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Abstract
Time-domain astrophysics relies on heteroge-
neous and multi-modal data. Specialized models
are often constructed to extract information from
a single modality, but this approach ignores the
wealth of cross-modality information that may be
relevant for the tasks to which the model is ap-
plied. In this work, we propose a multi-modal,
mixture-of-expert variational autoencoder to learn
a joint embedding for supernova light curves and
spectra. Our method, which is inspired by the
perceiver architecture, natively accommodates
variable-length inputs and the irregular tempo-
ral sampling inherent to supernova light curves.
We train our model on radiative transfer sim-
ulations and validate its performance on cross-
modality reconstruction of supernova spectra and
physical parameters from the simulation. Our
model achieves superior performance in cross-
modality generation to nearest-neighbor searches
in a contrastively-trained latent space, showing its
promise for constructing informative latent repre-
sentations of multi-modal astronomical datasets.

1. Introduction
Diversity of Type Ia Supernovae: Type Ia supernovae
(SNe Ia) are the thermonuclear explosions of white dwarfs
in binary systems. These explosions occur as the primary
star accretes mass from its companion and approaches the
Chandrasekhar limit (Hoyle & Fowler, 1960; Liu et al.,
2023). Because of the relatively robust correlations among
their observational properties (e.g., the “Phillips relation”
between an explosion’s maximum luminosity and its dim-
ming rate; Pskovskii, 1977; Phillips, 1993; Phillips et al.,
1999), SNe Ia have increasingly been used as standardizable
candles to measure cosmological distances (e.g., Riess et al.
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1998; Perlmutter et al. 1999; DES Collaboration et al. 2024).

As more SNe Ia are observed from wide-field imaging sur-
veys (such as the Zwicky Transient Facility; Bellm et al.
2018), however, researchers have discovered SNe Ia with
atypical light curve features (e.g., early flux excesses; Wang
et al. 2024). The spectra of these SNe, which measure
their wavelength-specific emission, have revealed important
differences between the temperatures, velocities, and com-
positions of these more peculiar explosions and their normal
counterparts.

Legacy Survey of Space and Time: With the upcoming
Vera C. Rubin Observatory Legacy Survey of Space and
Time (LSST; Ivezić et al., 2019) imaging the full South-
ern Sky every 3-4 days for a decade, we expect to obtain
light curves for ∼1 M SNe each year. Our spectroscopic
resources will only be able to observe the smallest subset of
these discovered explosions (at most 0.1-1%). As a result,
representation learning techniques applied to these datasets
must be able to accommodate missing modalities at infer-
ence time. Methods able to extract multi-modal correlations
from these highly imbalanced datasets will play a powerful
role in helping astronomers prioritize scientifically valuable
events for follow-up study while they remain bright.

Multi-Modal Feature Extraction and Reconstruction:
We consider two tasks in this work: 1) inferring the time-
evolving spectroscopic behavior of a supernova from mea-
surements of its light curve (photometry) alone, and 2) learn-
ing a joint data representation for photometry and spectra
that is useful for downstream tasks. Though feature learning
methods using contrastive learning (Zhang et al., 2024) and
pure generation methods using diffusion (Shen & Gagliano,
2025) have been applied to these modalities, a single ap-
proach has not yet been presented that can simultaneously
achieve goals 1 and 2. As an obstacle toward these goals, the
correlations between light curves and spectra are many-to-
many: a spectrum obtained at a single time can be associated
with multiple feasible light curves, and each light curve is
associated with multiple spectra describing the wavelength-
dependent emission of an explosion at different times. Fur-
thermore, the dimensionality of each modality varies with
the total number of observations obtained and the resolu-
tion of the instrumentation used. For these reasons, our
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proposed method should be able to 1) learn compact private
and shared representations, 2) operate on a variable number
of modalities and input lengths at inference time, and 3)
keep inference costs low as input dimensionality increases.

We achieve these goals by constructing a Perceiver-IO (Jae-
gle et al., 2021a) style model for time-domain inputs, which
we call the transceiver (for “transient perceiver”). We
combine this model with a mixture-of-expert VAE (MM-
VAE, Shi et al., 2019) for private and shared feature learn-
ing, and validate its use for cross-modality generation. Our
model and associated experiments can be found at the github
repository for this work 1.

2. Method
The heterogeneous nature of supernova observations de-
mands custom encoding methods. We begin by describing
our data and the chosen encoder-decoder architecture. Then,
we introduce the architecture and training objective associ-
ated with our MMVAE.

