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Abstract
Upcoming cosmological surveys will generate
unprecedented datasets, but validating whether
our theoretical models accurately describe the ob-
served Universe remains a fundamental challenge.
We present a novel framework combining scale-
dependent neural summary statistics with normal-
izing flows to detect model misspecification in
cosmological simulations through Bayesian ev-
idence estimation. By conditioning both com-
pression and evidence networks on smoothing
scale, we systematically identify where theoreti-
cal models break down in a data-driven manner.
We demonstrate our approach using matter and
gas density fields from three CAMELS simulation
suites with different subgrid physics implementa-
tions.

1. Introduction
Observational cosmology now faces a growing number of
tensions that challenge the standard ΛCDM model (Abdalla
et al., 2022). These anomalies have so far been found by
either i) direct comparison of parameter constraints derived
from different cosmic epochs, where agreement would val-
idate our understanding of cosmological evolution, or ii)
specific parametric extensions for beyond ΛCDM models.
In this paper, we present a complementary approach focused
on identifying model-independent anomalies. That is, once
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the baseline model or training dataset has been specified,
our approach for detecting anomalous data does not require
that the anomalies follow a particular functional form or
parameterization.

We take advantage of advances in large datasets of numerical
simulations (Pakmor et al., 2023; Maksimova et al., 2021;
Villaescusa-Navarro et al., 2021) and high-dimensional in-
ference techniques for solving complex inverse problems.
Although most research at this intersection has focused on
parameter estimation and optimal information extraction,
we propose a shift in perspective to tackle a complementary
question: How can we systematically identify significant dis-
crepancies between our theoretical models, as represented
by numerical simulations, and the observed Universe?

Finding discrepancies between simulations and observations
also addresses the critical need for robust goodness-of-fit
metrics in high-dimensional spaces to validate our infer-
ence methods, where traditional approaches like chi-square
statistics are insufficient due to their limitations with high-
dimensional data and Gaussianity assumptions.

Detecting out-of-distribution (OOD) data is crucial to en-
suring that trained machine learning systems are applied
in a safe and reliable manner, given that small shifts in the
data distribution can introduce large biases in the parameters
of interest, see (Horowitz & Melchior, 2022; Mudur et al.,
2024) for examples from cosmology. To this end, the topic
of OOD detection has attracted increasing interest from the
machine learning research community (Yang et al., 2024).
Our work builds on recent advances in neural density esti-
mation and anomaly detection to develop a scale-dependent
framework for identifying model misspecification in cosmo-
logical analyses. Moreover, physical models in cosmology
often have well-defined domains of validity that depend on
spatial scale. By explicitly incorporating scale dependence
into our analysis, we can identify at which scales theoretical
models begin to break down.

Previously, Dai and Seljak (2024) explored the idea of
identifying anomalies and distribution shifts due to scale-
dependent systematics at the field-level with Multiscale
Flows, which hierarchically decompose cosmological fields
into lower-resolution approximations using a wavelet basis
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and use normalizing flows to model each wavelet component
separately and learn the full field-level likelihood function.
They applied Multiscale Flows to simulated weak lensing
datasets and found that in addition to significantly improv-
ing cosmological inference analysis, these flows are also
able to detect small-scale OOD shifts such as addition of
baryonic effects. Here, we develop an alternative framework
for multiscale neural posterior estimation such that we can
scale to higher dimensional datasets.

Concurrent to our work, Diao, Dai, and Seljak (2025) has
extended (Dai & Seljak, 2024) by approaching the task of
model validation as an OOD detection problem. Similarly
to Dai and Seljak (2024), they work with simulated weak
lensing datasets generated from dark-matter only simula-
tions and corrections from baryonic effects. They examine
multiple various statistics on these datasets, and find that
continuous time flow models (CFTMs) at the field level
consistently achieve the best performance for their OOD
detection task.

