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Abstract
Merger trees track the hierarchical assembly of
dark matter halos across cosmic time and are cru-
cial for semi-analytic models of galaxy forma-
tion. However, traditional methods for generat-
ing merger trees rely on ad-hoc assumptions and
struggle to incorporate environmental information.
We present FLORAH-Tree, a generative model
for merger trees using directed acyclic graphs,
combining recurrent neural networks to capture
the sequential nature of mergers with normalizing
flows to model halo property distributions. Our
model, trained on cosmological simulations, accu-
rately reproduces key merger tree statistics across
wide mass and redshift ranges. This approach
offers a computationally efficient alternative to
simulation-based merger trees while maintaining
statistical fidelity, and can be generalized to a
broad class of tree-generative problems beyond
galaxy formation.

1. Background
In Lambda Cold Dark Matter, dark matter (DM) halos form
hierarchically, i.e. massive halos form from the successive
merger of smaller, less massive halos (e.g. White & Rees,
1978). Since galaxies form and evolve within massive DM
halos, the accretion and merger histories of DM halos are
intrinsically connected to the properties of their galaxies.

The hierarchical growth of DM halos is captured by “merger
trees”, tree-like data structures that link progenitor halos
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to their descendants across cosmic times. Merger trees are
a key ingredient of semi-analytic models (SAMs), which
use simplified prescriptions of baryonic physics to map
(semi-)observable galaxy properties onto DM-only merger
trees (e.g. Yung et al., 2019; Hutter et al., 2021). SAMs
are a leading approach in modern galaxy formation, as they
require significantly fewer computational resources than full
hydrodynamic simulations (see Somerville & Davé 2015).

To generate DM-only merger trees, two methods are tradi-
tionally employed: (1) extracting them from DM-only (or
N -body) simulations and (2) constructing them analytically
using the Extended Press-Schechter (EPS) formalism (Press
& Schechter, 1974; Bower, 1991). Simulations are more
accurate but have high computational costs, which limits the
halo mass range that can be captured. EPS-based methods
are faster but cannot capture environmental correlations and
long-term temporal dependencies (i.e. how a halo’s assem-
bly history affects its future evolution) that influence the
merger histories (Somerville et al., 2000).

Machine learning offers promising approaches for generat-
ing fast merger trees with environmental information, yet
this application remains unexplored. Prior studies such as
Jespersen et al. (2022); Chuang et al. (2024) focus on map-
ping halo properties to baryon properties given existing DM
halo merger trees, rather than generating the merger trees
themselves. Tang & Ting (2022) presented a graph gen-
erative model that maps properties of a halo at z = 0 to
its progenitor graphs at z = 2, which could in principle
be adopted to generate full merger trees. However, this
approach was only demonstrated for these two redshifts,
leaving unclear whether it can generate full merger trees
across multiple epochs.

Only Robles et al. (2022) has previously employed an image-
based generative adversarial network (GAN) to emulate full
merger trees, but GANs are susceptible to mode-collapse
and require more extensive validation than presented. Their
image-based approach also limits generalizability to differ-
ent temporal and redshift ranges and cannot enforce specific
physical constraints, e.g., prohibiting arbitrary splitting of
halos. Graph-based models (Liu et al., 2019; 2023) are
better suited for merger tree structure but face significant
limitations: they require predetermined graph sizes, mak-
ing them inflexible for the variable branching structure of
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merger trees, and they lack mechanisms to enforce the same
physical constraints.

Instead of emulating full merger trees all at once, a sim-
pler approach is to first model the main progenitor branch,
which traces the most massive progenitors of a halo, and
then reconstruct the remaining branches in a physically con-
sistent manner. Following this strategy, Nguyen et al. (2024)
developed FLORAH, a generative model based on recur-
rent neural networks (RNNs) and normalizing flows that
autoregressively models main progenitor evolution. The
study demonstrated that FLORAH successfully reproduces
population statistics of mass and concentration histories
in cosmological N-body simulations, as well as clustering
properties and assembly bias for main progenitor branches.

