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Abstract
Score-based models can serve as expressive, data-
driven priors for scientific inverse problems. In
strong gravitational lensing, they enable poste-
rior inference of a background galaxy from its
distorted, multiply-imaged observation. Previous
work, however, assumes that the lens mass distri-
bution (and thus the forward operator) is known.
We relax this assumption by jointly inferring the
source and a parametric lens-mass profile, using
a sampler based on GibbsDDRM but operating
in continuous time. The resulting reconstructions
yield residuals consistent with the observational
noise, and the marginal posteriors of the lens pa-
rameters recover true values without systematic
bias. To our knowledge, this is the first successful
demonstration of joint source-and-lens inference
with a score-based prior.

1. Introduction
Score-based models have been successfully applied as data-
driven, expressive priors for inverse problems. For exam-
ple, in the field of astrophysics, they have been used for
interferometric imaging (e.g. Feng et al., 2023; Dia et al.,
2025), strong gravitational lensing source reconstruction
(e.g. Adam et al., 2022; Karchev et al., 2022), cosmological-
field inference (e.g. Legin et al., 2023; Ono et al., 2024;
Flöss et al., 2024), deconvolution (e.g. Xue et al., 2023;
Adam et al., 2025), and many other applications.

These applications depend on approximations or heuristics,
since posterior sampling with score-based priors is, in gen-
eral, intractable. Existing methods can be broadly classified

1Ciela Institute, Montréal, Canada 2Mila—Quebec Artifi-
cial Intelligence Institute, Montréal, Canada 3Department of
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into four categories (Zheng et al., 2025): guidance-based
methods (e.g. Adam et al., 2022; Song et al., 2023; Chung
et al., 2023b), variable splitting (e.g. Wu et al., 2024), varia-
tional Bayes (e.g. Feng et al., 2023; Feng & Bouman, 2024),
and sequential Monte Carlo (e.g. Dou & Song, 2023). In
this work, we focus on the first category, in which an approx-
imate likelihood term ∇xt log pt(y | xt) is used to guide
the diffusion of the prior.

Most of these methods assume that the parameters of the
forward model are known, which is often not the case in
practice. Jointly inferring the operator and the underlying
parameters of interest (also known as blind inversion in the
literature (e.g. Levin et al., 2009; Gao et al., 2021)) is an
active area of research. Several approaches approximate
blind-inversion sampling with diffusion models; for exam-
ple, GibbsDDRM (Murata et al., 2023), BlindDPS (Chung
et al., 2023a), BIRD (Chihaoui et al., 2024), and Fast Diffu-
sion EM (Laroche et al., 2024).

Strong gravitational lensing, which describes the formation
of multiple images of background sources due to the bend-
ing of their light by the mass of intervening objects, can
be modeled using score-based priors for the background
source (e.g. Adam et al., 2022; Karchev et al., 2022). Such
score-based priors have not previously been applied to the
problem of jointly inferring the background source and lens
mass distribution. Strong lens inversion is particularly chal-
lenging in the blind scheme, as the posteriors of parametric
lenses generally contain several local minima and exhibit de-
generacies between the lens parameters and the source (e.g.
Brewer & Lewis, 2006; Schneider & Sluse, 2013). Hence,
joint inference has only been possible with analytical source
priors that impose Gaussian or smoothness assumptions (e.g.
Suyu et al., 2006; Vegetti & Koopmans, 2009).

Strong-lensing observations can enable many sciences, for
example measuring H0 via time-delay cosmography (e.g.
Wong et al., 2020), studying high-redshift objects (e.g. Peng
et al., 2006), and detecting dark matter subhalos (e.g. Veg-
etti et al., 2012; Hezaveh et al., 2016), among other appli-
cations. Furthermore, upcoming wide-field surveys, most
notably the Rubin Observatory Legacy Survey of Space and
Time (LSST) and the Euclid space telescope, are expected

1



Blind Strong Gravitational Lensing Inversion

to observe about 200 000 strongly lensed systems (Collett,
2015). Advancing strong lens modeling, particularly within
a Bayesian framework, is therefore crucial to extract the full
scientific value of this wealth of data.

In this paper, we present preliminary results on a new frame-
work for analyzing strong lenses with score-based priors.
Our contributions are:

• We explore two likelihood score approximations, CLA
(Adam et al., 2022) and ΠGDM (Song et al., 2023),
for source reconstruction.

• We adapt GibbsDDRM (Murata et al., 2023) to the
continuous-time regime, successfully applying it to
blind strong-lensing inversion.