These studies highlight the relevance of density-based OOD
detection methods in cosmology in the context of model val-
idation and anomaly detection. Our work complements the
studies above and extends this line of work in new directions.
In particular, our contributions are: 1) we develop a general
training strategy for obtaining constraints as a function of
scale on one single model, 2) we demonstrate that estimat-
ing evidence as a function of scale on learned summary
statistics which are optimized for cosmological parameter
inference can be used for detecting model misspecification
through an example using the CAMELS simulations.

2. Methodology
Figure 1 provides a schematic overview of our framework.

Learning Sufficient Neural Statistics: We first extract
sufficient summary statistics from high-dimensional cosmo-
logical fields using Variational Mutual Information Maxi-
mization (VMIM) (Lanzieri et al., 2024; Jeffrey et al., 2021;
Ho et al., 2024). A statistic t is sufficient for parameters θ if
I(x, θ) = I(t, θ), preserving all parameter-relevant mutual
information I from the original data x.

VMIM maximizes I(t, θ) via the loss function LVMIM =
− log q(θ|Fϕ(x);ϕ

′), where Fϕ is a compressor network
extracting statistics t = Fϕ(x), and q(θ|Fϕ(x);ϕ

′) is a nor-
malizing flow-based posterior inference network. We train
both networks jointly to learn optimal summary statistics.

Incorporating scale conditioning: Of particular impor-
tance in physics is how out-of-distribution metrics vary as a
function of scale. This is especially relevant given that we
often have accurate descriptions of large-scale phenomena
through effective field theories, while missing crucial details
at smaller scales with higher frequency components. We

incorporate this by conditioning our compressor network on
smoothing scale ks: ts = Fϕ(xs), where xs is a Gaussian-
smoothed field. We pass ks as an additional channel prior to
the first convolutional layer, enabling evaluation of statistics
at any scale with the same network parameters.

Evidence estimation with normalizing flows: Starting
from our learned summary statistics, we use the Bayesian
evidence to assess model misspecification. For a model
with parameters θ and data x, the evidence is defined as the
probability of the data x under the given model marginalized
over all model parameters: p(x) =

∫
p(x|θ)p(θ)dθ.

This integral is often intractable in high dimensions, but
machine learning approaches can address this challenge
(Skilling, 2004; Papamakarios et al., 2021; Jeffrey & Wan-
delt, 2024; Polanska et al., 2024). In this work, we focus
on density estimation using normalizing flows applied to
the low-dimensional latent space of our summary statis-
tics ts. Specifically, after learning ts = Fϕ(xs), we train
normalizing flows to model the density p(ts) in this lower-
dimensional space, also as a function of smoothing scale.
The reduction in dimensionality makes density estimation
significantly more tractable and avoids many of the chal-
lenges typically associated with density estimation for OOD
detection (Nalisnick et al., 2018; Zhang et al., 2021), while
our VMIM-optimized summaries retain the key information
needed for parameter inference. We refer to the the normal-
izing flow trained to estimate the density of the compressed
representations p(ts) as the evidence estimation network.
Once trained, the normalizing flow allows both to estimate
the log-evidence log p(ts) of a given summary statistic ts
and to sample from the estimated probability distribution of
the summary statistics for a given ks.

We use the evidence as an out-of-distribution score by com-
paring observed and simulated samples. If the observed
representations fall outside the distribution of simulated
ones, this indicates that parameter constraints may be biased,
pointing to missing physics in our simulations. Detecting
misspecification in raw data would not necessarily lead to
this conclusion, as anomalies in data space might reflect
physics irrelevant to our cosmological constraints. By ex-
amining how the Bayesian evidence varies across different
physical scales, we can identify specific scales where dis-
crepancies between our simulations and observations are
most prominent.

