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Abstract
Probing properties of neutron stars from photo-
metric observations of these objects helps us an-
swer crucial questions at the forefront of multi-
messenger astronomy, such as, what is behavior
of highest density matter in extreme environments
and what is the procedure of generation and evo-
lution of magnetic fields in these astrophysical
environments? However, uncertainties and degen-
eracies—where different parameter sets produce
similar light curves—make this task challenging.
We propose a deep learning framework for infer-
ring pulsar parameters from observed light curves.
Traditional deep learning models are not designed
to produce multiple degenerate solutions for a
given input. To address this, we introduce a cus-
tom loss function that incorporates a light curve
emulator as a forward model, along with a dis-
similarity loss that encourages the model to cap-
ture diverse, degenerate parameter sets for a given
light curve. We further introduce a test-time opti-
mization scheme that refines predicted parameters
by minimizing the discrepancy between the ob-
served light curve and those reconstructed by the
forward model from predicted parameters dur-
ing inference. The model is trained using a suite
of state-of-the-art simulated pulsar light curves.
Finally, we demonstrate that the parameter sets
predicted by our approach reproduce light curves
that are consistent with the true observation.

1. Introduction
Pulsars—rapidly rotating neutron stars—emit beams of elec-
tromagnetic radiation across all wavelengths, from γ-rays
to radio (Smith, 1977; Sturrock, 1971). They emit radiation
at regular intervals, making their light curves are periodic
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in nature, capturing variations in a pulsar’s brightness over
time. Figure 1 shows a simulated thermal light curve from a
pulsar. In general, the relevant parameters that could be ex-

Figure 1. Simulated thermal light curve from a pulsar.

tracted from pulsar light curves include geometric ones (e.g.,
observer angle), aspects of the magnetic field structure, or
more fundamental physical properties such as mass, radius
(and thus the equation of state), or temperature (Benli et al.,
2021; Brambilla et al., 2015; Pétri & Mitra, 2021; Pierbat-
tista et al., 2015; Venter et al., 2011). Estimation of these
parameters play a key role in revealing the internal struc-
ture and dynamic processes of neutron stars (Cordes et al.,
2004). With numerous observations of pulsars, it is crucial
to develop technologies that can extract optimal amount of
information from these observations while also completing
the analyses in a reasonable amount of time. However, ac-
curate prediction of parameters remains a challenging task
due to the presence of uncertainties and degeneracies in the
parameter estimation process. Degeneracy leads to multi-
ple combinations of neutron star parameter sets generating
nearly identical light curves, making it necessary to identify
the variety of possible solutions of parameters given the
observed light curve. Traditional pulsar parameter estima-
tion methods, such as Markov Chain Monte Carlo (MCMC),
are computationally expensive—requiring months or even
a year for analyzing a single light curve (Olmschenk et al.,
2025).

In this work, we present a novel deep learning framework
for pulsar parameter estimation that explicitly accounts for
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uncertainties and degeneracies inherent in light curve data.
Deep learning does not naturally predict multiple solutions,
and so our approach: (1) incorporates a custom loss function
that leverages a light curve emulator as a forward model;
(2) encourages the exploration of degenerate solutions for
the same input light curve; and, (3) introduces a test-time
optimization strategy that refines model predictions during
inference. Taken together, these methods produce parameter
estimates that fit the given light curve well, identifies diverse
regions of the parameter space that maps on to the given
light curve, and gives strong parameter estimation accuracy
on previously unseen light curves.

As far as we are aware, this is the first study to employ deep
learning to explicitly address parameter degeneracies in pul-
sar light curve modeling without relying on computationally
expensive MCMC-based approaches. Rather than recover-
ing the full posterior distribution, our model is designed to
capture high-likelihood regions of the parameter space that
are consistent with the observed light curves. Our approach
offers a substantial reduction in computational cost, making
it well-suited for scalable or real-time applications.

2. Background and relevant work
2.1. Degeneracies in parameter estimation from light

curves

As discussed in Section 1, degeneracies pose a signifi-
cant challenge in pulsar parameter estimation from light
curves. A single observed light curve can correspond to
tens, hundreds, or even thousands of distinct parameter
sets that yield the same or nearly indistinguishable light
curves. Although machine learning techniques have shown
considerable promise in astronomical inference tasks (Bino
et al., 2023; Shi et al., 2023), such degeneracies significantly
limit their effectiveness—particularly for traditional models,
which are typically designed for single-point predictions
rather than multimodal inference.