• We provide empirical evidence that our approach yields
residuals consistent with the noise distribution and that
the lens marginal posteriors are unbiased.

In Section 2 we introduce the method, assumptions, and
approximations; in Section 3 we present experiments on
simulated data; and we discuss limitations, outline next
steps, and conclude in Section 4 and Section 5.

2. Methods
2.1. Strong Gravitational Lensing Simulations

Strong gravitational lensing can be expressed as a linear
operation (Warren & Dye, 2003):

y = Aℓx+ η, (1)

where y ∈ Rm is the observed (lensed) image, ℓ ∈ Rnℓ is
the vector of parameters of a parametric lens–mass model,
x ∈ Rn is a pixelated representation of the background
source, η ∼ N (0, σ2

ηI) is additive Gaussian noise, and
Aℓ is the Jacobian of the forward model (with dependency
on ℓ made explicit). Our forward model also includes a
point-spread function (PSF).

We use Caustics (Stone et al., 2024) for the simulations.
The lens follows an Elliptical Power-Law (EPL) profile
(Barkana, 1998) with external shear and m = 3 multipole.
The positions of the lens and the source are also free pa-
rameters, giving a total of 12 macro parameters besides the
pixelated source. See the Appendix B for prior ranges.

2.2. Score-based Models for Solving Inverse Problems

A generative model for a distribution p(x) can be con-
structed when we have access to the score ∇xt

log pt(xt)
by solving the reverse-time stochastic differential equation
(SDE) (Song et al., 2021):

dx =
[
f(x, t)− g(t)2 ∇x log pt(x)

]
dt+ g(t) dw̄, (2)

where pt(xt) denotes the target distribution convolved
with a perturbation kernel, typically a Gaussian
N
(
µ(t)x, σ(t)2I

)
. For the variance-exploding (VE)

SDE (Song & Ermon, 2019) used in this work, µ(t) = 1

and σ(t) = σmin
(
σmax/σmin

)t
.

Given a dataset D = {xi}Ni=1 with xi ∼ p(x), we train a
neural network sθ(xt, t) to approximate the score by mini-
mizing the denoising score-matching loss (Hyvärinen, 2005;
Vincent, 2011):

Lθ = E
x∼D

t∼U(0,1)
xt∼p(xt|x)

[
λ(t) ∥sθ(xt, t)−∇xt

log p(xt | x)∥2
]
.

This learns a prior score model from the data examples. We
use score-models1 to train the network. Moreover, any
score-based model can be turned into a zero-shot posterior
sampler (e.g. Graikos et al., 2022) by replacing the prior
score with the posterior score:

∇xt log p(xt | y) = ∇xt log p(y | xt) +∇xt log p(xt).
(3)

We already have the approximation sθ(xt, t) ≈
∇xt

log p(xt). However, the likelihood score,

∇xt log p(y | xt) = ∇xt log

∫
x0

p(x0 | xt) p(y | x0) dx0,

(4)
is intractable. Here, we compare three likelihood-score
approximations from the literature across different stages
of our inference pipeline: Pseudoinverse-Guided Diffusion
Models (ΠGDM) (Song et al., 2023), Convolved Likelihood
Approximation (CLA) (Adam et al., 2022), and Diffusion
Posterior Sampling (DPS) (Chung et al., 2023b).

Using Tweedie’s formula, Chung et al. (2023b) express the
posterior mean as

x̂t := E[x0 | xt] = xt + σ2
t ∇xt

log p(xt). (5)

With x̂t in hand, ΠGDM approximates the likelihood as

pt(y | xt) ≈ N
(
y
∣∣Aℓx̂t, Ση + r2tAℓA

T
ℓ

)
. (6)

CLA is similar, but it uses xt directly in the mean (i.e. Aℓxt)
instead of x̂t. In the original formulation, CLA sets r2t = σ2

t ,
yet Song et al. (2023) note that r2t can, in general, depend
on the data. Our choice of r2t for both approximations is
detailed in Appendix E.

2.3. Joint Inference of Source and Lens

Our goal is to sample from the joint posterior

x, ℓ ∼ p(x, ℓ | y) ∝ N
(
y | Aℓx,Ση

)
p(x) p(ℓ), (7)

1github.com/AlexandreAdam/score models
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Figure 1. Simulated strong-lensing system analyzed with our joint sampler. Top-right panel: the observed image y, the true source
x⋆, and three joint-posterior draws (xi, ℓi). For each draw we show the reconstructed image Aℓixi and the corresponding residual
(y − Aℓixi)/ση , demonstrating noise-level consistency. Bottom-left panel: marginal lens posterior p(ℓ | y) obtained from 406 joint
samples, each augmented with 500 conditional lens draws as described in Appendix C.

where p(x) is implicitly represented by a score-based model,
p(ℓ) is an analytic prior (uniform here), and the likelihood is
determined by the noise distribution and the forward model.