However, any OOD detection method has a fundamental
limitation: observations may appear in-distribution yet still
yield biased constraints when different physical effects pro-
duce degenerate features in our summary statistics. The
most robust solution is combining complementary probes
that respond differently to various effects, breaking degen-
eracies through joint analysis.
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Figure 1. A schematic overview of the framework for OOD detection implemented in this study. Left: We first learn sufficient neural
summary statistics of the data by training a compressor network with a Variational Mutual Information Maximization (VMIM) loss. Right:
We train a normalizing flow to estimate the evidence of the learned summary statistics as a function of smoothing scale ks.
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Figure 2. Mtot (left) and Mgas (right) fields from the Astrid CV set with various levels of Gaussian smoothing and corresponding
posteriors over astrophysical and/or cosmological parameters. The true parameter values are indicated with dashed lines. The smoothing
scales ks plotted are 2, 5.65, and 45h/Mpc. As we include higher frequency information, the posteriors become tighter and concentrate
closer to the true parameter values, validating scale-dependence of our neural summary statistics.

3. Experiments
Dataset and Training: Our dataset consists of total mat-
ter density (Mtot) and gas density (Mgas) fields at redshift
z = 0 from the CAMELS project (Villaescusa-Navarro
et al., 2021; 2022; Ni et al., 2023) from three suites of hy-
drodynamical simulations: IllustrisTNG (Weinberger et al.,
2017; Pillepich et al., 2018), Astrid (Bird et al., 2022; Ni
et al., 2022), and SIMBA (Davé et al., 2019).

As the baseline dataset for training our models, we use the
Latin Hypercube (LH) set of the Astrid suite, which varies
both cosmological (ΩM , σ8) and astrophysical parameters
(ASN1, ASN2, AAGN1, and AAGN2). The LH set consists
of 1000 independent simulations and 15 000 corresponding
maps for each astrophysical field of interest. In addition to
testing the parameter estimation performance of our models
on a holdout test set from the Astrid LH set, we also assess
the capabilities of our trained models to detect model mis-
specification on the Cosmic Variance (CV) sets of the three
suites. CV sets are designed to explore the effects of cosmic
variance on various cosmological and astrophysical probes:
each set consists of 27 simulations (with 405 maps per as-
trophysical field) with the same values of cosmological and

astrophysical parameters, but varied initial conditions.

To mimic a realistic observational scenario, we implement
the following experimental design: we use Astrid as the
baseline physics model, while treating IllustrisTNG and
SIMBA as “mock observable universes” that may be out-
of-distribution relative to our baseline. Specifically, we
train our density estimation models on the Astrid LH set,
then use the CV sets from all three suites to assess model
misspecification. This approach mirrors what we would do
with actual observations — splitting the observed volume
into smaller subvolumes to assess statistical significance,
while all subvolumes share the same underlying physical
parameters. This setup provides a controlled test of how
differences in subgrid physics implementations affect our
ability to detect model misspecification and obtain unbiased
cosmological constraints.

Detailed description of neural network architectures and
training hyperparameters can be found in App. A and B.

Summary statistics validation: In Figure 2, we demon-
strate how our summary statistics effectively capture cos-
mological information across different physical scales. We
present parameter constraints as a function of smoothing
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scale for Mtot and Mgas fields from the Astrid test set. For
Mtot, the learned statistics primarily constrain cosmological
parameters. Mgas fields are able to additionally constrain
the supernovae feedback parameter ASN2, which reflects the
sensitivity of gas distribution to baryonic feedback processes
that have less significant impact on the matter distribution.

As expected, incorporating higher frequency information
(smaller scales) leads to significantly tighter parameter con-
straints, confirming that our neural summarizer successfully
extracts scale-dependent information. This scale-dependent
behavior is crucial for understanding which physical pro-
cesses dominate at different scales and for detecting model
misspecification. In all cases, our method successfully re-
covers the true parameters within the expected uncertainty,
validating the accuracy of our neural posterior estimation
approach. A more thorough validation is shown in App. D.

Anomaly detection with neural summaries: We next
leverage our neural summary statistics to detect model mis-
specification between the simulation suites. We evaluate
the log-evidence log p(ts) of the summary statistics as a
function of smoothing scale for the CV sets from the three
suites using the evidence estimation network trained exclu-
sively on the Astrid suite, our reference model. We plot the
evidence distributions for three different scales in App. E.