Data Encoding: Our approach follows the encoding
scheme of Zhang et al. (2024), but augments it with learn-
able positional encodings and phase information to enable
multiple spectra to be linked to a single light curve.

Photometry: For observation i obtained with photometric
filter n during an imaging survey containing B unique pho-
tometric filters, (tn,i,mn,i, bn,i) ∈ R× R× [B] represents
the observation time, filter, and measured magnitude of the
explosion. Consequently, the full light curve is a sequence
of (tn,i,mn,i, bni

) with length Lphoto,n.

Our light curves are encoded to a model dimension d by
summing a sinusoidal encoding for time, a class embedding
of filter, and linear projection of magnitude, resulting in an
embedded sequence of dimensionality RLphoto,n×d that was
passed into perceiver. We encode observation times with a
sinusoidal positional encoding followed by a learnable MLP
(Peebles & Xie, 2023). Magnitude is encoded using a learn-
able linear embedding and the photometric filter is encoded
using a simple categorical embedding. For parallelization,
we also pad our input light curves to a consistent length; we
retain a mask during training to indicate padded positions.

We visualize the full architecture of our model in Figure 1.

Spectroscopy: Spectra encode the flux from the supernova
as a function of wavelength. Each spectrum is taken at a
fixed point in time, which we represent as phase with respect
to the time of supernova peak light. The nth spectrum
associated with each supernova is represented as a sequence
of flux values fn,i measured at wavelengths λn,i. As a result,
the spectra for each supernova have dimensionality Lspec,n.

1https://github.com/YunyiShen/VAESNe-dev

We encode each spectrum by separately embedding wave-
lengths and fluxes to the model dimension d and summing
them. Wavelengths are encoded using sinusoidal embed-
dings followed by a learnable MLP, while flux values are
embedded linearly. This results in an embedding of shape
RLspec,n×d. Unlike photometry, we separately embed the
phase using a sinusoidal embedding followed by an MLP
projection to dimension d, and then append it to the se-
quence as a special token. This special token approach
allows for more flexible information passing through cross-
attention. The full spectrum is thus embedded into dimen-
sionality R(Lspec,n+1)×d. As with photometry, we pad input
spectra and retain a mask indicating which positions are
padded.

Transceiver Encoder-Decoder: We use an architecture
akin to Perceiver and Perceiver-IO (Jaegle et al., 2021b;a)
for our encoder-decoder setup. This architecture handles
any-length sequences via cross-attention. Specifically, in
the encoder, a fixed-size latent sequence (as query) attends to
the input spectrum/light curve embedding (as key and value)
to produce the latent posterior mean and variance. We refer
to this architecture for transients as the transceiver.
This differs from the vanilla transformer encoder used in
models like Maven (Zhang et al., 2024), in which the input
data itself serve as query and therefore must be fixed-size.

Multi-Modal Mixture-of-Expert VAE: Shi et al. (2019)
proposed using a mixture of-expert VAE (MMVAE) to com-
bine different modalities, enabling learning of both shared
and private information. The key idea in MMVAE is to model
the latent variable z as a mixture of distributions associ-
ated with the different modalities. Formally, let zn denote
the latent variable for the nth training pair and xn,m de-
note the data from modality m = 1, . . . ,M . Our MMVAE
approximates the conditional latent distribution, denoted
qϕm

, using transceiver encoders parameterized by ϕm.
Each encoder outputs the mean and variance of a Laplace
distribution:

p(zn|xn,1, . . . , xn,M ) ≈ qϕ :=
1

M

M∑
m=1

qϕm(zn|xn,m)

(1)
Though learned jointly, we can use the encoder for each
modality independently or combine them via the mixture-
of-experts model at inference time. Each modality also has
its own decoder. That is, with a decoder parameterized by
ψm,

p(xn,1,...,M |zn) ≈
M∏
m=1

qψm
(xn,m|zn) (2)

We use the transceiver decoder to parameterize the
mean of a Laplace distribution for each modality. We model
the prior p(z) as a standard Laplace distribution with latent
space size z ∈ R4×4. Training uses the IWAE objective
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Figure 1. Embedding method used for supernova spectra and light curves (see text for details). The approach is similar to that used in
Zhang et al. (2024), but with learnable positional encodings for observation times of photometry and spectroscopy.
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Figure 2. Encoder-decoder architecture with perceiver-IO-
style architecture for individual modalities. Modality encodings
are cross attended by a latent bottleneck sequence.

proposed by Shi et al. (2019):

L(x1,...,M ) = Ez1:K∼qϕ

[
log

K∑
k=1

1

K

p(z)
∏
m qψm

qϕ

]
(3)

We train using AdamW in PyTorch using a learning rate of
0.001 for 500 iterations. For our transceiver encoder
and decoder, we have 4 layers of multi-headed attention
with 4 heads each. The model operates in the dimension
of 32, with an MLP dimension of 32 in the attention layers.
We choose a latent dimension of 4 by 4.