We follow GibbsDDRM (Murata et al., 2023), a partially
collapsed Gibbs sampler (Van Dyk & Park, 2008) that per-
forms Unadjusted Langevin Algorithm (ULA) sampling
(e.g. Roberts & Tweedie, 1996) of the operator parameters
through the reverse diffusion process.

In the original GibbsDDRM formulation, the method
builds on DDRM (Kawar et al., 2022), which approxi-
mates posterior sampling for non-blind inverse problems.
DDRM uses pre-trained DDPM models (Ho et al., 2020)
(variance-preserving SDEs in the continuous-time view)
re-parameterized in VE notation and conditioned on the
observation via the singular-value decomposition of A. We
instead keep the continuous-time SDE notation with a VE
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model, integrate with a stochastic Heun solver (Kloeden
& Platen, 1992), and use an approximation to the likeli-
hood score at time t. Aside from these differences, most
procedural details remain the same.

The sampler starts from an initial lens parameter vector ℓ0.
We find the algorithm to be sensitive to this initialization:
the macro-parameter posterior often has multiple local min-
ima, and poor starting points cause the Langevin updates to
mix slowly, an issue noted previously in lensing studies (e.g.
Brewer & Lewis, 2006). If a given lens has been analyzed
before, published values can serve as the initial guess. Alter-
natively, a learned estimator, such as a CNN (e.g. Hezaveh
et al., 2017; Perreault Levasseur et al., 2017), can be used.

Here, we obtain ℓ0 by minimizing the negative log-
likelihood under a Sérsic source model, using the Adam
optimizer (Kingma & Ba, 2017) with a multi-start strat-
egy. Given ℓ0, we solve the reverse-time SDE. At diffusion
time t, the source xt is updated while keeping ℓ fixed, em-
ploying ΠGDM for the likelihood score with respect to
xt (see Appendix E for a complete justification for using
ΠGDM over CLA).

Next, we update the lens parameters via ULA using

∇ℓ log p(ℓ | y,xt) ≈ ∇ℓ log
[
N (y | Aℓx̂t,Ση) p(ℓ)

]
.
(8)

In summary, we run a partially collapsed Gibbs sampler
through the reverse diffusion process, alternating between
updating the lens parameters with ULA and the source with
ΠGDM. Finally, we perform a full Gibbs sweep starting
from the joint sample (x, ℓ) ∼ p(x, ℓ | y) updating the
source with CLA, which has been more extensively tested
for non-blind lensing inversion, and the lens with NUTS
(Homan & Gelman, 2014).

3. Experiments and Results
Dataset. We use 60 774 images from the SKIRT–TNG
dataset (Bottrell et al., 2024), produced by applying
dust–radiative-transfer post-processing (Camps & Baes,
2020) to galaxies in the TNG cosmological magneto-
hydrodynamical simulations2 (Nelson et al., 2019). The
i-band frames are downsampled to 64× 64 pixels and con-
verted to flux units of µJy sr−1 to train the SBM. A further
4 293 images from the same dataset are reserved as a valida-
tion set, used only for inference.

Joint–inference Experiment Figure 1 illustrates a rep-
resentative run of our joint sampler. The observation y
is generated from a ground-truth source x⋆ and lens pa-
rameters ℓ⋆. In the top right panel, we display three joint-
posterior draws (xi, ℓi) ∼ p(x, ℓ | y). Each sampled source

2www.tng-project.org

recovers the overall morphology of x⋆ while exhibiting
natural variability in size and pixel-scale structure. The
corresponding reconstructions Aℓixi closely match the ob-
servation, and the normalized residuals are consistent with
the noise model. The bottom-left panel shows the marginal
lens posterior p(ℓ | y), estimated from 406 joint samples
as detailed in Appendix C. Known degeneracies among
strong-lensing parameters are properly explored, and the
true lens parameters ℓ⋆ lie well within the high-probability
region. A full corner plot of all 12 lens parameters, addi-
tional source–reconstruction pairs, and three further lensing
systems are provided in Appendix F.