To quantify the differences in log p(ts) systematically, we
compute the mean percentile rank of evidence values for
each CV suite relative to the Astrid reference distribution.
While the samples within each CV suite are not strictly
independent (some of them are projections of the same
simulation box), the percentile ranking provides a robust
measure of relative model discrepancy. We show these
results for Mtot and Mgas fields in solid lines (right y-axis)
in Figure 3 with error bars representing the standard error
on the mean percentile.

For Mtot, SIMBA’s percentile rank drops dramatically from
over 50% at large scales to about 20% at small scales, in-
dicating increasingly significant model differences. Illus-
trisTNG shows a much more moderate decrease to around
45%, maintaining this level across intermediate and small
scales. This suggests that while both models differ from
Astrid, SIMBA implements substantially different small-
scale physics that affects the total matter distribution. For
Mgas, both simulations show considerably lower percentile
ranks at small scales, dropping below 20%, confirming their
gas distributions are highly distinct from Astrid, even at
the level of the summary statistics. These results demon-
strate our method’s effectiveness at quantifying simulation
differences across scales and provide valuable insights into
which physical scales and components are most affected by
modeling choices.

OOD detection and parameter bias: Physical degenera-

cies between different simulation models can complicate
OOD detection, which creates two challenging scenarios:
(1) cases where model misspecification remains undetected
yet produces biased parameter constraints, and (2) cases
where data appear strongly out-of-distribution while still
yielding unbiased cosmological constraints.

In Figure 3, we quantitatively analyze the relationship be-
tween OOD detection and parameter bias across our sim-
ulation suites. We plot both the average percentile rank
(our OOD metric) and the Mahalanobis distance (our bias
measure) as functions of smoothing scale. We compute
the Mahalanobis distance only for cosmological parameters
on IllustrisTNG and SIMBA LH test sets, excluding astro-
physical parameters, since these represent different physical
quantities across subgrid models.

For Mgas, we observe a notable correlation between the
OOD detection strength and parameter bias. As the per-
centile ranks drops on smaller smoothing scales, the Maha-
lanobis distance increases appreciably. This correlation sug-
gests that the differences in baryonic physics between sim-
ulation suites directly impact the summary statistics most
relevant to cosmological parameter inference, making the
observables related to the gas fields a potential probe for
detecting physically relevant model misspecification.

For Mtot, however, we find an interesting exception, similar
to the case (2) mentioned above. Despite significant OOD
detection for SIMBA on smaller scales, the inferred parame-
ter bias remains mild throughout. However, this effect could
also be in part due to the limitations of Mahalanobis dis-
tance, which, despite being an informative measure of bias,
fails to penalize correlated biases in the inferred posteriors.

4. Conclusions
We have presented a general framework for detecting model
misspecification in cosmological datasets as a function of
scale. We propose a training strategy for constructing neu-
ral summary statistics of cosmological fields by training a
single neural network model which is conditioned on the
smoothing scale applied to the fields. The learned statistics
can then be used (1) for obtaining constraints on the param-
eters of interest, and (2) as an informative low-dimensional
representation of the data for Bayesian evidence estimation.

Using fields from CAMELS simulations a proof-of-concept,
we demonstrate that this framework allows us to detect
the discrepancies in the subgrid physics between differ-
ent simulations. An application to realistic cosmological
observations, such as observations from the DESI survey,
would require more complex training data, with large simu-
lation volumes and realistic survey systematics (Lemos et al.,
2023b). From the methodological point of view, it would be
valuable to consider working with 3-D point clouds, which
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Figure 3. Mahalanobis distance (dashed) and percentiles of the log p(ts) values (solid) for the Mtot (left) and Mgas (right) fields. The
parameter bias largely correlates with the strength of OOD detection of the summary statistics in all scenarios, except for SIMBA’s Mtot

fields, for which the inferred parameter bias remains relatively low across the smoothing scales, despite the data appearing more strongly
out-of-distribution.

provide a natural representation for galaxy distributions,
and to perform the model misspecification analysis either
in the compressed latent space of the point clouds or at the
field-level by working with, for instance, diffusion-based
generative models (Cuesta-Lazaro & Mishra-Sharma, 2024;
Nguyen et al., 2024). These additional follow-up studies are
necessary to effectively extend this framework to real sur-
vey data and to make steps towards improved, more robust
modeling of our Universe.