Uni-Modal VAE for Spectra Generation: To evaluate
our model’s capacity for cross-modality conditional genera-
tion, we build a reference baseline: a VAE trained directly
on spectral data using the same transceiver encoder-
decoder architecture but trained with the standard ELBO
loss. This baseline ignores light curve information com-
pletely.

Multi-Modal Transceiver Trained via Contrastive
Learning: As a comparison, we also jointly train
transceiver encoders using a constrastive objective.
We project light curves and spectra into a shared R4×4 la-
tent space, further project them to R4×8 using a learned
MLP, compute the Frobenius distance between pairs, and
train the model to minimize the InfoNCE loss (Khosla et al.,
2020).

3. Experiments
Data: We use the simulation grid from Goldstein & Kasen
(2018) to train and validate our MMVAE. Goldstein & Kasen
(2018) generates 4,500 Type Ia supernovae (SNe Ia) using
the Sedona radiation transport code (Kasen, 2006). Each
simulation yields a full spectral energy distribution (SED)
surface, sampled at 1-day intervals in time and ∼30 Å inter-
vals in wavelength. We present the physical parameters as-
sociated with the simulation grid in Table 1 in Appendix A.

We simulate LSST-like photometry by integrating the SED
surfaces across the transmission curves of the LSST filters,
obtained from the SVO Filter Profile Service2. The light
curve cadence is based on the baseline v3.3 simulations
of LSST’s Wide-Fast-Deep survey. We assume a random
distribution of events in both time since survey start and
position across the survey footprint.

After sampling photometry, we require at least 10 total pho-
tometric observations across all bands to include an event
in our train/validation/test sets. For simulated spectra, we
extract fluxes directly from the SED surface in 10-day win-
dows from 10 days before peak brightness to 30 days after
it. We apply a median filter with bandwidth 3 to approxi-
mate the finite resolution of spectrographs. We then train
the model on the log-transformed flux values in units of
erg s−1 cm−2 Hz−1. All flux, wavelength, phase, and mag-
nitude values are standardized to z-scores during training
and converted back to physical units at inference time. Light
curves are zero-padded to 10 measurements per band during
training solely for parallelization, yielding uniform arrays
of length 60. We split the dataset into fractions of 80/10/10
for training, validation, and testing, respectively.

Prior Sampling: To evaluate the spectroscopic diversity
learned by the model, we sample from both the latent (stan-
dard Laplace) prior and the conditionally-generated spectra
from events in our test set. We present the results in Ap-
pendix B.1. The samples resemble the observed diversity
in the test sample with some smoothing of high-frequency
information, as is commonly observed in VAEs.

2http://svo2.cab.inta-csic.es/
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Cross-Modality Generation: In this setup, we encode pho-
tometry using the trained encoder, sample from the posterior
distribution in latent space, and decode into spectra using
the trained decoder. We evaluate our conditional generation
using three metrics: the residual error in the posterior mean,
the credible interval (CI) coverage, and the CI width. As
a baseline, we compare to (i) a uni-modal VAE trained to
encode spectra alone, (ii) a nearest neighbor search in a
learned contrastive latent space3, and (iii) the average spec-
trum across the full training set at each phase. The first
benchmark allows us to confirm that our model architecture
has sufficient capacity to reconstruct each spectrum, while
the third ensures that our reconstructions are successfully
conditioned by the event’s photometry.

Our results are shown in Figure 3. Our MMVAE achieves
reconstruction performance comparable to the spectra-only
VAE and exceeding that of the contrastive method, which es-
sentially retrieves the average SN Ia spectrum at each phase.
Further, the model’s performance remains robust under in-
creased masking of light curve inputs (see Appendix B.2
for details).The posterior samples of the model, however,
are not well-calibrated, as the CIs exhibit undercoverage.
This may reflect the limited flexibility of the encoder in
approximating complex posterior distributions.