2.2. Gaussian mixture model

A Gaussian Mixture Model (GMM) with K components rep-
resents the data distribution p(θ) as a weighted combination
of K Gaussian distributions (Reynolds et al., 2009):

p(θ) =

K∑
k=1

πk · N (θ|µk, σ
2
k) (1)

where πk is the mixing coefficient (weight) of the k-th
component, with

∑K
k=1 πk = 1. Each µk ∈ Rn is an

n-dimensional mean vector, and σ2
k ∈ Rn is a vector of

variances (assuming diagonal covariance). N (θ | µk, σ
2
k)

denotes a multivariate Gaussian distribution with indepen-
dent components. In this work, the k-th components across
the GMM collectively corresponding to indistinguishable

light curves.

2.3. Relevant work

Limited work exists on pulsar parameter estimation from
light curves. Kalapotharakos et al. (2021) demonstrated
degeneracies in pulsar parameters and employed MCMC in
combination with a physical model to perform parameter
inference. The physical model is used to generate templates
of light curves that is fit with the observed light light curve
in the MCMC architecture. Olmschenk et al. (2025) re-
placed the computationally expensive physical model with
a neural network emulator for generating light curve tem-
plates within the MCMC framework. However, as MCMC
involves generation of templates a million times to get the
final posteriors, both approaches remain computationally
expensive and slow: the method by Kalapotharakos et al.
(2021) takes approximately one year, whereas the Olm-
schenk et al. (2025) approach reduces this to about 24 hours
for a given light curve.

3. Methods
3.1. Methodology

We propose a Transformer–LSTM architecture combined
with a Gaussian Mixture Model (GMM) to estimate pulsar
parameters from light curves. Figure 2 presents a block
diagram of the proposed training methodology.

Problem statement Our goal is: Given light curve x,
find a set of pulsar parameter values {θ} with high pos-
terior likelihood p(θ|x) s.t. x = f(θ) where θ is a vec-
tor of 11 pulsar parameters and f is a forward model.
We approximate p(θ) with a GMM according to Eq 1
p(θ) =

∑K
k=1 πk · N (θ|µk, σ

2
k). In this study, we fix the

number of mixture components to K = 10 and for sim-
plicity, assume uniform mixing coefficients πk, which are
omitted from the GMM model.

Transformer encoder for feature extraction To map a
light curve x to the mean and variance (µ, σ) of a normal
distribution over parameters θ, we employ a transformer
encoder (Vaswani et al., 2017) to extract a latent feature rep-
resentation FE from x. This feature vector is then passed to
an LSTM network, which initially predicts the first compo-
nent (µ1, σ1) of GMM using a dense layer corresponding
to θ1.

Sequence of parameter predictions To predict multi-
ple sets of parameters, {θ1, θ2, . . . , θK}; the cell state c1
and hidden state h1 of initial prediction (µ1, σ1) of the
LSTM network along with FE is fed into the same LSTM
which predicts the subsequent components of the GMM
{(µ2, σ2), (µ3, σ3), . . . , (µk, σk)}. To encourage these so-
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Figure 2. Block diagram of the proposed training methodology for pulsar parameter estimation from light curves. A transformer
encoder first extracts key features FE from the input light curve x, which are then processed by a LSTM network that sequentially
predicts the components of GMM {(µ1, σ1), (µ2, σ2), (µ3, σ3), . . . , (µk, σk)}. To encourage diversity among the GMM components, a
dissimilarity loss is employed. Each component θk = µk, σk is passed through a forward model f to generate corresponding light curve
x̂k = f(µk, σk). The negative log-likelihood (NLL) between the generated light curves and the input light curve is then computed to to
guide the model toward better parameter estimation.

lutions to be different from each other, a dissimilarity loss
is employed

∑K−1
k=1

∑K−1
k′=1 Ldis(µk, µk′).