Software and Data
Code used to reproduce the results of this paperis avail-
able at https://github.com/AizhanaAkhmet/
model-misspecification.git. This research
made extensive use of the Jupyter (Kluyver et al.,
2016), Matplotlib (Hunter, 2007), Numpy (Har-
ris et al., 2020), PyTorch (Paszke et al., 2019),
PyTorch-Lightning (Falcon et al., 2020), Scipy (Vir-
tanen et al., 2020), and WANDB (Biewald, 2020) packages.
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A. Model architectures
A.1. Compressor network

The compressor network takes as an input 256× 256 2D fields and outputs summary statistics vector t. For the compressor
network, we use a ResNet-10-T model as implemented in (Wightman, 2019)1. This model is a lightweight variation of
the ResNet architecture (He et al., 2016), with fewer trainable parameters (4.94 million parameters), which we found to
perform better on our dataset than larger models, such as ResNet-18 (11.2 million parameters) or ResNet-34 (21.3 million
parameters). The model consists of four residual blocks, with one convolutional layer in each block, followed by average
pooling and downsampling. Throughout the network, we use circular convolutions to account for the periodic boundary
conditions of the input fields. The final output of the network is a summary statistics vector t, the dimensionality of which
we fix to 40.

A.2. Posterior inference network

The posterior inference network is a Masked Autoregressive Flow (MAF), which is conditioned on the summary statistic
vector t from the compressor network, and is trained to predict a vector of all 6 cosmological and astrophysical parameters.
The MAF consist of 8 transforms. Each transform a masked MLP (multi-layer perceptron) composed of 3 layers with
256 hidden features in each layer and ReLU activation functions between the layers. To help facilitate the training, each
parameter is normalized with respect to its range such that its value lies between [-1, 1].

A.3. Evidence estimation network

The architecture of the evidence estimation network is identical to that of the posterior inference network used in the
compression step: the network is a MAF composed of 8 transforms, where each transform is a masked MLP with 3 layers of
256 hidden features and ReLU activation functions between the layers.

B. Implementation and training
We follow the same training procedure for both total matter density and gas density fields. We find that the similar sets of
hyperparameters works well for the two astrophysical fields, although it is possible that other fields which track more distinct
physical quantities, such as gas temperature or gas pressure, would require significantly different set of hyperparameters for
training.

We split the dataset for each field into training, validation, and test sets, following a random 90/5/5 split, which reserves 13500
maps (900 distinct cosmologies) for training and 500 maps (50 cosmologies) for validation and testing. For consistency, we
use the same dataset split for training both the compressor network, which is trained together with the parameter inference
network, and the evidence estimation network. To aid the training, we work with the fields in the log space and standardize
them prior to the training. We also apply data augmentations in the form of random rotations and mirror flips to help the
models learn the relevant symmetries.

The compressor network is trained jointly with a posterior inference network to learn the optimal summary statistics. We
train the two networks using the AdamW optimizer (Loshchilov & Hutter, 2019; Kingma & Ba, 2017), with peak learning
rate 1× 10−4 for Mtot (7× 10−5 for Mgas) and cosine annealing learning rate schedule (Loshchilov & Hutter, 2017) for
300 epochs with a batch size of 100. For the downstream task of evidence estimation we select the checkpoint with the
lowest validation loss.

The evidence estimation network is trained with similar settings: we use the AdamW optimizer with peak learning rate of
7× 10−3 for Mtot (5× 10−3 for Mgas) and cosine annealing scheduler to train the network for 100 epochs with a batch
size of 100. Similarly to the first part of the training, we save the checkpoint with the lowest loss on the validation set.