We show a representative example of a spectrum decoded
by our MMVAE and the baseline models in Figure 4.
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Figure 3. Metrics for the generation of supernova spectra condi-
tioned on LSST light curves. Our MMVAE (‘LC2spec’) achieves
similar reconstruction accuracy to a model trained directly on spec-
tra, and outperforms a nearest neighbor search in the contrastive
latent space. However, the low CI coverage (middle row) indicates
that the posterior samples are not well-calibrated.

Feature Extraction: In this task, we evaluate whether
sparsely-sampled light curves can be used to recover the un-
derlying physical parameters from the Goldstein simulation
grid. We encode each light curve and fit a series of small
MLPs to regress the simulation parameters in Table 1. As a
baseline, we train an end-to-end transceiver encoder to
regress the model parameters directly from both photometry
and spectra. Our results can be found in Appendix B.3.

3The nearest neighbor method does not provide uncertainty
estimates, so we exclude it from our CI-based comparisons.
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Figure 4. Sample reconstruction of a spectrum 10 days after super-
nova peak light by our MMVAE (right, ‘LC2spec’), and conditioned
on an input light curve (left). Baseline spectra are shown at right
for the training average at +10 days in green and the nearest spec-
trum recovered by the contrastive model in orange (see text for
details).
4. Discussion
We have introduced an MMVAE trained to learn joint
embeddings between supernova modalities and perform
probabilistic cross-modality generation. Our proposed
transceiver encoder and decoder has independent
value beyond the MMVAE, and can be used to train alterna-
tive multi-modal architectures like flamingo (Alayrac et al.,
2022) for representation learning of time-domain datasets.

The model presented can be used to inform real-time follow-
up of supernovae. By producing posteriors over spectra
conditioned on photometry, it allows astronomers to rapidly
infer an explosion’s general physical properties and to triage
follow-up targets – either to confirm predicted spectral fea-
tures or collect data to improve future predictions.

Beyond reconstruction, the model’s latent features can also
serve as inputs to lightweight, task-specific models. Em-
pirically, our MMVAE can reconstruct data modalities more
faithfully than a similar model trained with a constrastive
objective. As a result, our approach provides a promising
alternative for training multi-modal “foundation models” in
astrophysics (e.g., Parker et al., 2024; Zhang et al., 2024;
Rizhko & Bloom, 2025). The intermediate cross-modal re-
constructions can also be used for mechanistic interpretabil-
ity studies, by linking predicted spectral features to the
output of downstream models optimized for classification
and redshift prediction.

In future work, we will incorporate host-galaxy images of
the observed supernova as a third modality and extend our
architecture to explicitly enforce public and private infor-
mation using, e.g., MMVAE+ (Palumbo et al., 2023; Märtens
& Yau, 2024) or diffusion decoders (Palumbo et al., 2024).
We also aim to improve the calibration of our output sam-
ples. Finally, we plan to fine-tune the model for common
downstream tasks in transient science and benchmark per-
formance against existing models (e.g., ParSNIP for classi-
fication, Boone 2021; SALT3 for joint fitting of photometry
and spectra, Kenworthy et al. 2021).
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A., Flaugher, B., Foley, R. J., Fosalba, P., Friedel, D.,
Frieman, J., Frohmaier, C., Galbany, L., Garcı́a-Bellido,
J., Gatti, M., Gaztanaga, E., Giannini, G., Glazebrook, K.,
Graur, O., Gruen, D., Gruendl, R. A., Gutierrez, G., Hart-
ley, W. G., Herner, K., Hinton, S. R., Hollowood, D. L.,
Honscheid, K., Huterer, D., Jain, B., James, D. J., Jeffrey,
N., Kasai, E., Kelsey, L., Kent, S., Kessler, R., Kim, A. G.,
Kirshner, R. P., Kovacs, E., Kuehn, K., Lahav, O., Lee, J.,