4. Future Work and Limitations
Although the results are promising, we still need to test the
robustness and generality of the method. In future itera-
tions, we plan to run a coverage test with TARP (Lemos
et al., 2023), a sample-based diagnostic that is necessary
and sufficient for posterior coverage.

Furthermore, the overall pipeline contains several hyperpa-
rameters and design choices that remain unexplored. For
example, we intend to perform an ablation study on the r2t
parameter in both CLA and ΠGDM for this specific problem.
We also plan to benchmark non-blind inverse approaches in
lensing, following the protocol of Zheng et al. (2025).

A key limitation of our approach is its strong dependence
on the initialization ℓ0. Because ULA explores a single
mode and implicitly assumes a log-concave target, multi-
modal or strongly non-log-concave posteriors are difficult
to sample. Preliminary experiments show that mode switch-
ing (or recovery from a poor initialization) is possible
when using a swarm of walkers, or by performing expecta-
tion–maximization through the diffusion process instead of
sampling, as in Laroche et al. (2024).

Finally, it would be valuable to compare analytical priors
with learned priors when the score is available. A natural
baseline is a Gaussian prior, which has a long history in
lensing modeling (e.g. Suyu et al., 2006). The full source
code implementing our sampler will be released publicly
upon journal publication.

5. Conclusion
We have presented the first score-based framework for blind
strong-lensing inversion, jointly sampling the pixelated
source and the parametric lens mass. Our approach cou-
ples a VE score model with a GibbsDDRM-like sampler:
the source is updated with ΠGDM, and the lens parameters
with an Unadjusted Langevin step.

On simulated data, the sampler yields residuals that match
the noise distribution and recovers all lens parameters with-
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out systematic bias, showing that it can handle the nonlin-
earities and parameter degeneracies characteristic of strong
lensing. In future work, we plan to improve and extend
the framework and apply it to the large samples of lenses
expected from LSST and Euclid, enabling fully Bayesian
analyses at next-generation survey scale.
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A. Strong Gravitational-lensing Simulator
We use Caustics (Stone et al., 2024) to simulate strong gravitational lensing because it is fully differentiable, allowing us
to compute the gradients with respect to both the source and lens parameters required for inference. Caustics supports
pixelated and parametric descriptions of the source and the lens, and it provides several predefined parametric mass models.
In our experiments the images x, y, and η are elements of R64×64. Consequently, the Jacobian of the forward model is

Aℓ = ∇xf(x, ℓ) ∈ R4096×4096. (9)

The lens mass is modelled as an Elliptical Power-Law (EPL) profile with external shear and m = 3 multipole.

Our forward model also includes a Gaussian point-spread function (PSF) with FWHM = 0.375′′. In principle, the simulator
first applies the lensing transformation and then convolves the result with the PSF. Because convolution with a fixed kernel
is a linear operation (represented by a circulant matrix) and the PSF parameters are held constant, we denote the combined
lensing-plus-PSF operator simply by Aℓ.

The lens and source redshifts are assumed to be known and fixed at zℓ = 0.5 and zs = 1.0, respectively. The source plane
has a field of view (FOV) of 6.24′′, while the observation plane spans 12′′. The 6.24′′ source FOV corresponds to ≃ 50 kpc
at z = 1, matching the window used when training the galaxy prior, whereas the 12′′ observation window is wide enough to
encompass all simulated lenses and is consistent with the typical angular extent of real strong-lensing systems. Finally, we
add Gaussian additive noise to the simulations, with η ∼ N (0, σ2

ηI), ση = 0.35.

B. Uniform Prior Ranges
Table 1 lists the uniform priors used for both the simulations and the inference runs. The intervals are chosen to encompass
the bulk of galaxy–scale strong lenses reported in the literature. All distance-related quantities are expressed in arcseconds,
and we follow the Caustics convention for angles (measured counter-clockwise from the positive x-axis) and for all
other parameters.

The m=3 multipole amplitude is kept small, consistent with previously reported values (e.g. O’Riordan & Vegetti, 2024).
Although am is weakly constrained in our experiments, and a wider inference prior would explore the parameter space more
thoroughly, we retain the same interval for simulation and inference so that a future coverage test remains well defined.

Plane Component Parameter Uniform prior

Lens

Lens center xℓ [−0.25, 0.25]
yℓ [−0.25, 0.25]

EPL profile

q [0.70, 1.00]
ϕ [0, π]
θE [1, 3]
τ [0.75, 1.25]

External shear γ1 [−0.25, 0.25]
γ2 [−0.25, 0.25]

Multipole m=3
am [0.00, 0.015]
ϕm [0, 2π]

Source

Source center xs [−0.35, 0.35]
ys [−0.35, 0.35]

Sérsic light†

qs [0.05, 1.00]
ϕs [0, π]
ns [0.3, 10]
Rs [0.1, 3]
Is [0.6, 100]

Table 1. Uniform priors for all parameters used in the simulations. †The Sérsic source parameters are used only to initialize ℓ0.

