
Joint Modeling of Quasar Variability and Accretion Disk Reprocessing using
Latent Stochastic Differential Equations

Joshua Fagin 1 2 3 James Hung-Hsu Chan 2 3 Henry Best 1 2 3 4 Matthew O’Dowd 1 2 3 K. E. Saavik Ford 1 2 5 6

Matthew J. Graham 7 Ji Won Park 8 9 V. Ashley Villar 10

Abstract

Quasars are bright active galactic nuclei powered
by the accretion of matter around supermassive
black holes at the center of galaxies. With LSST
set to monitor tens of millions of quasars over the
next ten years, efficient techniques like machine
learning must be developed. Quasar variability
is believed to be driven by an X-ray corona re-
processed by the accretion disk and emitted as
UV/optical variability. We are the first to intro-
duce an auto-differentiable simulation of the ac-
cretion disk and reprocessing that we use as a
direct component of our neural network to jointly
model the driving variability and reprocessing
in simulated LSST light curves. We encode the
light curves using a Transformer, and the driving
variability is reconstructed using latent stochastic
differential equations, a physically motivated gen-
erative deep learning method to model continuous-
time stochastic dynamics. By embedding the
physical processes into our network, we achieve
a model that is more robust and interpretable.

1The Graduate Center of the City University of New York,
365 Fifth Avenue, New York, NY 10016, USA 2Department
of Astrophysics, American Museum of Natural History, Central
Park West and 79th Street, NY 10024-5192, USA 3Department
of Physics and Astronomy, Lehman College of the CUNY, Bronx,
NY 10468, USA 4Department of Theoretical Physics and As-
trophysics, Faculty of Science, Masaryk University, Kotlářská 2,
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1. Introduction
Quasars are bright and unobscured active galactic nuclei
(AGN) thought to be powered by the accretion of matter
around supermassive black holes, ranging from millions to
billions of solar masses, and found at the center of galax-
ies (Salpeter, 1964). They are some of the brightest known
objects, making them powerful probes of the early Uni-
verse (Bañados et al., 2018) and are thought to play an im-
portant role in galaxy evolution (Hoshi et al., 2024). Their
stochastic brightness variability has been studied since their
discovery (Greenstein, 1963; Hazard et al., 1963) and re-
flects the physical properties of the black hole and accretion
disk that powers them. Studies of quasar variability have
found accretion disk sizes to be larger than the standard thin-
disk model by a factor of ∼2–4 (Mudd et al., 2018; Guo
et al., 2022; Jha et al., 2022). New measurements and meth-
ods are needed to test accretion disk models and enhance
our understanding of quasar emissions.

The UV/optical variability of quasars is typically modeled
as an X-ray driving variability source corona above the black
hole that illuminates the accretion disk (Cackett et al., 2007).
The reprocessing of the driving variability on the UV/optical
emitting regions of the accretion disk is represented by the
transfer function and introduces wavelength-dependent time
lags ranging from less than a day for lower mass black
holes to several tens of days (Blandford & McKee, 1982).
This reprocessing is modeled through the convolution of the
driving signal with the transfer functions:

Fλ(t, λ) = F̄λ(λ)+∆Fλ(λ)

∫ ∞

0

X(t−τ)ψ(τ |λ)dτ, (1)

where λ is the wavelength, Fλ(t, λ) is the flux, F̄λ(λ) is
the mean flux, ∆Fλ(λ) is the amplitude of the variable
flux, X(t) is the normalized driving variability (mean zero
and variance one), and ψ(τ |λ) is the transfer function ker-
nels (Cackett et al., 2007; Starkey et al., 2015). These time
lags can be measured through continuum reverberation map-
ping of UV/optical light curves to probe the size of the
emitted regions and are interconnected to properties of the
accretion disk (Cackett et al., 2021).

Upcoming wide-field surveys such as the Rubin Observa-
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tory Legacy Survey of Space and Time (LSST) will observe
an unprecedented quantity of data. The LSST main survey
is projected to monitor tens of millions of quasars over a
ten-year period with six UV/optical bandpass filters (ugrizy)
at 55 − 185 samplings per band or around 800 total visits
across the ten years (Collaboration, 2009). Machine learn-
ing (ML) algorithms are well suited to analyze the vast
amounts of data. Quasar light curves from LSST pose chal-
lenges for traditional ML techniques, however, due to being
multivariate, stochastic, irregularly sampled, and noisy.