To compute this dissimilarity, we use a radial kernel function
M(θ, θ′) as a dissimilarity measure (Arora et al., 2023):

M(θ, θ′) = Ldis(µk, µk′) = exp

(
−∥θ − θ′∥2

2c2

)
(2)

where c is a hyperparameter that controls the kernel width.

Loss function based on forward model Our training
data contains only one parameter set per light curve; but
the model should not be optimized to predict only that par-
ticular solution. Instead of using a standard loss function
on the predicted θ̂ = µk itself, we use a forward model
f (Olmschenk et al., 2025) which generates light curves
x̂k = f(µk, σk) and calculate the negative log-likelihood
of the light curves from the predicted parameters against the
given light curve

∑K
k=1 LNLL(x̂k, x). Further details on the

negative log-likelihood loss are provided in Appendix A.

The overall training loss is L =
∑K

k=1 LNLL(f(µk, σk), x)+

γ
∑K−1

k=1

∑K−1
k′=1 Ldis(µk, µ

′
k), where γ controls the relative

contribution of the dissimilarity term.

Test-time optimization To enhance parameter estimation
on previously unseen light curves, we apply a test-time op-
timization strategy during inference. Since the proposed
framework relies solely on the input light curve and does
not require ground-truth parameters, it can be optimized
independently for each test instance. Specifically, the model
is iteratively refined using the observed light curve by mini-
mizing the mean squared error between the input light curve
and those generated by the forward model using the pre-
dicted parameter sets. This procedure enables the model to
adapt its predictions to the specific characteristics of each

light curve, thereby improving the accuracy of the estimated
parameters.

3.2. Dataset for pulsar parameter estimation

We employ a comprehensive database of simulated X-ray
light curves from pulsars, developed by Olmschenk et al.
(Olmschenk et al., 2025). Each light curve is associated with
a unique set of physical parameters used for the simulation.
Each parameter configuration is defined by 11 variables: the
three Cartesian coordinates of the dipole location (xD, yD,
zD); the inclination angle (αD) and azimuthal angle (ϕD)
of the dipole moment; the three Cartesian coordinates of
the quadrupole location (xQ, yQ, zQ); the inclination angle
(αQ) and azimuthal angle (ϕQ) of the quadrupole moment;
and the relative strength of the quadrupole component (fQ).
For this study, we utilize 10 million simulated light curves.

4. Results
To validate our predicted parameter sets θ̂ produced by
testing our architecture with a given observed light curve,
we feed the parameter solutions to the forward model
f and produce the corresponding predicted light curves
x̂ = f(θ̂µk

). A strong agreement between the generated
and given light curves indicates valid predictions. Figure 3
compares light curves generated from the predicted param-
eter sets with observed light curve from PSR J0030+0451,
captured by NASA’s Neutron star Interior Composition Ex-
plorer (NICER) (Arzoumanian et al., 2014). For compari-
son, we also include light curves generated using the most
likely parameter sets obtained via analysis of this event with
MCMC and MCMC with nested sampling methods. With-
out test-time optimization, our model reproduces the overall
shape of the input light curve but lacks precision. With
test-time optimization, the predicted light curves closely
align with the observation, achieving accuracy comparable

3



Degeneracy-Aware Pulsar Parameter Estimation from Light Curves via Deep Learning and Test-Time Optimization

Figure 3. Comparison of predicted vs. true light curves for NICER’s PSR J0030+0451 observation. The red curve is the real observation.
The grey curves correspond to our predicted pulsar parameters upon analysis of this pulsar event. The green and blue curves correspond to
most likely parameters produced by the traditional MCMC and MCMC with nested sampling methods respectively. The left and right
panels show predictions from this work without and with test-time optimization respectively. As can be seen, the test-time optimized
predictions show strong alignment with the observation, and are comparable to those obtained using MCMC and MCMC with nested
sampling.