9



Blind Strong Gravitational Lensing Inversion

θE = 2.315+0.011
−0.009

2.2
95

2.3
10

2.3
25

2.3
40

2.3
55

θE

0.9
6

1.0
2

1.0
8

1.1
4

1.2
0

τ

0.9
6

1.0
2

1.0
8

1.1
4

1.2
0

1.2
6

τ

τ = 1.132+0.047
−0.062

Figure 2. Marginal lens posterior p(ℓ | y) (black contours and histograms) compared with six conditional posteriors p(ℓ | y,x) (colored
curves), where each x is drawn from the joint sampler. Only the parameters θE and τ are shown for clarity.

C. Marginal Lens Posterior
To estimate the marginal lens posterior, we write

p(ℓ | y) =
∫
x0

p(ℓ,x0 | y) dx0 =

∫
x0

p(ℓ | x0,y) p(x0 | y) dx0 =

∫
x0

∫
ℓ̄

p(ℓ | x0,y) p(x0, ℓ̄ | y) dℓ̄ dx0

= E(x0,ℓ̄)∼p(x0,ℓ̄|y)
[
p(ℓ | x0,y)

]
≈ 1

n

n∑
i=1

p
(
ℓ | x(i)

0 ,y
)
, (10)

where x
(i)
0 ∼ p(x0, ℓ̄ | y) are samples from the joint sampler. We sample the conditional density with the NUTS sampler

(Homan & Gelman, 2014) as implemented in Pyro (Bingham et al., 2018).

This strategy is more efficient than drawing a very large number of joint samples: we obtain a dense estimate of the marginal
by running short conditional chains for several fixed sources. In addition, the conditionals p(x | y, ℓ) and p(ℓ | y,x) are
better understood than the approximate joint sampler, which still awaits a formal coverage study.

Figure 2 shows the resulting marginal posterior (black) together with six conditional posteriors (colors) from different
source draws. Each conditional distribution is much narrower and nested within the marginal, illustrating how source–lens
coupling broadens the overall posterior. Relying on a single point estimate for ℓ without fully exploring the joint posterior
can therefore lead to biased scientific conclusions. For the marginal lens posteriors displayed in this work, we get 406 joint
samples, and 500 conditional lens posterior samples per source.

D. Score-based Model: Architecture and Training
We train a variance-exploding (VE) score model on the galaxy dataset described in Section 3, which contains simulated galaxy
images x ∈ R64×64 covering a 50 kpc window. Model definition and training are implemented with the score-models3

package. The network sθ(x, t) is a noise-conditional score network (Song & Ermon, 2019) with a U-Net architecture
(Ronneberger et al., 2015).

3github.com/AlexandreAdam/score models
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Network Hyperparameters. Within score-models we adopt "nf": 64, "ch_mult": [1, 2, 2, 3],
"num_blocks": 3, and leave all other settings at their defaults.

Optimization. The model is trained with Adam (Kingma & Ba, 2017) using a learning rate 5× 10−5, an EMA decay
of 0.999, a batch size of 256, and for 1000 epochs (≈ 230 000 optimization steps). Training required 45 h on a single
A100 40GB GPU.

SDE Parameters and Data Normalization. We parametrize time as t ∈ [0, 1] with σmin = 0.001 and σmax = 50. The
data are normalized as (x −M)/C with M = 0.125 and C = 10.115, so that most pixel values lie below 1. Following
Song & Ermon (2020), the maximum noise level is set from pair-wise distances; we use the 95th percentile (rather than the
maximum) to avoid the undue influence of a few very bright galaxies.

Statistical Fit. We evaluate the learned prior with PQMASS (Lemos et al., 2025), a sample-based χ2 test that divides
the data space into n regions and estimates the densities of both sample sets in each region. The regions are defined by
randomly selecting n reference points from one sample set and constructing the corresponding Voronoi tessellation. The
resulting statistic, χ2

PQM, follows a χ2 distribution with n − 1 degrees of freedom; we report its value averaged over m
random re-tessellations. Using 4000 prior samples, n = 100 regions, m = 2000 re-tessellations, and 4000 training images,
we obtain χ2

PQM = 104.39± 13.19; comparing to 4000 validation images yields χ2
PQM = 116.2± 14.1. Both values are

close to the expected mean (99) of the χ2
(99) distribution, indicating that the learned score model faithfully represents the

galaxy distribution.

