down to 2 dimensions for the output. The model is trained with the AdamW optimizer, with the following parameters:
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γ = 0.0002, β = (0.5, 0.999), λ = 0.01. It is trained for 200 epochs, and we use cosine annealing with γmin = 2× 10−6.

B. Flow Matching Reconstruction Process
In Fig. 6, we demonstrate the inductive bias of flow matching. Images start out as Gaussian noise with flat power spectra.
Large-scale features are constructed first, before the small-scale features are added in.
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Figure 6. The generation process of a flow matching model. The model starts with a noise sample, and iteratively adds in structure. The
power spectrum reflects this, starting as a flat spectrum, before adding in low frequencies and then the high frequencies. Note that for
visualization purposes, we normalize the reconstructed power spectrum to match the amplitude of the target at low frequencies at all time
steps. This is done by dividing the reconstructed power spectrum by t2.

C. Interpolation of CDM Fields
In Fig. 7, we show the results of linearly interpolating between two CDM fields from the 1P dataset. These samples have
exactly the same initial conditions and cosmological parameters, with the exception of the value of Ωm. We demonstrate
that by linearly interpolating the latent space, we can generate realistic samples at intermediate values of Ωm, which we
cross-validate by showing that our parameter inference network predicts a continuously increasing value for Ωm over the
course of the interpolation.

Source α = 0.32 α = 0.63 Target
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Figure 7. Interpolation between Ωm = 0.1 to Ωm = 0.5. Samples remain realistic throughout, and smoothly vary. The parameter
inference network also shows a smooth increase in estimated value of Ωm. Parameter inference was done on the latent representation.
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