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Abstract
We present VADER (Variational Autoencoder
for Disks Embedded with Rings), for inferring
both planet mass and global disk properties from
high-resolution ALMA dust continuum images of
protoplanetary disks (PPDs). VADER, a proba-
bilistic deep learning model, enables uncertainty-
aware inference of planet masses, α-viscosity,
dust-to-gas ratio, Stokes number, flaring index,
and the number of planets directly from proto-
planetary disk images. VADER is trained on
over 100,000 synthetic images of PPDs gener-
ated from FARGO3D simulations post-processed
with RADMC3D. Our trained model predicts phys-
ical planet and disk parameters with R2 > 0.9
from dust continuum images of PPDs. Applied
to 23 real disks, VADER’s mass estimates are
consistent with literature values and reveal latent
correlations that reflect known disk physics. Our
results establish VAE-based generative models
as robust tools for probabilistic astrophysical in-
ference, with direct applications to interpreting
protoplanetary disk substructures in the era of
large interferometric surveys.

1. Introduction
Understanding how planets form and evolve requires inter-
preting the rich substructures seen in high-resolution im-
ages of protoplanetary disks. With the advent of ALMA,
disks are now routinely resolved into rings, gaps, and spi-
rals—features that potentially trace the dynamical influence
of forming planets (Andrews et al., 2018; Isella & Turner,
2018; Huang et al., 2020; Fedele et al., 2018; Bae et al.,
2022; Cieza et al., 2021). However, connecting these ob-
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served morphologies to physical quantities such as planet
mass, disk viscosity, or dust properties remains a formidable
inverse problem (Haworth et al., 2016; Rosotti, 2023; Do-
minik & Dullemond, 2024; Jiang et al., 2024). Traditional
approaches rely on running large suites of hydrodynamic
simulations and comparing their outputs to observations—a
process that is computationally intensive and difficult to
scale (Toci et al., 2019; Veronesi et al., 2019; 2021; Teague
et al., 2018). Moreover, many disk features are inherently de-
generate: multiple combinations of parameters can produce
nearly identical images (Kanagawa et al., 2016; Dipierro
et al., 2015; Lodato et al., 2019; Zhang et al., 2018; Long
et al., 2020).

Machine learning has recently emerged as a promising alter-
native, offering faster inference by learning mappings from
images to physical parameters (Auddy & Lin, 2020; Auddy
et al., 2022; Ribas et al., 2020). Most of these methods,
however, are based on conventional models like multi-layer
perceptrons (Auddy & Lin, 2020) or convolutional neural
networks (Auddy et al., 2021; Zhang et al., 2022; Telkamp
et al., 2022), which yield deterministic estimates and fail to
capture the prediction uncertainties.

In this work, we present VADER, a Variational Autoen-
coder framework that addresses these gaps by modeling
the full posterior distribution over planetary and disk pa-
rameters from resolved ALMA-like disk images. Trained
on synthetic data derived from FARGO3D and RADMC3D,
our model encodes disk morphology into a smooth latent
space and infers both local and global physical quanti-
ties—including masses of up to three embedded planets
and disk properties such as α-viscosity and dust-to-gas ratio.
Unlike prior models, VADER produces uncertainty-aware
predictions and generalizes effectively to real observations.
This work lays the foundation for probabilistic inference in
planet and disk properties.

2. Methods
2.1. Synthetic Dataset Generation

We train our model on a dataset of over 100,000 synthetic
images of protoplanetary disks. These images are generated
using the FARGO3D hydrodynamic code and post-processed
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with the RADMC3D radiative transfer package. The dataset
emulates ALMA Band 6 dust continuum observations at
1300µm. The simulations include up to three embedded
planets and span a wide range of physical parameters: planet
masses (8M⊕ to 3MJ), α-viscosity (10−4 to 5×10−2),
dust-to-gas ratio (0.01 to 0.05), Stokes number (10−4 to
1.57), and flaring index (0.01 to 0.25), where M⊕ is the
mass of Earth and MJ is the mass of Jupiter. Each simu-
lation produces ∼150 augmented images with randomized
inclinations, position angles, and translations, resulting in a
diverse training set of axisymmetric disk morphologies.