C. Parameter constraints from Mtot and Mgas without Gaussian smoothing
In Figures 4 and 5 we plot mean values and 1− σ uncertainties for cosmological (ΩM , σ8) and astrophysical parameters
(ASN1, ASN2, AAGN1, AAGN2) inferred from the total matter density and gas density maps from the test set of Astrid LH

1https://github.com/huggingface/pytorch-image-models
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Figure 4. Predicted parameters against ground-truth parameters for total matter density fields (without Gaussian smoothing) of the LH test
set of the Astrid suite. The mean values and 1− σ uncertainties are computed over 10 000 posterior samples for each input field. The
parameter inference network is able to constrain cosmological parameters to a high degree of both precision and accuracy.

suite without Gaussian smoothing.

We estimate the parameters from the fields following the same approach and using the same model architectures as in
App. A, but without conditioning the summary statistics on the smoothing scale ks. We use the same training/validation/test
split and training strategy as in Section B, with the peak learning rate of 7e− 5 for both fields.

We find that matter density fields can primarily constrain the cosmological parameters, but have considerably less predictive
power for the astrophysical parameters, while the gas density field can be used to also place tight constraints on the
supernovae feedback parameter ASN2. Therefore, when validating our compressor and posterior inference networks in
Appendix D, we estimate coverage for cosmological parameters only for Mtot fields and for cosmological parameters and
ASN2 parameter for Mgas fields.

D. Posterior calibration test
We examine whether the posterior inference networks for Mtot and Mgas fields are well-calibrated using the TARP method
(Lemos et al., 2023a).

Given a distance metric d : U × U → R and a reference point θr, a TARP credible region for a parameter-data pair (θ⋆, x⋆)
and a posterior estimator q(θ|x) is defined as follows:

{θ ∈ U | d(θ, θr) ≤ d(θ⋆, θr)}, (1)

which in turn defines a TARP confidence level 1−αTARP as the integral of the estimated posterior q(θ|x) over that credible
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Figure 5. Predicted parameters against ground-truth parameters for gas density fields (without Gaussian smoothing) of the LH set of
the Astrid suite. The mean values and 1 − σ uncertainties are computed over 10 000 samples for each input field. In addition to the
cosmological parameters, gas density fields from Astrid can also place tight constraints on the supernovae feedback parameter ASN2.

region. We use the Euclidian distance as our metric. The expected coverage plotted on Figure 6 is computed as an average
coverage across multiple parameter-data pairs. For well-calibrated posteriors, the expected coverage should match the
corresponding the credible level for all credible levels (1− αTARP) ∈ [0, 1]. The details of algorithm for computing the
TARP coverage are presented in full in (Lemos et al., 2023a). We use tarp package with Euclidean distance metric to
evaluate the expected coverage for our posterior inference networks.

We compute the expected coverage for a wide range of smoothing scales which are logarithmically spaced from ks,min =
2h/Mpc to ks,max = 45h/Mpc and find the posteriors to be fairly well-calibrated for all of the scales within this range. As
noted in the previous section, we compute the coverage only for the parameters for which the density fields have constraining
power for.

E. Log-evidence distribution log p(xs)
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Figure 6. Expected coverage versus confidence levels computed for a range of smoothing scales ks. Left: for total matter density fields,
the coverage is computed for cosmological parameters only. Right: for gas density fields the coverage is computed for cosmological and
supernovae feedback parameter ASN2 which the gas density fields are also sensitive to. The coverage is computed on the fields from the
LH test set of the Astrid suite with the TARP method (Lemos et al., 2023a).
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Figure 7. Comparison of the distribution of log p(ts) values (the log-evidence of the learned neural summary statistics) for three different
smoothing scales (2, 5.65, and 45h/Mpc) for the CV sets of Astrid, IllustrisTNG, and SIMBA suites. The top plot corresponds to the
total matter density field, the bottom plot corresponds the gas density field. At large smoothing scales (ks = 2h/Mpc), the distributions
for the three different suites largely overlap. As we include more information from smaller scales (ks ↓), the differences between the
distributions become more pronounced, in particular for the gas density fields.
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