In this work, we extend FLORAH to generate complete
merger trees by incorporating two key components: a clas-
sifier to predict the number of progenitors at each time
step, and additional neural network modules to model the
mass evolution of multiple progenitors simultaneously. Our
approach draws inspiration from autoregressive graph gen-
erative models like GraphRNN (You et al., 2018), but is
specifically tailored for hierarchical tree structures like
the merger histories. We refer to the updated model as
FLORAH-Tree.

We validate our approach by demonstrating that the gener-
ated merger trees accurately reproduce key statistical proper-
ties, such as progenitor mass distributions and merger rates.
To provide additional context for our model’s performance
relative to established semi-analytic methods, we further
compare our results against merger trees generated using
the EPS-based algorithm from Parkinson et al. (2008) as
implemented in SatGen (Jiang et al., 2021). Lastly, we
apply the Santa Cruz SAM to the generated merger trees
and predict key galaxy-halo scaling relations such as super-
massive black hole mass-halo mass and stellar-to-halo mass
relations.

Simulation
We train FLORAH-Tree on merger trees extracted from
the Very Small MultiDark Planck DM-only simulation
(VSMDPL; Klypin et al. 2016). The simulation evolves
38403 DM particles, each with a mass of 8.9 × 106 M⊙,
within a cubic volume of (160Mpch−1)3, using Planck
2013 cosmology (Planck Collaboration, 2014). We also
present results using an alternative training simulation in
Appendix B.

We extract DM halos using ROCKSTAR and reconstruct
merger trees using CONSITENTTREE (Behroozi et al.,
2012a;b). We exclude low-resolution halos that ROCKSTAR
does not reliably identify. In particular, we exclude all
merger trees whose “root” halos fewer than 500 particles

(4.5 × 107 M⊙) and all progenitor halos fewer than 200
particles (1.7× 106 M⊙), along with their progenitors.

For the feature of each halo, we use its virial mass, M200c

and DM concentration, c200c (Navarro et al., 1996). The DM
concentration correlates with formation time and large-scale
environment (e.g., van den Bosch, 2002; Wechsler et al.,
2006; Correa et al., 2015) and plays a crucial role in under-
standing secondary biases in large-scale structures, such as
halo assembly bias. We use the cosmological redshifts, z,
of the simulation snapshots as our timesteps.

We extract 300, 000 merger trees from a (72Mpch−1)3 sub-
volume of VSMDPL and split them 80− 20 between train-
ing and validation. For testing, we extract 50, 000 merger
trees from an independent (40Mpch−1)3 sub-volume.

Methodology
1.1. Forward model

Fig. 1 shows the schematic of FLORAH-Tree. We model
the assembly and merger histories of the halo backward
in time, i.e. from low to high redshift. By convention,
“descendant” halos (denoted with subscript d) refer to halos
at lower redshifts that form from the merger of “progenitor”
halos (denoted with subscript p) at higher redshifts.

Given a descendant halo with a feature vector, xd, at redshift
zd, our goal is to model the feature vectors of Np progenitors,
Xp ≡ {xp,1 . . .xp,Np}, at some redshift zp > zd. In this
manner, given a root halo at present, we can iteratively
generate its complete merger tree by successively predicting
progenitor populations at higher redshifts until reaching a
predetermined redshift or mass threshold.

To model the progenitors Xp, we also want to incorporate
the descendant’s assembly history, defined as the sequence
of halos tracing back from the descendant to the root. The
key observation here is that in the direction of increasing
redshift, descendant halos split into progenitor halos that
evolve (backward in time) independently without recom-
bining. As such, each descendant halo possesses a unique
assembly history that influences its progenitor population.

We define a history vector from root halo xr to descendant
halo xd as Hhist = {x(1),x(2), . . . ,x(Nhist)}, where x(1) =
xr and x(Nhist) = xd, with intermediate halos ordered by
increasing redshift. We also track the corresponding redshift
history Zhist, which is provided as input during generation.