Table 1. Degenerate parameter sets for the light curve of pulsar PSR J0030+0451 with test-time optimization
Case xD yD zD αD ϕD xQ yQ zQ αQ ϕQ Q/D

parameter estimate for component k = 0 0.2543 -0.1974 0.2134 1.7291 2.7974 0.4851 0.2886 -0.3096 2.0352 2.6625 6.4253
parameter estimate for component k = 1 0.4068 -0.4145 -0.0440 1.6552 2.4898 0.6214 0.3183 -0.2811 1.8661 2.5606 9.7208
parameter estimate for component k = 2 0.5204 -0.2526 -0.4009 1.6204 2.4512 0.6575 0.3720 -0.2707 1.8258 2.6288 10.5740
parameter estimate for component k = 3 0.6108 -0.0447 -0.5904 1.5965 2.4643 0.6866 0.4193 -0.2481 1.8258 2.6687 10.7498
parameter estimate for component k = 4 0.6472 0.1343 -0.6943 1.5774 2.4932 0.6882 0.4561 -0.2227 1.8266 2.6919 10.7489
parameter estimate for component k = 5 0.6398 0.2917 -0.7584 1.5591 2.5306 0.6795 0.4871 -0.2018 1.8221 2.7097 10.6697
parameter estimate for component k = 6 0.6024 0.4389 -0.7988 1.5424 2.5719 0.6683 0.5123 -0.1852 1.8148 2.7288 10.5388
parameter estimate for component k = 7 0.5466 0.5794 -0.8219 1.5284 2.6136 0.6559 0.5312 -0.1715 1.8073 2.7525 10.3759
parameter estimate for component k = 8 0.4764 0.7078 -0.8326 1.5166 2.6527 0.6416 0.5449 -0.1597 1.8015 2.7798 10.2041
parameter estimate for component k = 9 0.3920 0.8121 -0.8337 1.5062 2.6868 0.6260 0.5549 -0.1496 1.7981 2.8069 10.0481

MCMC -0.1662 -0.0474 -0.1081 1.2730 2.1249 0.4978 0.2616 -0.0469 2.3353 2.4442 8.4039
MCMC with nested sampling initialization -0.1179 0.4110 -0.1322 1.6895 2.1977 0.4637 0.2496 -0.1769 0.7083 5.4385 4.7158

Table 2. Summary of MSE and MdNSE statistics between the true
and predicted light curves over the testing dataset.

Metric Mean % error Median % error

MSE 2.422 1.110
MdNSE 1.286 0.523

to MCMC-based methods. These results highlight the ef-
fectiveness of the proposed framework for accurate pulsar
parameter estimation from real observational data. Table
1 presents ten predicted parameter sets produced by our
framework, alongside the most likely parameter sets ob-
tained from MCMC and MCMC with nested sampling for
the input light curve shown in Figure 3. The MCMC-based
results reveal evidence of multimodality in the parameter
space—for example, in parameters such as yD, αQ, where
the most likely values differ significantly between the two
methods. As shown, the proposed framework captures a
similar range of multimodal values for some parameters
and also identifies additional parameter sets that yield light
curves closely matching the observed light curve, demon-

strating its effectiveness in exploring the pulsar parameter
space. The proposed framework also substantially reduces
the computational cost of pulsar parameter estimation. Al-
though it does not recover the full posterior distribution as
traditional, computationally intensive MCMC methods do
(Kalapotharakos et al., 2021; Olmschenk et al., 2025), it
efficiently identifies high-likelihood regions of the parame-
ter space that are consistent with the observed light curves,
completing the analysis in approximately 4 minutes.

Table 2 presents the mean squared error (MSE) and me-
dian normalized squared error (MdNSE) (Olmschenk et al.,
2025) statistics between the true and predicted light curves
across 1000 samples from the testing dataset. Test-time
optimization is applied to the testing light curves, and both
MSE and MdNSE are computed to quantify the alignment
between the predicted and true light curves. The statistics
reported in Table 2 provide strong evidence of our model’s
predictive accuracy, robustness, and its ability to generalize
effectively across diverse test samples. Additional analysis
is provided in Appendix B.
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5. Conclusion
We present a deep learning framework for estimating pulsar
parameters from observed light curves. This task is challeng-
ing due to uncertainties and degeneracies in the parameter
space, where different sets of parameters can produce sim-
ilar light curves. We propose a custom loss function that
combines a light curve emulator with a dissimilarity term,
enabling the model to learn diverse parameter sets consistent
with the same observation. We also apply test-time opti-
mization to refine predictions on unseen light curves. For
the observation PSR J0030+0451, our framework predicts
parameter sets maps to light curves closely matching the
observed light curve. Our predicted light curves are also
comparable to those produced using most likely parameter
values from analysis of the obsrervation with traditionally
used MCMC methods. In this work, we effectively identify
high-likelihood regions in the parameter space for a given
light curve. To approximate this pulsar parameter distri-
bution, we use a GMM with only 10 components. While
this enables efficient modeling, it may constrain the full
exploration of the parameter space. This limitation will be
addressed in a future work.

