Scaling Laws for Transformer-Based Stellar Spectral Emulation

Tomasz Rézanski! Yuan-Sen Ting 23

Abstract

Modern astronomical surveys will deliver spec-
tra for over 107 stars, requiring efficient methods
to extract stellar properties from these observa-
tions. Neural network emulators have become
essential for this task, yet their accuracy limita-
tions currently introduce significant systematic er-
rors. We demonstrate that Transformer-based stel-
lar spectral emulators exhibit predictable scaling
laws similar to large language models, providing a
quantitative framework for achieving any desired
emulation precision. Using TransformerPayne,
we establish power-law relationships between em-
ulation error and three key dimensions: training
data size, model parameters, and computational
resources. These scaling laws enable practition-
ers to determine the resources needed to reduce
emulation errors below a certain target threshold,
paving the way for robust spectral emulation for
massive Spectroscopic surveys.

1. Introduction

The next generation of spectroscopic surveys, including
4MOST (de Jong et al., 2019), WEAVE (Jin et al., 2024),
DESI, and PFS, building upon APOGEE, LAMOST, Gaia-
ESO, and GALAH, will deliver spectra for tens of millions
of stars. Extracting stellar properties from these spectra
requires solving a high-dimensional inverse problem: deter-
mining dozens of parameters (effective temperature, surface
gravity, and elemental abundances) from observed flux mea-
surements.

Traditional approaches face a computational bottleneck. Di-
rect spectral synthesis, even under simplified 1D-LTE as-
sumptions, requires minutes per spectrum, making real-time
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analysis of millions of spectra computationally prohibitive,
as inference requires dozens of forward model evaluations.
This has driven the development of neural network emula-
tors that learn to approximate the forward mapping from
stellar parameters to spectra, enabling rapid inference once
trained.

Current emulators, however, suffer from accuracy limita-
tions that introduce non-negligible systematic errors into
stellar parameter estimates. Models like The Cannon (Ness
et al., 2015) and The Payne (Ting et al., 2019) typically
achieve ~1% precision in flux space, insufficient when
spectroscopic observations routinely achieve signal-to-noise
ratios exceeding 100. This emulation error becomes a domi-
nant source of uncertainty in the final parameter estimates,
especially for low metallicity stars and elements with just a
few lines present in spectra (Sandford et al., 2020).

The concept of neural scaling laws has recently emerged
in astronomy, with predictable scaling demonstrated for
stellar light curves (Pan et al., 2024) and galaxy images
(Walmsley et al., 2024; Smith et al., 2024). However, these
laws have not been established for spectroscopy, despite its
fundamental role in astronomy.

In this work, we demonstrate that Transformer-based emula-
tors can achieve arbitrary precision through predictable scal-
ing laws. By adapting TransformerPayne (Rézanski et al.,
2025) with Maximum Update Parametrization (Yang et al.,
2022), we show that emulation error follows power-law
relationships with model size, training data, and computa-
tional resources. These quantitative scaling laws, similar to
those governing large language models (Kaplan et al., 2020;
Hoffmann et al., 2022), provide concrete design rules for
building emulators that meet a required precision threshold.

The established scaling law enables practitioners to calcu-
late exactly how much computational investment is needed
to achieve their scientific requirements, transforming em-
ulator design from empirical trial-and-error to principled
engineering.

2. Related Work

No previous work has explored scaling laws for spectral
emulation, though many studies have applied deep learn-
ing to stellar spectroscopy. Spectroscopy differs from typ-
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ical machine learning domains: unlike language or audio,
stellar spectra have fixed wavelength-transition correspon-
dences that break under translation. This introduces unique
challenges for model design beyond simpler architecture
choices like convolutional or recurrent neural networks. Re-
cently, Transformer models have gained popularity in spec-
tral studies due to their inductive biases being better suited
for spectroscopy, where spectral information is often dis-
persed across long-range wavelength dependencies (Koblis-
chke & Bovy, 2024; Leung & Bovy, 2024; Rézariski et al.,
2025; Zhao et al., 2025).

Prior deep learning work in spectroscopy includes spectral
pre-processing (Rézarnski et al., 2022), stellar parameter
prediction (Leung & Bovy, 2019), dimensionality reduction
(Portillo et al., 2020), and contrastive learning combining
spectra with photometry (Buck & Schwarz, 2024; Rizhko
& Bloom, 2025). Others have addressed the synthetic-
observational gap through domain adaptation (O’Briain
et al., 2021), cross-survey adaptation (Leung & Bovy, 2024;
Zhao et al., 2025), and cross-wavelength-range adaptation
(Koblischke & Bovy, 2024).