We thus write the conditional probability distribution (PDF)
of the progenitor halos as p(Xp, Np|Hhist,Zhist, zp), where
we have absorbed xd and zd into Hhist and Zhist, respectively.
We then split this distribution into two components:

p(Xp, Np | C) = pmult(Np | C) pprop(Xp | C, Np), (1)

2



Merger Tree Generative Model

Training (NDE)

Descendant 
+ History

History
Encoder

Classifier

Neural Density
Estimator

Encoded
History

Prog.
redshift

Multinomial
probability 

Prog.
redshift

Training

Cross 
Entropy 

Negative Log
Likelihood 

Num. 
Prog.

Prog.
Properties

Legend
sample
fromconcat GRU

...

Training & Inference Flow
NLL

Encoded
Prog.

FLORAH

VSMDPL

9 10 11
log10(M200c/M�)

9 10 11
log10(M200c/M�)

9 10 11 12
log10(M200c/M�)

9 10 11 12 13
log10(M200c/M�)

Figure 1. Top: Schematic of FLORAH-Tree. Bottom: Example FLORAH-Tree and VSMDPL merger trees with four different root
masses. Vertical positions indicate redshift, increasing from top to bottom, while horizontal positions are arbitrary and do not carry
physical meaning.

where C ≡ (Hhist,Zhist, zp) is the conditioning vector. Here,
pmult describes the probability of Np progenitors, and pprop
is the joint distribution of progenitor properties.

Assuming a max progenitor count, we can model pmult as a
multinomial distribution and employ an FC classifier. Given
the timesteps of VSMDPL, we find Np to be typically small,
with most mergers involving only 2−3 massive progenitors.
We set the max progenitor count to be Nmax = 3 and the
min progenitor-descendant mass ratio to be 0.01.

The FLORAH-Tree model then consists of three primary
components: (1) an RNN history encoder to encode Hhist
and Zhist, (2) an FC classifier to model pmult, and (3) an
NDE to model pprop. Below we provide a brief description
of the architecture (more details in Appendix A.1).

The encoder consists of 4 GRU layers (Cho et al., 2014) that
take in Hhist and Zhist and embed them into a 128-D latent
space. Only the output vector from the final timestep in the
sequence is used as the encoded representation. Before pass-
ing through the GRU, Hhist and Zhist are first independently
projected through FC layers, then summed together.

The FC classifier takes in this encoded representation (con-
catenated with the progenitor redshift zp) and outputs a
multinomial probability vector, π̂ ≡ (π̂1, π̂2, . . . , π̂N ).

Here π̂i denotes the probability of having i progenitors.

Since the progenitor count varies per descendant, we adopt
a sequential approach similar to Pandey et al. (2024) to
model pprop. Given a descendant, we order its progeni-
tor features Xp in descending mass orders and sequentially
predict each new progenitor xp,i using the previous pro-
genitors {xp,1 . . .xp,i−1}. The NDE consists of a GRU
for embedding the progenitor sequence into a latent space
and a conditional neural spline flow (Durkan et al., 2019)
for density modeling. We denote flow density for xp,i as
q̂(xp,i | {xp,0 . . .xp,i−1}, C), where the additional condi-
tion C includes the encoded history, progenitor redshift zp,
and progenitor count Np. Here, we also introduce a zero
starting token xp,0 = 0⃗ to predict the first progenitor.

1.2. Training & Generation

We train all three model components simultaneously. Train-
ing is performed halo by halo: given a merger tree, at each
training step, we select a random descendant halo and com-
pute the corresponding loss (see also Appendix A.2).

Given a descendant xd with Np progenitors and features
{xp,1 . . .xp,Np}, the classifier loss is the cross-entropy loss,
LCE = −∑Nmax

i=1 πi log π̂i, where πi is the one-hot encod-
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Figure 2. The normalized, cumulative mass functions of VS-
MDPL (shaded) and FLORAH-Tree (solid) for three redshift
slices.

ing of Np. The NDE loss is the negative log-likelihood
summed over all progenitors, LNDE = −∑Np

i=1 log q̂(xp,i |
{xp,1 . . .xp,i−1}, C). The final loss function is Ltotal =
LNDE + αLCE, where α controls the relative weight be-
tween the losses. In practice, we find α = 1 works well.