UV/optical light curve data is most commonly modeled us-
ing Gaussian process regression (GPR), where they are fit
with a specific kernel of the Gaussian process. For exam-
ple, using the kernel associated with the damped random
walk (DRW; Zu et al., 2013). The codebase JAVELIN (Zu
et al., 2011; 2016) uses a DRW kernel with top hat transfer
functions to simultaneously model the variability and time
delays, that can in turn be used to measure the accretion disk
size. CREAM (Starkey et al., 2015) is similar to JAVELIN
but uses the thin-disk transfer functions directly. Instead
of treating the bluest band as the effective driving variabil-
ity, CREAM explicitly reconstructs the driving variability by
modeling it as a Fourier series. These methods, however, re-
quire computationally expensive Markov chain Monte Carlo
optimization and would be infeasible to apply to the entire
LSST sample. They also cannot learn from features across
an entire sample of light curves, unlike ML methods.

Fagin et al. (2024) introduced latent stochastic differential
equations (SDEs) as a method to reconstruct quasar light
curves and simultaneously predict accretion disk and vari-
ability parameters. Latent SDEs are a type of generative neu-
ral network (NN) that can model continuous-time stochastic
dynamics (Li et al., 2020). They are physically motivated by
the fact that UV/optical quasar variability is often modeled
by SDEs such as the DRW or higher-order processes (Yu
et al., 2022). In Fagin et al. (2024), simulated LSST ob-
servations are fitted, and parameter inference is performed
based on the latent space of the SDE and context.

In this work and the full paper Fagin et al. (2025), we are the
first ML method to combine the light curve reconstruction
and parameter inference into a self-consistent, unified frame-
work. This is achieved by developing an auto-differentiable
simulation of the accretion disk and reprocessing, and in-
cluding it in the architecture of our ML model. Within our
NN, we use a latent SDE to generate the mean X-ray driving
variability. We then predict the accretion disk parameters,
which are converted to the corresponding transfer functions
using our auto-differentiable simulation and convolved with
the latent SDE generated driving signal to produce the mean
best fit reconstruction for each observed band. The mean
time of the predicted transfer functions gives a measurement
of the continuum time lags. We also quantify the uncertainty

in the driving signal, UV/optical, time delays, and parameter
reconstructions. We improve the driving variability param-
eter predictions through analyzing the power spectrum of
the reconstructed driving signal by leveraging the slope and
intercept of linear fits applied to the power spectrum broken
up into five sections. In addition, we test using recurrent
inference machines (RIM; Putzky & Welling, 2017) to itera-
tively improve our reconstructions and parameter inference.

2. Method
2.1. Training set and auto-differentiable simulation

Our training set is comprised of a realistic simulation of
LSST 10-year light curves. The stochastic driving vari-
ability is generated using the method of Timmer & Koenig
(1995) using a bending broken power-law (BPL) power
spectral density (Czerny et al., 2023). The disk model is
used for both the training set and the auto-differentiable
simulation that is incorporated into the NN. To generate
the transfer functions, we use the thin-disk plus lamppost
model (Novikov & Thorne, 1973; Cackett et al., 2007) in-
cluding a wind model accretion rate to have a power-law
temperature profile (Sun et al., 2018; Fagin et al., 2024),
along with gravitational redshifting and Doppler shifting
caused by general relativity (Cunningham & Bardeen, 1973).
We model the brightness of each band by simulating the
spectrum with our continuum and including emission lines,
host galaxy contamination, extinction, Lyman forest, and Ly-
man limit (Temple et al., 2021). The spectrum is integrated
across the LSST bandpass response functions. The time se-
ries is generated in discrete daily intervals and degraded to
LSST-like observations and photometric noise (see section
2.4 of Fagin et al., 2024). We have 12 total parameters: 7
for the accretion disk and 5 for the driving variability.

2.2. Neural network architecture

Figure 1. Diagram of our ML model. The data products are high-
lighted in green. The dashed line indicates the reconstructed
UV/optical light curve that can optionally be used in the RIM
procedure to update the predicted latent vector of the SDE ẑi and
accretion disk parameters η̂i.

Our overall goal is to solve the inverse problem in Equa-
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tion (1) related to reconstructing the driving variability X(t)
and transfer function kernels ψ(τ |λ), given only a set of
noisy and sparsely sampled observations. Since the repro-
cessing is modeled as a convolution of the driving vari-
ability and transfer functions, we are essentially training a
NN to solve a blind deconvolution. To make the problem
tractable, we parameterize the transfer function via our auto-
differentiable simulation, ψ(τ |λ,η), where η is the vector
of accretion disk parameters. The driving signal is recon-
structed using a latent SDE (Li et al., 2020; Fagin et al.,
2024), parameterized by the context at each time and the
latent vector ẑ. We then solve for the flux by embedding the
physics of the reprocessing of the driving variability into
our NN architecture by:

Fλ(t, λ|ẑ, η̂)︸ ︷︷ ︸
flux

predicted

∝
∫ ∞

0

X(t− τ |ẑ)︸ ︷︷ ︸
latent
SDE

ψ(τ |λ, η̂)︸ ︷︷ ︸
auto−diff

transfer function

dτ , (2)

where this convolution is evaluated numerically within our
ML model. Our ML model also quantifies the uncertainty
in the mean reconstructions of Fλ(t, λ), X(t), η̂, the vari-
ability parameters, and time delays τ̄λ coming from each
reconstructed transfer function ψ(τ |λ, η̂). We use RIM to
compare the reconstruction of our light curve with the obser-
vations, and iteratively adjust the accretion disk parameters
by η̂i+1 = η̂i +∆η̂i and the latent space of the latent SDE
by ẑi = ẑi +∆ẑi in Equation (2) with iteration i and initial
values of zero.