Impact Statement This paper presents work whose goal is
to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.
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A. Negative Log-Likelihood Loss of Light Curves
The overall training loss for the proposed framework can be rewritten as

L =

K∑
k=1

LNLL(f(µk,j , σk,j), x) + γ

K−1∑
k=1

K−1∑
k′=1

Ldis(µk,j , µk′,j), (3)

where the index j corresponds to the 11 pulsar parameters, and k denotes the components of the Gaussian Mixture
Model (GMM). The first term,

∑K
k=1 LNLL(f(µk,j , σk,j), x), represents the negative log-likelihood loss between the

input light curve x and the light curves generated from each predicted parameter set (µk,j , σk,j). The second term,∑K−1
k=1

∑K−1
k′=1 Ldis(µk,j , µk′,j), is a dissimilarity loss that encourages diversity among the degenerate parameter set predic-

tions. The hyperparameter γ controls the contribution of the dissimilarity term.

Negative Log-Likelihood for One Component of GMM The negative log-likelihood loss for one GMM component
(µk,j , σk,j), predicted by the LSTM network, is defined as:

LNLL(µk,j , σk,j , θm,j) =
1

2

11∑
j=1

(
(θm,j − µk,j)

2

σ2
k,j

+ log(2πσ2
k,j)

)
(4)

where θm,j denotes the ground truth pulsar parameter vector.

Since the true degenerate parameter sets θm,j for a input light curve x are not available during training, we employ a forward
model f (Olmschenk et al., 2025) to generate light curves for each GMM component. Specifically, for a component k, we
generate three light curves:

x̂k = f(µk,j), x̂k+σk,j
= f(µk,j + σk,j), x̂k−σk,j

= f(µk,j − σk,j) (5)

We then define the negative log-likelihood loss in the light curve space as:

LNLL(f(µk,j , σk,j), x) =
1

2

11∑
j=1

(
Lmse(f(µk,j , σk,j), x)

σ2
k,j

+ log(2πσ2
k,j)

)
(6)

where the MSE-based likelihood is defined as:

Lmse(f(µk,j , σk,j), x) =
1

3

(
Lmse(x̂k, x) + Lmse(x̂k+σk,j

, x) + Lmse(x̂k−σk,j
, x)
)

(7)

Incorporating x̂k+σk,j
and x̂k−σk,j

helps the model better estimate σk,j by providing sensitivity to local perturbations in
parameter space. The variance-based terms σ2

k,j and log(2πσ2
k,j) act as regularization factors that penalize overconfident or

underconfident uncertainty predictions of the model.
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B. Experimental Validation
Figure 4 shows the best-case and worst-case parameter prediction scenarios within the testing dataset using the proposed
methodology, based on the median normalized squared error (MdNSE) metric. In the best-case scenario, the predicted light
curves align closely with the true light curve, yielding an MdNSE of 0.0012. In the worst-case scenario, the predicted light
curves deviate noticeably from the true light curve, with an MdNSE of 0.15.

Figure 4. Comparison of predicted vs. true light curves for the testing data. The red curve represents the true light curve, while the grey
curves show the predicted light curves based on our analysis of the pulsar event. The left and right panels illustrate the best-case and
worst-case prediction scenarios, respectively, within the testing dataset.

C. Model training
The model was trained using the Adam optimizer (Diederik, 2014) for 15 epochs, with a step decay learning rate sched-
uler (Ge et al., 2019). The initial learning rate was set to 10−5, with a step size of 5 epochs and a decay factor of 10. During
inference, test-time optimization for a given observed light curve requires approximately 4 minutes to adapt the model’s
predictions to the specific input, using a single GPU.
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