We use an AdamW optimizer (Loshchilov & Hutter, 2019;
Kingma & Ba, 2014) with a peak learning rate 10−5 and
weight decay coefficient 0.01. The learning rate follows
a cosine annealing schedule (Loshchilov & Hutter, 2016),
with 500, 000 warm-up steps and 25, 000 decay steps. We
use a batch size of 128. Training converges after approxi-
mately 72 hours on a single NVIDIA Tesla A100 GPU.

Given a list of root halos and redshifts, generation pro-
ceeds redshift by redshift: we process all halos within each
redshift before proceeding to the next, while tracking all
descendant-progenitor connections. This enables efficient
batching, with consistent input dimensionality despite the
varying halo count per snapshot. For each descendant, we
encode its history, then randomly sample the progenitor
count from the classifier’s multinomial distribution π̂ and
progenitor features from the NDE q̂. After iterating over
all redshifts, we reconstruct the trees using the recorded
descendant-progenitor connections.

We terminate progenitor branches when their sampled mass
falls below a min mass threshold of 1.7 × 106 M⊙ (200
particles). We also enforce the descending mass ordering.
If sampled progenitors violate this condition, we simply
resample, though, in practice, we find such occurrences
extremely rare with sufficient training data.

For testing, we take the 50,000 root halos in the test set
and randomly generate a distinct merger tree realization for
each halo. The full generation process takes ∼ 16 minutes
on a single GPU (with reconstruction accounting for ∼ 6
minutes), significantly lower than N -body simulations and
easily parallelizable for further efficiency gains.
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Figure 3. Merger rates as a function of progenitor mass ratios. The
left panels compare FLORAH-Tree and VSMDPL merger rate,
while the right panels compare EPS-based and VSMDPL merger
rates. Error bars representing Poisson uncertainties of VSMDPL.

Results & Conclusion
Fig. 1 shows examples of the generated merger trees. Each
column shows FLORAH-Tree and VSMDPL merger trees
with the same root mass, demonstrating FLORAH-Tree
captures merger tree diversity in VSMDPL. Fig. 2 shows
the normalized, cumulative mass functions for three
redshift slices, demonstrating good agreement between
FLORAH-Tree and VSMDPL.

We now compare FLORAH-Tree against merger trees gen-
erated using the traditional Extended Press-Schechter (EPS)
formalism. Specifically, we employ the implementation of
Parkinson et al. (2008) as provided by SatGen (Jiang et al.,
2021). For consistency, we apply identical post-processing
to FLORAH-Tree and EPS trees: a minimum halo mass of
200Mdm and a maximum progenitor count of Nprog = 3.

Fig. 3 compares the merger rates of FLORAH-Tree, EPS-
based, and VSMDPL trees for two redshift slices. Follow-
ing Fakhouri & Ma (2008), we define the merger rate as
the number of mergers per unit volume, descendant mass,
and redshift. The progenitor mass ratio is the mass of each
non-primary progenitor relative to the primary progenitor.
The results show strong agreement between the merger rates
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Figure 4. Comparison of scaling relations from SC-SAM predictions on FLORAH-Tree, EPS-based, and VSMDPL merger trees at
z = 0. Top panels compare FLORAH-Tree and VSMDPL merger trees, while bottom panels compare the EPS-based and VSMDPL
merger trees. From left to right, the columns show the SHMR, SHMR residual-concentration relation, and the SMBH mass-halo mass
relation. Solid lines and bands represent the median and 68% intervals.

predicted by FLORAH-Tree and those from VSMDPL,
with consistent performance across mass and redshift bins.
In contrast, the EPS trees systematically overpredict merger
rates, consistent with prior studies (e.g., Zhang et al., 2008).