3. Methodology

3.1. TransformerPayne Architecture and Training
Dataset

We build upon TransformerPayne (R6zainski et al., 2025), a
Transformer-based emulator that leverages attention mecha-
nisms to capture long-range correlations in stellar spectra.
To systematically investigate scaling behavior, we adopt the
same model architecture while exploring how performance
improves as we scale three key dimensions: model width
(embedding dimension d), depth (number of Transformer
blocks N), and the number of parameter tokens ¢. The total
parameter count scales approximately as P =~ (t + 12N)d?,
with width being the dominant factor. This parametric rela-
tionship allows us to construct models ranging from 69k to
30.9M parameters, spanning over two orders of magnitude,
to map the scaling landscape.

For direct comparison with the original TransformerPayne
work, we utilize the same grid of 100,000 synthetic spectra
generated using Kurucz ATLAS9 atmospheric models (Ku-
rucz, 1979) and the Synthe spectral synthesis code (Kurucz,
2005). The grid spans effective temperatures from 4000
to 6000 K, surface gravities log g from 4 to 5, with indi-
vidual elemental abundances varying from —2 to +1 dex
relative to solar. Each continuum-normalized spectrum cov-
ers 4000-5000 A at resolution R = 10, sampled at 22,315
wavelengths. This controlled dataset enables reproducible
scaling experiments while maintaining sufficient complexity
to represent realistic stellar spectra.

3.2. Scaling Experiment Design

To establish quantitative scaling laws, we systematically
vary three dimensions:

Model Size: We train 10 architectures with parameter
counts approximately doubling at each step: 69k, 119k,
273k, 469k, 1.05M, 1.86M, 4.14M, 8.10M, 13.7M, and
30.9M. This geometric progression ensures even coverage
on a logarithmic scale, essential for fitting power laws.

Dataset Size: We create seven subsets containing 100, 300,
1k, 3k, 10k, 30k, and 100k spectra. This explores a critical
practical constraint, high-fidelity spectral synthesis remains
computationally expensive, making data efficiency a key
consideration for real applications.

Training Compute: We vary training duration from 13k to
2.3M steps using a checkpoint reuse strategy. A single long
training run generates frequent checkpoints, from which we
launch parallel runs with different decay schedules. This
approach reduces computational cost by approximately x 10
while densely sampling the compute axis.

From our 100,000 spectra dataset, we reserve 1,024 for vali-
dation, consistent with the original TransformerPayne setup.
For each configuration, we track validation MSE throughout
training and report the minimum achieved. This experimen-
tal grid, encompassing over 300 individual training runs,
enables precise characterization of scaling behavior along
each dimension.

3.3. Maximum Update Parametrization

A challenge in scaling neural networks is maintaining fair
comparisons across model sizes. Optimal hyperparame-
ters typically shift with scale, larger models often require
smaller learning rates, different initialization scales, and ad-
justed regularization. Exhaustive hyperparameter searches
for each model size would be computationally prohibitive,
potentially requiring hundreds of training runs per configu-
ration.

Recent advances in large language models have solved
this challenge through Maximum Update Parametrization
(uP) (Yang et al., 2022). This framework provides prin-
cipled rules for how hyperparameters should scale with
model width, enabling optimal settings discovered on small
models to transfer directly to larger scales. For a weight
matrix W € R™*" ;P prescribes initialization scale

o ﬁ min (1, /) and learning rate i o +.

We validate our P implementation through systematic ex-
periments varying model width from 64 to 512 dimensions
while keeping other architectural parameters fixed. Un-
der standard parametrization, the optimal learning rate de-
creases by a factor of x3.2 across this range (from 3 x 1073
to 4 x 10~%). With uP, the optimal learning rate remains
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Figure 1. Scaling behavior of TransformerPayne emulators across three regimes. Left: Compute scaling showing validation MSE versus
training FLOPs for all models. Colors indicate model size (69k—30.9M parameters); filled/open circles distinguish training within/beyond
one epoch. The black line traces the compute-optimal frontier with power law exponent —0.76. Upper-right: Data scaling with exponent
—1.34, demonstrating 22-fold error reduction per 10-fold data increase. Lower-right: Parameter scaling with exponent —1.21, showing
16-fold improvement per 10-fold parameter increase. Slight flattening at large model sizes indicates data limitations.

stable at approximately 2 x 1072 across all widths. This
stability enables us to perform hyperparameter optimiza-
tion once on a small 128-dimensional proxy model, then
confidently apply these settings to models up to 30.9M
parameters. Beyond learning rate, we find that other key
hyperparameters, including number of tokens, head dimen-
sionality, and (to smaller extend) depth, also transfer reliably
under pP, making large-scale experimentation tractable.