A diagram of our ML model architecture is shown in Fig-
ure 1. The input into the network is the brightness at each
observation with uncertainty. Unobserved time steps are
set to a dummy value to be masked by the network. The
network has two main encoder components: the context
network of the latent SDE and a network used to predict
the parameter posteriors and latent space. Both are bidi-
rectional recurrent NNs (RNNs) and begin with a GRU-D
layer (Che et al., 2016) that can handle the masked input,
followed by two GRU layers (Chung et al., 2014). We also
use a Transformer encoder after the RNN layers that is con-
catenated with the output (Vaswani et al., 2023) followed
by two fully connected layers. There is an additional RNN
without the Transformer to produce uncertainty in the recon-
structed driving and UV/optical variability. Furthermore,
there are multi-layer perceptrons (MLPs) to produce the
mean and bias of the light curve, the variability parame-
ters, and the uncertainty in the time delay estimates. There
are also two MLPs in the latent SDE: the posterior drift
function that decodes the context and latent vector, and the
diffusion network that is applied element-wise to satisfy
the diagonal noise (Li et al., 2020). Each MLP consists of
four fully connected layers. The RNNs use tanh activation,
Transformers use GELU (Hendrycks & Gimpel, 2023), and
fully connected layers use LeakyReLU (Maas et al., 2013).

Whenever appropriate, we include residual skip connec-
tions (He et al., 2015) and layer norm (Ba et al., 2016). We
use a hidden size of 256, Transformer encoder size of 512,
context size of 128, and latent size of 16. The Transformer
encoders have 5 layers, 8 heads, and use a sinusoidal time
embedding. Our model is built in PyTorch (Paszke et al.,
2019) and has 38,551,054 parameters.

2.3. Loss function and training

We parameterize the posterior of the parameters as a Gaus-
sian mixture model with five multivariate Gaussians and
minimize its negative log-likelihood (NLL). We take the
sigmoid of the posterior to restrict the parameter estimates
into our uniform priors. We also quantify uncertainty in
the mean time delays between bands, obtained from the
reconstructed transfer functions, as a multivariate Gaussian.
For the light curve reconstruction, we again minimize a
Gaussian NLL averaged across time. We also evaluate the
Gaussian NLL at each observation with respect to the pho-
tometric errors to force the mean reconstruction to be close
to the context points. The loss function is the weighted sum
of the four components. We train with 100,000 light curves
per epoch for 30 epochs, randomly regenerated on the fly to
avoid overfitting. We reserve 10,000 light curves per test set.
Our ML model is trained for 30 epochs using the Adam op-
timizer (Kingma & Ba, 2017). We train with 4 A100 GPUs
in multiple stages. We first train without RIM to train faster.
We use an initial learning rate of 8 · 10−4. The learning rate
is exponentially decayed by 0.95 each epoch, and a batch
size of 26 per GPU. In the final 4 epochs, we use 3 RIM
iterations with a batch size of 14 to test the RIM technique.
Training took around 3 weeks.

3. Results and conclusions
We show an example light curve reconstruction in Figure 2
from our nominal test set. The model is more certain near
observations and infers across the bands and driving signal.
We show in Appendix A for the nominal test set that our
inferred posteriors are well calibrated and superior to the
GPR baseline, and our ML model’s ability to infer accretion
disk and driving signal parameters. We find that the RIM
procedure yields a minor improvement, with the average
loss on the nominal test set decreasing from 0.619 to 0.580
and then to 0.579, respectively, with each RIM iteration.

We apply our trained ML model to several test sets to eval-
uate its performance on out-of-distribution variability, in-
cluding using BPL, DRW, BPL+Sine, Sine, sawtooth, and
square wave driving signals. The BPL is the same as the
training set. We compare the NLL light curve reconstruction
to an exact multitask GPR baseline with DRW kernel (see
section 4 of Fagin et al., 2024). The latent SDE model out-
performs the GPR baseline across all cases, summarized in
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Figure 2. The left panels show the reconstruction driving variability and ugrizy bands (orange) given the set of LSST-like observations
(blue). The UV/optical bands are reprocessed from the driving signal using the reconstructed transfer functions given in the right panel,
with mean time delays given by the dashed lines.