Perhaps the most stringent test of our generated trees is
the predictions they yield for galaxy properties when com-
bined with commonly used recipes for baryonic physics.
We apply the Santa Cruz SAM (SC-SAM, Somerville et al.
2008) to the generated trees and assign semi-observable
galaxy properties onto each DM halo. Specifically, we com-
pute the stellar-to-halo-mass relation (SHMR), the SHMR
residual-concentration relation, and the supermassive black
hole (SMBH) mass-halo mass relation. In SC-SAM, both
SMBH growth (through merger-driven “bright mode” and
steady “radio mode” accretion) and stellar mass assembly
(through merger-driven starbursts and quiescent star forma-
tion) depend critically on the accretion and merger histories.
Lastly, the SHMR residual-concentration relation probes
galaxy assembly bias by showing stellar mass dependencies
beyond halo mass (e.g. Gabrielpillai et al., 2022).

Fig. 4 compares the median and 68% confidence inter-
vals of these relations for FLORAH-Tree, EPS-based,
and VSMDPL at z = 0. For all scaling relations, the
FLORAH-Tree predictions align remarkably well with the
VSMDPL results. The SAMs run on EPS-based trees
recover the SHMR reasonably well, albeit with notice-
able discrepancies at low halo masses. However, the EPS-
based trees show poor agreement with the SHMR residual-
concentration relation, displaying minimal correlation be-

tween SHMR residual and concentration. This lack of cor-
relation highlights the well-known limitation of EPS-based
algorithms in capturing the dependence of merger history
on secondary halo properties. Additionally, the EPS SAM
run systematically overpredicts SMBH masses, consistent
with its overestimation of merger rates in Fig. 3.

To conclude, FLORAH-Tree represents a significant step
toward fast, accurate merger tree generation that can enable
large-scale galaxy formation studies previously computa-
tionally prohibitive with N -body simulations alone. Most
notably, the model demonstrates consistent performance
across wide mass and redshift ranges. This is particularly
significant given the mass imbalance in the training dataset
(i.e., the shape of the halo mass function) and the potential
for error accumulation seen in autoregressive techniques.
The accurate reproduction of key galaxy-halo scaling re-
lations with SC-SAM confirms that FLORAH-Tree gen-
erates physically realistic merger trees suitable for down-
stream galaxy formation modeling, while substantially out-
performing traditional EPS-based approaches.

More broadly, our framework can be generalized to a
broad class of hierarchical tree-generative problems in astro-
physics and beyond. Future extensions include leveraging
multiple simulations to expand the dynamic range of merger
trees, incorporating information from the simulation’s initial
density fields, and conditioning on cosmological parame-
ters using suites like CAMELS (Villaescusa-Navarro et al.,
2021) and DREAMS (Rose et al., 2025).
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Software and Data
The GitHub repository for FLORAH-Tree and instruc-
tions for downloading the pre-trained models and a sub-
set of the generated merger trees can be found at https:
//github.com/trivnguyen/florah-tree.

This project uses the following software: IPython (Perez
& Granger, 2007), Jupyter (Kluyver et al., 2016),
Matplotlib (Hunter, 2007), NumPy (Harris et al.,
2020), PyTorch (Paszke et al., 2019), PyTorch
Geometric (Fey & Lenssen, 2019), PyTorch
Lightning (Falcon et al., 2020), SciPy (Virtanen et al.,
2020), SatGen (Jiang et al., 2021), zuko (Rozet et al.,
2024), ytree (Smith & Lang, 2019).
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Spergel, D. N., Somerville, R. S., Dave, R., Pillepich,
A., Hernquist, L., Nelson, D., Torrey, P., Narayanan, D.,
Li, Y., Philcox, O., La Torre, V., Maria Delgado, A.,
Ho, S., Hassan, S., Burkhart, B., Wadekar, D., Battaglia,
N., Contardo, G., and Bryan, G. L. The CAMELS
Project: Cosmology and Astrophysics with Machine-
learning Simulations. ApJ, 915(1):71, July 2021. doi:
10.3847/1538-4357/abf7ba.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
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G., and Davé, R. Semi-analytic forecasts for JWST - I.
UV luminosity functions at z = 4-10. MNRAS, 483(3):
2983–3006, March 2019. doi: 10.1093/mnras/sty3241.