4. Results
4.1. Power-Law Scaling Across Three Regimes

Our experiments reveal that stellar spectral emulation fol-
lows predictable power-law relationships across all three
scaling dimensions. Figure 1 presents the scaling behavior,
demonstrating that improvements in emulation accuracy can
be systematically achieved through increased resources.

To isolate scaling behavior along each dimension, we adopt
the methodology from neural scaling law literature (Kaplan
et al., 2020): for each regime, we fix one dimension and
report the best performance achieved across all combina-
tions of the other two. In the data-limited regime (upper-
right panel), we show the minimum MSE achieved for each
dataset size, optimized over all model architectures and

training durations tested. This reveals the limit of what
can be learned from a given amount of data, regardless of
computational constraints.

The data scaling follows £(D) oc D134, where the steep
exponent indicates that each 10-fold increase in training data
reduces emulation error by approximately 22-fold. This rela-
tionship holds consistently across three orders of magnitude,
from 100 to 100,000 spectra, suggesting that spectral em-
ulation remains strongly data-hungry even at our largest
scales.

Similarly, the parameter-limited regime (lower-right panel)
shows the best performance achieved by each model size
when given sufficient data and training time. The scaling
L(P) < P~12! reveals that a 10-fold increase in param-
eters yields 16-fold error reduction. Notably, the largest
models show slight deviation from the power law, indicating
data saturation - these models have extracted most learnable
patterns from our 100,000 spectra dataset.

The compute-limited regime (left panel) captures the most
realistic scenario: finite computational budgets that must be
allocated between model size and training duration. Each
point represents a complete training run, but the compute
frontier (black line) traces only the best-performing model at
each compute level. This frontier follows £(C) oc C =976,
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Figure 2. Optimal resource allocation along the compute frontier. Left: Compute-optimal models achieving lowest MSE at each FLOP

budget, with power law fit £ « C 987

in the single-epoch regime (left of vertical line). Middle: Optimal dataset size scales as

D o C°38, a 10-fold compute increase requires 2.4-fold more data. Horizontal line at 100k spectra indicates our dataset limit. Right:
Optimal model size scales as P o< C'%®!, models should grow 4.1-fold per 10-fold compute increase. These relationships provide
quantitative guidance for resource allocation under computational constraints.

with the smaller exponent reflecting the tension between
model capacity and optimization time.

4.2. Compute-Optimal Scaling Strategy

While understanding individual scaling dimensions provides
theoretical insight, practical applications require allocating
fixed computational budgets optimally. The challenge is
that compute, model size, and data size are interdependent,
a larger model requires more FLOPs per training step, leav-
ing fewer steps within a fixed budget. Similarly, process-
ing more data requires either more training steps or larger
batches. Figure 2 resolves this complexity by analyzing the
compute frontier models.

To construct this frontier, we first identify the best-
performing model at each compute level from our experi-
ments. These frontier models represent optimal trade-offs,
they achieved lower MSE than any other model using the
same computational budget. By analyzing how model size
and dataset size vary along this frontier, we can extract prac-
tical scaling recipes. The left panel shows these frontier
models achieve better scaling (exponent —0.87) than the
full dataset (exponent —0.76), confirming they represent
truly optimal configurations.

The key insight emerges from the middle and right panels:
optimal scaling does not simply mean “make everything
bigger proportionally.” When compute increases 10-fold,
the frontier models show that parameters should grow by
x4.1 (following P o< CY61) while dataset size grows by
only x2.4 (following D oc C%38). This asymmetric scal-
ing, models growing faster than data requirements, reflects
that larger models can extract more information from the

same data, making model capacity the better investment as
compute scales.

Nonetheless, the frontier analysis reveals a limit in our cur-
rent experimental setup. The vertical line at ~10*7 FLOPs
marks where frontier models exhaust our 100,000 spectra
dataset and begin reprocessing data. Below this threshold,
models complete training within one epoch, achieving ideal
scaling with exponent —0.87. Beyond it, repeated data pro-
vides diminishing returns, degrading the exponent to —0.76.
This transition demonstrates that scaling laws, while robust,
ultimately depend on data availability, highlighting the need
for larger spectral grids to sustain efficient scaling.

5. Conclusions and Broader Impact

We have demonstrated that Transformer-based stellar spec-
tral emulators exhibit predictable scaling laws analogous
to those governing large language models. These quantita-
tive relationships, power laws connecting emulation error
to model parameters, training data, and computational re-
sources, transform emulator design from empirical trial-and-
error into systematic planning for next-generation spectro-
scopic surveys.