Table 1. Light curve reconstruction performance of our latent SDE
model compared to the GPR baseline in terms of the Gaussian
NLL for six test sets with different types of driving signals. The
values reported are the median ± median absolute deviation on the
median.

Driving Signal Latent SDE GPR
BPL −1.528 ± 0.007 −1.409± 0.007
DRW −1.214 ± 0.007 −1.129± 0.007

BPL+Sine −1.276 ± 0.007 −1.111± 0.007
Sine −1.847 ± 0.009 −1.765± 0.012

Sawtooth −1.221 ± 0.007 −0.971± 0.008
Square Wave −1.098 ± 0.007 −0.933± 0.007

Table 1. Furthermore, we demonstrate that we can robustly
infer the black hole mass for each test set in Figure 3. This
is also the case for the other disk parameters, including the
redshift, temperature slope, and Eddington ratio.

Unlike GPR, which is fit to light curves individually, our
latent SDE model generalizes across the entire training set.
For example, it learns from the brightness of each band as
modeled in the training set. As a result, GPR and simple

Figure 3. Median predicted black hole masses compared to the
true values by applying our pretrained ML model to test sets with
out-of-distribution driving signals.

curve-shifting methods discard information that our deep
learning approach retains. Although our model is demand-
ing to train, the average inference time using a batch size of
64 is about 27 minutes per million light curves using 3 itera-
tions of the RIM, or 7 minutes using 1 iteration, six to seven
orders of magnitude faster than JAVELIN or CREAM (Li
et al., 2024).

We aim to incorporate as much physics into our NN as
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possible and test its robustness. The latent SDE captures
the physics of the stochastic driving variability, while the
auto-differentiable simulation models the reprocessing of
the driving signal on the accretion disk. In previous work,
there is nothing that forces the reconstruction and time de-
lays to actually correspond to the inferred accretion disk
parameters. Within our ML model, we fit the power spec-
trum of the reconstructed driving signal with several linear
fits to better estimate its parameters. By embedding these
physical processes into our network, we achieve a model
that is more robust and interpretable compared to traditional
black-box parameter estimators. For example, our predicted
time delays can be compared to measurements obtained via
curve-shifting techniques, providing a way to confirm the
accuracy of our model on data. Our ML method is gen-
eral and may be adapted to solve other blind deconvolution
or inverse problems with irregularly sampled time series.
See Fagin et al. (2025) for the full paper.

Software and Data
Our ML model and auto-differentiable and GPU-accelerated
accretion disk simulation are open-sourced and available
at: https://github.com/JFagin/Quasar ML.

This work relied on the following open source soft-
ware: PyTorch (Paszke et al., 2019), torchsde (Li
et al., 2020), BoTorch (Balandat et al., 2020),
Matplotlib (Hunter, 2007), Numpy (Harris et al., 2020),
SciPy (Virtanen et al., 2020), Astropy (Astropy Col-
laboration et al., 2018), corner.py (Foreman-Mackey,
2016), speclite (Kirkby et al., 2023).
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A. Uncertainty calibration and parameter
inference

In Figure 4 top panel, we show that the uncertainties we
predict in our UV/optical light curve reconstruction are well
calibrated for the nominal test set, while the GPR baseline
is misaligned. In the bottom panel, we show that the un-
certainties we predict in our parameter posteriors are well
calibrated, although overall slightly underconfident. Fig-
ure 5 shows the median predictions compared to the true
value for each parameter in the nominal test set. The pa-
rameters σ/mag (variability amplitude), log10(νb/day−1)
(driving signal break frequency), αL (driving signal lower
power-law slope), αH − αL (driving signal additional high-
frequency slope), log10(M/M⊙) (black hole mass), a (di-
mensionless spin), θinc (inclination angle), (H −Rin)/Rg

(corona height), flamp (lamppost strength), β (temperature
slope), z (redshift), and log10(λEdd) (Eddington ratio) were
sampled uniformly between the ranges in Figure 5. Some
parameters (i.e., a, flamp, (H − Rin)/Rg, and θinc) are dif-
ficult to infer due to having little impact on the transfer
functions, causing the median predictions to be close to the
mean of the prior.
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Figure 4. Evaluation of how well the uncertainties are calibrated
for the light curve reconstruction (top panel) and parameter infer-
ence (bottom panel) by showing the fraction of the truth encom-
passed within the posterior probability volume across the nominal
test set. Perfect uncertainty calibration is shown by the black
dashed line along the diagonal.
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Figure 5. Median predictions compared to the true value for each predicted parameter across the nominal test set. The ideal case where
the median prediction matches the truth is given by the black dashed line across the diagonal.
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