Yung, L. Y. A., Somerville, R. S., Nguyen, T., Behroozi, P.,
Modi, C., and Gardner, J. P. Characterising ultra-high-
redshift dark matter halo demographics and assembly
histories with the GUREFT simulations. MNRAS, May
2024. doi: 10.1093/mnras/stae1188.

Zhang, J., Fakhouri, O., and Ma, C.-P. How to grow a
healthy merger tree. MNRAS, 389(4):1521–1538, October
2008. doi: 10.1111/j.1365-2966.2008.13671.x.

8

https://doi.org/10.21105/joss.01881
https://doi.org/10.1111/j.1365-2966.2008.13805.x
https://doi.org/10.1111/j.1365-2966.2008.13805.x


Merger Tree Generative Model

Name Parameters
History Encoder 4.13× 105

Neural Density Estimator 5.70× 105

Classifier 3.37× 104

Total 1.02× 106

Table 1. Breakdown of the number of trainable parameters in each model component.

A. Additional details on the machine learning framework
A.1. Forward model

As described in Section 1.1, the forward model consists of three primary components: (1) a history encoder to encode
the history parameter and redshift feature Hhist and Zhist, (2) a classifier that takes in this encoded history and predicts a
multinomial probability vector of the progenitor counts π̂, and (3) an NDE to model the distribution of progenitor features
Xp. Here we provide more details about the network architecture of each model component.

The history encoder consists of four GRU layers, each with 128 hidden units. All but the last layer followed by a ReLU
activation (Hahnloser et al., 2000). During the forward pass, both Hhist and Zhist are independently projected into a 128-D
space using two separate FC layers. The resulting projections are summed and then passed through the GRU layers. Only
the output vector from the final timestep in the sequence is used as the encoded representation.

The classifier takes in the 128-D encoded history and outputs a multinomial probability vector π̂. The vector π̂ has a
dimension of Nmax, the max progenitor counts, which is set to Nmax = 3 in this study. The classifier consists of four FC
layers, each with 16 hidden units and a GELU activation (Hendrycks & Gimpel, 2016). To account for the progenitor redshift,
zp, we project zp into a 128-D space using an FC layer and then add it to encoded history. The resulting representation is
then passed through the classifier. A softmax function is applied to the output of the final layer to produce π̂.

As mentioned, to model the properties of a varying number of progenitor, we order the targeted progenitor features Xp in
descending mass orders, i.e. Xp = {xp,1 . . .xp,N} where Mp,i > Mp,j for i < j. To model the distribution of xp,i, we first
use a GRU encoder (referred to as the progenitor encoder) to embed the previous progenitors {xp,0,xp,1 . . .xp,i−1} into a
128-D latent space. Here xp,0 = 0̃ is a zero starting token. We then feed this encoded representation as conditions for a
normalizing flow. The GRU progenitor encoder has a similar architecture to the history encoder, i.e. four GRU layers, each
with 128 hidden units. For the flow, we use four neural spline flows with monotonic rational-quadratic spline transformations,
each with 8 knots and a hidden size of 128.

Additionally, we condition the flow on the progenitor count Np. We represent Np as a one-hot encoded vector and project
it onto a 128-D latent space using a single FC layer. This projected representation is added to the encoded progenitor
representation before being fed as conditioning input to the flow. We find this conditioning to be essential, likely due to
mass conservation: Np determines how the descendant halo’s mass is partitioned among progenitors. Systems with many
progenitors predominantly undergo minor mergers, while those with few progenitors involve major merger events. This
relationship between progenitor multiplicity and mass distribution has been extensively studied (e.g. Somerville et al., 2000).

The full model has a total of 1.02× 106 trainable parameters. Table 1 provides the breakdown of each model component.