Our key contributions are threefold: (1) establishing that
stellar spectral emulation follows universal scaling princi-
ples with measurable power-law exponents, (2) demonstrat-
ing that Maximum Update Parametrization enables stable
scaling across two orders of magnitude in model size, and
(3) providing quantitative recipes for optimal resource al-
location under computational constraints. Together, these
findings offer actionable guidance: data provides the highest
leverage (scaling exponent —1.34), models and data must
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scale asymmetrically (as C%6* and C'%-38 respectively), and
simply training longer has diminishing returns (compute
scaling of only —0.76).

For upcoming surveys, achieving systematic-free analysis
may require emulation precision of 10~8 MSE or better. Our
framework predicts this necessitates approximately 102!
FLOPs (150 GPU-days on modern hardware), 1.5B parame-
ter models, and 3.56M high-fidelity training spectra. While
substantial, these requirements are within reach of current
computational facilities and provide concrete targets for
preparatory efforts.

Our scaling laws characterize interpolation performance
within the training domain—a critical first step for any ma-
chine learning application. While domain transfer (gen-
eralizing to different stellar models or real observations)
represents an important future direction, establishing these
baseline scaling relationships was essential. Our results
provide the quantitative foundation necessary for investi-
gating emergent capabilities like few-shot learning (Brown
et al., 2020; Zhang et al., 2024) in stellar spectral emulation,
which we expect to manifest as models scale according to
the principles we have established.

Future work can build upon these relationships to explore
domain transfer, investigate emergent capabilities at larger
scales, and ultimately develop true foundation models for
stellar spectroscopy. Models that achieve both the accuracy
and generalization needed to serve as universal tools across
diverse astronomical applications.

References

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, 1., and
Amodei, D. Language Models are Few-Shot Learners.
arXiv e-prints, art. arXiv:2005.14165, May 2020. doi:
10.48550/arXiv.2005.14165.

Buck, T. and Schwarz, C. Deep Multimodal Represen-
tation Learning for Stellar Spectra. arXiv e-prints, art.
arXiv:2410.16081, October 2024. doi: 10.48550/arXiv.
2410.16081.

de Jong, R. S., Agertz, O., Berbel, A. A., et al. 4MOST:
Project overview and information for the First Call for
Proposals. The Messenger, 175:3—11, March 2019. doi:
10.18727/0722-6691/5117.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,

L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., van den Driessche, G., Damoc, B., Guy, A.,
Osindero, S., Simonyan, K., Elsen, E., Rae, J. W., Vinyals,
0., and Sifre, L. Training Compute-Optimal Large Lan-
guage Models. arXiv e-prints, art. arXiv:2203.15556,
March 2022. doi: 10.48550/arXiv.2203.15556.

Jin, S., Trager, S. C., Dalton, G. B., et al. The wide-field,
multiplexed, spectroscopic facility WEAVE: Survey de-
sign, overview, and simulated implementation. Monthly
Notices of the Royal Astronomical Society, 530(3):2688—
2730, May 2024. doi: 10.1093/mnras/stad557.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling Laws for Neural Language Models.
arXiv e-prints, art. arXiv:2001.08361, January 2020. doi:
10.48550/arXiv.2001.08361.

Koblischke, N. and Bovy, J. SpectraFM: Tuning
into Stellar Foundation Models. arXiv e-prints, art.
arXiv:2411.04750, November 2024. doi: 10.48550/arXiv.
2411.04750.

Kurucz, R. L. Model atmospheres for G, F, A, B, and O
stars. The Astrophysical Journal Supplement Series, 40:
1-340, May 1979. doi: 10.1086/190589.

Kurucz, R. L. ATLAS12, SYNTHE, ATLAS9, WIDTHO,
et cetera. Memorie della Societa Astronomica Italiana
Supplementi, 8:14, 2005.

Leung, H. W. and Bovy, J. Deep learning of multi-
element abundances from high-resolution spectroscopic
data. Monthly Notices of the Royal Astronomical Society,
483(3):3255-3277, March 2019. doi: 10.1093/mnras/
sty3217.

Leung, H. W. and Bovy, J. Towards an astronomical foun-
dation model for stars with a transformer-based model.
Monthly Notices of the Royal Astronomical Society, 527
(1):1494-1520, January 2024. doi: 10.1093/mnras/
stad3015.

Ness, M., Hogg, D. W., Rix, H. W., Ho, A. Y. Q., and
Zasowski, G. The Cannon: A data-driven approach to
Stellar Label Determination. The Astrophysical Journal,
808(1):16, July 2015. doi: 10.1088/0004-637X/808/1/16.