E. Inference Hyperparameters and Implementation Details
Source-only Inference (non-blind inversion). For source-only inference, we adopt the Convolved Likelihood Approxi-
mation because it has been shown to satisfy the TARP coverage test (Lemos et al., 2023) under appropriate noise levels,
solver accuracy, and prior choice (Barco et al., 2025). In our experiments, CLA yields residual χ2 values clustered around
the ground-truth noise realization (to which we have access). We integrate the SDE with 1 000 steps.

Schedule for r2t . For both CLA and ΠGDM we set

r2t = σ(t)2
(
C2t4 + 1

)
, (11)

instead of the original choices r2t = σ(t)2 (CLA) or r2t = σ(t)2/
[
σ(t)2 + 1

]
(ΠGDM). The original schedules often lead to

unstable diffusion, especially for bright, high-S/N galaxies, whereas the schedule in Equation 11 performs robustly in all our
tests. The boundary condition at t→0 remains exact, so the score approximation is unchanged at the data end of the SDE. A
formal ablation study of r2t , ideally using a coverage metric such as TARP, is left for future work.

Joint Inference. For blind inversion, we prefer ΠGDM, because the modifications CLA makes to xt degrade the Tweedie
estimate x̂t required for the lens update. Figure 3 and Figure 4 compare the two methods at t = 0.5: the ΠGDM estimate of
x̂t resembles a realistic galaxy and lies close to the ground truth, whereas the CLA estimate is noticeably degraded. With
CLA, the joint sampler often diverges; with ΠGDM, it converges reliably.

We run 400 reverse-diffusion steps and, at each, perform 500 ULA updates of the lens parameters with a step size 10−7 to
limit discretization bias. The lens is updated only for t ∈ [0.7, 0.2]: at high t the Tweedie estimate is inaccurate, and for
t < 0.2 the source has essentially converged (see also Murata et al., 2023). Figure 5 illustrates the evolution of xt and x̂t

throughout the diffusion process for an experiment doing source-only inference.

Lens Initialization and Sampling. We obtain ℓ0 by minimizing the negative log-likelihood under a Sérsic source model.
Adam (Kingma & Ba, 2017) is run from 1 250 random starts drawn from the priors in Appendix B, using a learning rate of
0.25 and 8 000 optimization steps. For conditional lens sampling, we use NUTS with an initial step size 10−3, 750 warm-up
steps, and a maximum tree depth of 9.

Computation Time. All experiments were performed on a single A100 GPU (40 GB). Approximate wall-times are:

• Lens initialization: ∼30 min;

11
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• Joint sampling of seven (xi, ℓi) pairs (parallel): ∼40 min;

• Source-only sampling (seven sources): ∼5 min;

• Conditional lens sampling with NUTS for seven lens conditional posteriors: ∼1 h (varies with posterior complexity).

xt x̂t x? y A`?xt (y−A`?xt)/ση

Figure 3. Source-only inference variables with CLA at t = 0.5.

xt x̂t x? y A`? x̂t (y−A`? x̂t)/ση

Figure 4. Source-only inference variables with ΠGDM at t = 0.5.

x t

t = 1.00 t = 0.90 t = 0.80 t = 0.70 t = 0.60 t = 0.50 t = 0.40 t = 0.30 t = 0.20 t = 0.10 t = 0.00

x̂ t

Figure 5. Evolution of the Tweedie posterior mean x̂t during ΠGDM source-only inference.
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F. Complete Lens Posteriors and Additional Experiments
Figure 6 presents the full marginal posterior for all 12 macro parameters in the main experiment, together with additional
source samples, their lens reconstructions, and residual maps. To demonstrate robustness, we include three further simulated
systems in Figure 7, Figure 8, and Figure 9. Each figure follows the same layout: the corner plot of the marginal lens
posterior, ground-truth lens values (red markers), and several joint posterior draws with their corresponding residuals.
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Figure 6. Full marginal posterior for the 12 lens parameters in the main experiment, along with several source–lens reconstructions and
residuals.
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Figure 7. Experiment 2: marginal lens posterior and joint samples for a second simulated system.
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Figure 8. Experiment 3: marginal lens posterior and joint samples for a third simulated system.
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Figure 9. Experiment 4: marginal lens posterior and joint samples for a fourth simulated system.
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