Figure 1. Simplified schematic of the variational autoencoder
(VAE) architecture used in this work. The encoder compresses
the input dust continuum image of a protoplanetary disk (256×
256 × 3) into a 32-dimensional latent space. Two feedforward
neural networks independently process the latent vector to infer
planetary masses and disk parameters, respectively. The decoder
reconstructs the input image from the latent representation.

2.2. Model Architecture

Our framework consists of a Variational Autoencoder (VAE)
paired with two feedforward neural networks (FNNs) for
parameter inference. The VAE compresses a 256×256 RGB
disk image into a 32-dimensional latent vector via a 3-layer
convolutional encoder. The decoder reconstructs the origi-
nal image using transposed convolutions. From the latent
vectors, one FNN predicts the masses of up to three plan-
ets (regression), while the second predicts disk properties
such as α-viscosity, dust-to-gas ratio, Stokes number, flar-
ing index, and number of planets (mapped to ordinal labels,
treated as regression targets). Both FNNs consist of 7 hidden
layers with batch normalization and ReLU activations.

2.3. Training Objective

The VAE model is trained by minimizing the reconstruction
and regularization loss terms

LVAE = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x) || p(z)), (1)

where qϕ(z|x) is the encoder, pθ(x|z) is the decoder, and
p(z) = N (0, I) is the prior over the latent space. The en-
coder maps the high-dimensional input image x into a latent
space z. The goal of the decoder is to reconstruct the origi-
nal input x from z. We use mean squared error (MSE) for
the reconstruction loss and KL divergence for regularization.
After training the VAE, the two FNNs are trained indepen-
dently. Each FNN receives the 32-dimensional latent vectors
from the trained VAE as input and predicts planet mass or
disk properties by minimizing the MSE loss.

2.4. Optimization Details

All networks are trained using the Adam optimizer with a
learning rate of 10−3 and batch size of 32. We train for 150
epochs and select the best checkpoint based on validation
set performance. During evaluation, we sample multiple
latent vectors per image to obtain predictive uncertainties
for each parameter.

3. Results
We evaluate VADER on both synthetic test data and real
ALMA observations, assessing reconstruction quality, pa-
rameter inference accuracy, and uncertainty quantification.

3.1. Synthetic Performance

Figure 2. Comparison of original (top row) and reconstructed (bot-
tom row) sample images from the test set using our VAE model.
Each image was randomly selected, and the SSIM between the
original and reconstructed images exceeds 0.99.

Figure 2 shows examples of input and reconstructed disk
images. VADER achieves a mean Structural Similarity In-
dex (SSIM) exceeding 0.99 across the test set, indicating
near-perfect morphological recovery of complex structures
including concentric rings, asymmetries, and gaps.

To assess parameter inference, we compare predicted and
ground-truth values for planetary masses and disk parame-
ters. For planet masses, VADER achieves R2 > 0.9 (Fig-
ure 3), with uncertainties growing proportionally as the
predicted masses diverge from the true values. For uncer-
tainty quantification, we sample 500 latent points from the
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distribution formed by the 32 dimensional latent space and
pass each through the FNNs which after 500 iterations give
us the posterior distribution for a given parameter.

Figure 3. Actual vs. predicted values for the mass of each of the
three possible embedded planets, with error bars indicating un-
certainty in the predictions. For all cases, the coefficient of de-
termination (R2) exceeds 0.9, demonstrating strong predictive
performance.

Figure 4. Violin plots comparing predicted and actual parameter
values for protoplanetary disks across five disk parameters in the
test data: α-viscosity (top left), dust-to-gas ratio ϵ (top center),
Stokes number (top right), flaring index (bottom left), and number
of embedded planets (bottom right). For each parameter, the violin
shows the distribution of corresponding predictions made by our
model. The interior dashed lines within each violin denote the 25th,
50th (median), and 75th percentiles of the predictive distribution,
illustrating both the central tendency and spread.