O’Briain, T., Ting, Y.-S., Fabbro, S., Yi, K. M., Venn, K.,
and Bialek, S. Cycle-StarNet: Bridging the Gap between
Theory and Data by Leveraging Large Data Sets. The
Astrophysical Journal, 906(2):130, January 2021. doi:
10.3847/1538-4357/abca96.

Pan, J.-S., Ting, Y.-S., Huang, Y., Yu, J., and Liu, J.-F. The
Scaling Law in Stellar Light Curves. arXiv e-prints, art.
arXiv:2405.17156, May 2024. doi: 10.48550/arXiv.2405.
17156.



Scaling Laws for Transformer-Based Stellar Spectral Emulation

Portillo, S. K. N., Parejko, J. K., Vergara, J. R., and Connolly,
A.J. Dimensionality Reduction of SDSS Spectra with
Variational Autoencoders. The Astronomical Journal, 160
(1):45, July 2020. doi: 10.3847/1538-3881/ab9644.

Rizhko, M. and Bloom, J. S. AstroM?: A Self-supervised
Multimodal Model for Astronomy. The Astronomical
Journal, 170(1):28, July 2025. doi: 10.3847/1538-3881/
adcbad.

Rézanski, T., Niemczura, E., Lemiesz, J., Positek, N., and
Rézariski, P. SUPPNet: Neural network for stellar spec-
trum normalisation. Astronomy and Astrophysics, 659:
A199, March 2022. doi: 10.1051/0004-6361/202141480.

Rézanski, T., Ting, Y.-S., and Jabloiska, M. Trans-
formerpayne: Enhancing spectral emulation accuracy
and data efficiency by capturing long-range correlations.
The Astrophysical Journal, 980(1):66, feb 2025. doi:

10.3847/1538-4357/ad9b99. URL https://dx.doi.

org/10.3847/1538-4357/ad9%099.

Sandford, N. R., Weisz, D. R., and Ting, Y.-S. Forecast-
ing chemical abundance precision for extragalactic stel-
lar archaeology. The Astrophysical Journal Supplement
Series, 249(2):24, jul 2020. doi: 10.3847/1538-4365/
ab9cb0. URL https://dx.doi.org/10.3847/
1538-4365/ab9cb0.

Smith, M. J., Roberts, R. J., Angeloudi, E., and Huertas-
Company, M. AstroPT: Scaling Large Observation Mod-
els for Astronomy. arXiv e-prints, art. arXiv:2405.14930,
May 2024. doi: 10.48550/arXiv.2405.14930.

Ting, Y.-S., Conroy, C., Rix, H.-W., and Cargile, P. The
Payne: Self-consistent ab initio Fitting of Stellar Spectra.
The Astrophysical Journal, 879(2):69, July 2019. doi:
10.3847/1538-4357/ab2331.

Walmsley, M., Bowles, M., Scaife, A. M. M., Shingirai
Makechemu, J., Gordon, A. J., Ferguson, A. M. N.,
Mann, R. G., Pearson, J., Popp, J. J., Bovy, J., Spea-
gle, J., Dickinson, H., Fortson, L., Géron, T., Kruk,
S., Lintott, C. J., Mantha, K., Mohan, D., O’Ryan, D.,
and Slijepevic, I. V. Scaling Laws for Galaxy Images.
arXiv e-prints, art. arXiv:2404.02973, April 2024. doi:
10.48550/arXiv.2404.02973.

Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X.,
Farhi, D., Ryder, N., Pachocki, J., Chen, W., and Gao,
J. Tensor Programs V: Tuning Large Neural Networks
via Zero-Shot Hyperparameter Transfer. arXiv e-prints,
art. arXiv:2203.03466, March 2022. doi: 10.48550/arXiv.
2203.03466.

Zhang, B., Liu, Z., Cherry, C., and Firat, O. When
Scaling Meets LLM Finetuning: The Effect of Data,

Model and Finetuning Method. arXiv e-prints, art.
arXiv:2402.17193, February 2024. doi: 10.48550/arXiv.
2402.17193.

Zhao, X., Huang, Y., Xue, G., Kong, X., Liu, J., Tang, X.,
Beers, T. C., Ting, Y.-S., and Luo, A.-L. SpecCLIP:
Aligning and Translating Spectroscopic Measurements
for Stars. arXiv e-prints, art. arXiv:2507.01939, July
2025. doi: 10.48550/arXiv.2507.01939.


https://dx.doi.org/10.3847/1538-4357/ad9b99
https://dx.doi.org/10.3847/1538-4357/ad9b99
https://dx.doi.org/10.3847/1538-4365/ab9cb0
https://dx.doi.org/10.3847/1538-4365/ab9cb0