Lastly, we experiment with the Transformer architecture (Vaswani et al., 2023). In this manner, the history encoder functions
as the Transformer encoder, while the progenitor encoder in the NDE serves as the decoder. We also experiment with
different ways to encode the redshift Zhist information such as positional sinusoidal encoding (Vaswani et al., 2023). We
find that performance remains largely unchanged, with the GRU-based model being computationally faster.

A.2. Training

As mentioned in Section 1.1, the training process proceeds halo by halo: given a merger tree, in each training step, we
randomly select a descendant halo and its progenitors and compute the loss function. In practice, this can be computationally
inefficient. Thus, at each training step, instead of select a single halo of a merger tree, we select a random branch and
compute the loss for on all descendant halos within that branch. This approach leverages the sequential nature of the GRU
layers more effectively. It also naturally places more weight on halos at lower redshifts, as halos at these redshifts appear
multiple times for a single merger tree. This is important for autoregressive models since, during generation, any errors at
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Figure 5. Top left: The normalized, cumulative mass functions of FLORAH-Tree (solid) and GUREFT-05 (shaded) for three redshift
slices. Top right: Merger rates as a function of progenitor mass ratios. FLORAH-Tree results are shown as solid lines with bands,
GUREFT-05 as error bars. Bands and error bars representing Poisson uncertainties. Bottom: Comparison of scaling relations from
SC-SAM predictions on FLORAH-Tree (orange) and GUREFT-05 (blue) merger trees at z = 5.90. Solid lines and bands represent the
median and 68% intervals.

early time steps will propagate to later time steps.

B. Additional result on the GUREFT simulation
The GUREFT (Gadget at Ultrahigh Redshift with Extra-Fine Timesteps; Yung et al. 2024) simulations are a suite of N -body
simulations designed to probe the assembly histories of DM halos at ultra-high redshift (z = 5.9 − 40). A distinctive
feature of GUREFT is its unprecedented temporal resolution, with 171 simulation snapshots between z = 5.9− 40, spaced at
one-tenth of the halo dynamical time. This enables detailed reconstruction of merger histories during the earliest cosmic
times. We present results for the GUREFT-05 box, which contains the highest number of halos and merger trees. The
simulation volume is (5Mpch−1)3 and contains 10243 particles at a mass resolution of 1.5× 104M⊙.

Similarly, we apply a resolution cut of 500 particles (7.5 × 105M⊙) for the root halos at z = 5.9 and 200 particles
(3.0× 105M⊙) for progenitor halos. After the cut, we obtained approximately 35,000 merger trees, which we then split into
subsets of 20,000, 8000, and 7000 trees for the training, validation, and test datasets, respectively.

Training proceeds similarly, using the same architecture described in Sections 1.1 and A.1. For inference, we take root halos
of the 7,000 merger trees in the test dataset and generate 5 independent realizations for each root halo to increase statistical
robustness. This results in approximately 35,000 total merger trees in the FLORAH-Tree dataset. We subsequently apply
SC-SAM to both the generated and simulation merger trees to derive stellar masses and SMBH masses for each halo.

Fig. 5 shows the comparison between FLORAH-Tree and GUREFT-05 merger trees. Panels are formatted similarly to
Fig. ??: the top left panel, top right panels, and bottom panels display the normalized cumulative mass function, merger
rates, and the three scaling relations, respectively. Consistent with our previous findings, FLORAH-Tree successfully
reproduces these key statistics in agreement with GUREFT-05. The agreement is somewhat reduced compared to the
VSMDPL case, likely attributable to the smaller size of the training dataset.

In case of SC-SAM results, while the test and FLORAH-Tree datasets contain 7,000 and 35,000 merger trees respectively,
only 320 and 1,588 trees possess assigned stellar masses at z = 5.90. As a result, the scaling relations predicted by
FLORAH-Tree extend marginally beyond those of GUREFT-05. This difference represents a statistical sampling effect
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rather than a systematic discrepancy in the underlying merger statistics.
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