Disk parameters are drawn from a discrete set but treated
via ordinal regression. Violin plots (Figure 4) show the dis-
tributions of predicted values for each true category (e.g.,
α-viscosity, dust-to-gas ratio, Stokes number). Predictions
are tightly concentrated around correct classes with mini-
mal category overlap, capturing both ordinal structure and
physical scaling. This suggests that VADER can reliably re-
cover global disk properties despite inherent morphological
degeneracies.

3.2. Application to Observational Data

We apply VADER to 23 protoplanetary disks observed with
ALMA and benchmark against literature values. Figure 5
compares our predicted planet masses (black squares) with
prior estimates from DBNets (Ruzza et al., 2024) and hy-
drodynamic modeling studies (Zhang et al., 2018; Dong &
Fung, 2017). Our predictions agree within 1σ of published
values for the majority of systems. This supports the gener-
alization capability of the model beyond synthetic training
distributions. We perform disk parameter predictions on
two of the most studied protoplanetary disks: HL Tau and
HD 163296

For HL Tau, VADER predicts three embedded planets with
masses 1.81 ± 0.23MJup, 0.18 ± 0.11MJup, and 1.72 ±
0.35MJup, all consistent with ALMA gap locations and
prior inferences (Jin et al., 2016). Disk parameters such
as α ∼ 10−3 − 5 × 10−3, ϵ ∼ 0.025 and Stokes Number
∼ 10−3− 10−2 align with expectations from disk evolution
models (Pinte et al., 2015; Wu et al., 2018) and aligns well
with planet formation scenarios.

In HD 163296, VADER identifies three planets of masses
0.571± 0.3MJup, 0.95± 0.44MJup, and 1.25± 0.33MJup,
in agreement with predictions from (Zhang et al., 2018).
It infers α ∼ 10−3 and Stokes numbers ∼ 10−3 − 5 ×
10−3, matching ranges suggested by CO kinematic analysis
and dust trapping studies (Teague et al., 2018; Rodenkirch
et al., 2021). Dust-to-gas ratios inferred by our model fall
between 1% and 2.5%, consistent with multi-wavelength
modeling (Isella et al., 2016).

3.3. Scientific Implications

VADER uncovers a population of sub-Jovian to Jovian plan-
ets at wide separations (10–100 AU), consistent with ex-
pectations from disk–planet interaction theory. The ability
to yield probabilistic parameters from images, positions
VADER as a useful tool to study and categorize newly form-
ing disk-planet systems in the era of high-resolution ALMA
imaging.

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning and its application to astrophysical
inference. We introduce VADER, the first variational au-
toencoder framework capable of full uncertainty-aware pa-
rameter inference on protoplanetary disk observations. Our
model can infer disk and planetary parameters in seconds,
significantly accelerating analysis compared to traditional
simulation-based pipelines. By enabling fast, probabilis-
tic interpretation of high-resolution observations, VADER
opens new avenues for population-level studies of planet
formation.
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Figure 5. Comparison of predicted planet masses from our model with estimates from previous studies across different protoplanetary
systems (Dong & Fung, 2017; Toci et al., 2019; Zhang et al., 2018; Pérez et al., 2019; Lodato et al., 2019; Jin et al., 2016; Facchini et al.,
2020; Izquierdo et al., 2022; Fedele et al., 2018; Ruzza et al., 2024). The error bars indicate the uncertainty in mass predictions, with our
VAE-based predictions shown in black squares. A key validation of our model is that many of its predicted masses are within 1σ of the
values reported in prior studies, demonstrating strong agreement with independent analyses. Additionally, the predictions from DBNets
(orange circles) are shown for reference, further supporting the consistency of our results.
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In future applications, this framework can be extended to
support multimodal astronomy by integrating heterogeneous
observational inputs—including dust continuum maps, in-
frared emission, and CO gas velocity fields—into a unified
latent space. Such a capability would enhance the fidelity
of astrophysical inference by combining complementary
constraints from diverse data sources.

Our method is designed for scientific use and does not in-
volve human-related data or downstream decision-making
systems. We do not foresee ethical risks or negative societal
impacts arising from this work. Nonetheless, we encour-
age responsible deployment and transparent communication
when using machine learning models for scientific discov-
ery.
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