Lee, S., Lewis, G. F., Li, T. S., Lidman, C., Lin, H., Ma-
lik, U., Marshall, J. L., Martini, P., Mena-Fernández, J.,
Menanteau, F., Miquel, R., Mohr, J. J., Mould, J., Muir, J.,
Möller, A., Neilsen, E., Nichol, R. C., Nugent, P., Ogando,
R. L. C., Palmese, A., Pan, Y. C., Paterno, M., Percival,
W. J., Pereira, M. E. S., Pieres, A., Malagón, A. A. P.,
Popovic, B., Porredon, A., Prat, J., Qu, H., Raveri, M.,
Rodrı́guez-Monroy, M., Romer, A. K., Roodman, A.,
Rose, B., Sako, M., Sanchez, E., Sanchez Cid, D., Schub-
nell, M., Scolnic, D., Sevilla-Noarbe, I., Shah, P., Smith,
J. A., Smith, M., Soares-Santos, M., Suchyta, E., Sul-
livan, M., Suntzeff, N., Swanson, M. E. C., Sánchez,
B. O., Tarle, G., Taylor, G., Thomas, D., To, C., Toy, M.,
Troxel, M. A., Tucker, B. E., Tucker, D. L., Uddin, S. A.,
Vincenzi, M., Walker, A. R., Weaverdyck, N., Wechsler,
R. H., Weller, J., Wester, W., Wiseman, P., Yamamoto, M.,
Yuan, F., Zhang, B., and Zhang, Y. The Dark Energy Sur-
vey: Cosmology Results with ∼1500 New High-redshift
Type Ia Supernovae Using the Full 5 yr Data Set. , 973(1):
L14, September 2024. doi: 10.3847/2041-8213/ad6f9f.

Goldstein, D. A. and Kasen, D. Evidence for sub-
chandrasekhar mass type ia supernovae from an extensive
survey of radiative transfer models. The Astrophysical
Journal Letters, 852(2):L33, 2018.

Hoyle, F. and Fowler, W. A. Nucleosynthesis in supernovae.
Astrophysical Journal, vol. 132, p. 565, 132:565, 1960.
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A. Simulation Parameters
We present the physical parameters associated with the Goldstein & Kasen (2018) simulation grid in Table 1.

Table 1. Physical parameters associated with the SN Ia simulation grid used in this work.

Parameter Symbol Range
Kinetic energy Ek [4.514, 5.144]× 1051 erg
Ejecta Mass mej [0.7, 2.5]M⊙
56Ni Mass mNi [0.75, 2.16]M⊙
IME Mass mIME [0.0036, 2.07]M⊙
Unburnt C/O Mass mCO [0, 0.17]M⊙
Progenitor Mass m [1.0, 2.5]M⊙

B. Additional Results
B.1. Prior sampling

We can sample the latent prior and decode directly into spectra to inspect the model’s diversity in generation. We show 50
prior samples of spectra at phase +10 days relative to peak light in Figure 5. The model’s prior qualitatively matches the test
sample but retains less high-frequency structure.
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MMVAE prior
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11.5

test samples

Figure 5. Spectral samples from the model prior (left) and after conditioning on photometry for events in the test set (right). Our model
captures key spectroscopic diversity in SNe Ia e.g., the blended absorption near 4200 Å, and this diversity is enhanced by the inclusion of
cross-modality information.

B.2. Masking

In this experiment, we randomly mask 0%, 10%, 30%, 50%, 70%, and 90% of the conditioned light curves and attempt
to reconstruct a spectrum. An example is shown in Figure 6. Our method shows some robustness to masking until nearly
70% of photometric observations are masked, beyond which model predictions appear to collapse to the training-set mean
spectrum.

Next, we more directly assess whether our model reverts to predicting an average SN Ia spectrum when conditioned on less
photometric information. In Figure 7, we show the absolute difference between 1) the model prediction and an average
SN Ia spectrum from our grid, 2) the model prediction and the ground-truth spectra, and 3) the average and ground-truth
spectra. We observe that as the majority of observations are masked, the difference between predicted and average spectra
systematically decreases. This confirms that the model regresses toward the prior when conditioned on less information.
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B.3. Feature extraction

The baseline end2end model is a simple encoder following the texttttransceiver architecture, similar to the encoder used in
MMVAE and the contrastively-trained model.

We train identical MLPs to predict each physical parameter in Table 1 using two-thirds of the test set. We evaluate on the
remaining third. Our results are shown in Figure 8.

Recovering most physical parameters from photometry alone proves challenging, and most methods perform only slightly
better than a training-set average. This may be the result of the sparse sampling of the conditioned LSST light curves.
Parameters closely tied to brightness —such as 56Ni mass — are better predicted. Both the MMVAE and the contrastively-
trained model outperform the end-to-end baseline on most parameters, suggesting that a structured latent representation is
better able to preserve physical information.
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Figure 8. Mean and 1σ standard deviations of absolute residuals for recovering six parameters from Goldstein & Kasen (2018)’s simulation
grid. Both MMVAE and contrastive models outperform end-to-end regression on most parameters, but with large scatter.
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