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Abstract

Constructing a general-purpose framework for
mapping between dark matter simulations and ob-
servable hydrodynamical simulation outputs is a
long-standing problem in modern astrophysics. In
this work, we present a new approach utilizing
stochastic interpolants to map between cheap fast
particle mesh simulations and baryonic quantities
in three dimensions, requiring a total of 7 GPU
minutes per 2563 grid size simulation. Using
the CAMELS multifield dataset, we are able to
condition our mapping on both cosmological and
astrophysical properties. We focus this work on
hydrodynamical quantities suitable for Ly-α ob-
servables finding excellent agreement up to small
spatial scales, k ∼ 10.0 (h−1 Mpc) at z = 2.0,
for Ly-α flux statistics. Our approach is fully
convolutional, allowing training on comparatively
small volumes and application to larger volumes,
which was tested on TNG50.

1. Introduction
Understanding the large-scale structure of the universe re-
quires modeling both the nonlinear evolution of the dark
matter cosmic web and the complex baryonic physics be-
hind observable tracers. Cosmological hydrodynamical sim-
ulations have become essential tools for capturing these
effects, but their high computational cost limits their use
for next-generation surveys that demand large volumes and

*Equal contribution 1Kavli IPMU (WPI), UTIAS, The Univer-
sity of Tokyo, Kashiwa, Chiba 277-8583, Japan 2Center for Data-
Driven Discovery, Kavli IPMU (WPI), UTIAS, The University of
Tokyo, Kashiwa, Chiba 277-8583, Japan 3Harvard-Smithsonian
Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138,
USA 4The NSF AI Institute for Artificial Intelligence and Funda-
mental Interactions, Massachusetts Institute of Technology, Cam-
bridge, MA 02139, USA 5Department of Physics, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA. Correspon-
dence to: Benjamin Horowitz <horowitz.ben@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

high fidelity. Estimating statistical quantities like power
spectra and their covariances across wide parameter ranges
becomes especially expensive, motivating the development
of efficient surrogate models.

A parallel line of development has focused on the reconstruc-
tion of initial conditions (ICs) from late-time observations
via forward modeling. These approaches, often relying
on differentiable structure formation models, enable con-
strained simulations that match observed data and support
field-level inference. While powerful, their effectiveness
is currently limited by the lack of efficient differentiable
models that incorporate baryonic physics. Bridging this
gap is critical for enabling more realistic reconstructions
that account for feedback processes and their impact on
observables.

Recently, deep learning-based surrogate models have
emerged to accelerate simulation workflows. These meth-
ods typically either (1) augment low-cost dark matter sim-
ulations with baryonic effects (Harrington et al., 2022;
Horowitz et al., 2022), or (2) generate full hydrodynam-
ical outputs directly (Tröster et al., 2019; Bernardini et al.,
2025).

Our work builds on these by introducing; (1) A differen-
tiable and efficient simulation backbone using fastPM
(Feng et al., 2016), enabling integration into inverse model-
ing frameworks (Seljak et al., 2017; Li et al., 2022; Modi
et al., 2018; Horowitz et al., 2019; 2021), (2) a fully convolu-
tional architecture that generalizes to arbitrary volume sizes
while training on smaller boxes (Harrington et al., 2022;
Horowitz et al., 2022) (3) conditional modeling on cosmo-
logical and astrophysical parameters, crucial for capturing
the effects of baryonic feedback and reducing uncertainties
in cosmological inferences.

Unlike unconditional generative models (Zamudio-
Fernandez et al., 2019; Hassan & Andrianomena, 2023;
Andrianomena et al., 2024), our conditional framework
leverages dark matter inputs to ensure generalization and
independence across realizations—features necessary for
covariance estimation and field-level reconstruction tasks.
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Figure 1. We show the input density FastPM generated density field and generated neutral hydrogen (NHI ), temperature (T), and inferred
Ly-α flux from our BaryonBridge model compared to the simulated true result in the TNG50 simulation.

2. Simulations
2.1. CAMELS and TNG50

CAMELS (Villaescusa-Navarro et al., 2021) is a large-scale
simulation effort designed to connect cosmological structure
formation with astrophysical feedback processes using both
N-body and hydrodynamic simulations. In this work, we
focus exclusively on the IllustrisTNG suite of CAMELS,
which employs the moving-mesh AREPO code (Springel,
2010; Weinberger et al., 2020) and adopts the same sub-
grid physics model as the original IllustrisTNG simulations
(Weinberger et al., 2017; Pillepich et al., 2018).

Each simulation in the IllustrisTNG suite follows the cou-
pled evolution of dark matter and baryonic matter in a
(25 h−1Mpc)3 periodic volume, using 2563 particles per
component. Within this suite, the Latin Hypercube (LH)
set consists of 1,000 distinct simulations sampling a wide
range of cosmological (Ωm and σ8) and astrophysical feed-
back (ASN,1, ASN,2, AAGN,1, AAGN,2) parameters using
a Latin hypercube design. This enables broad coverage of
the parameter space with relatively few samples.

We use the CAMELS Multifield Dataset (CMD)
(Villaescusa-Navarro et al., 2022), which provides 3D grids
derived from the CAMELS simulation outputs. Specifically,
we specialize to the 3D volumes from the IllustrisTNG-LH
set, leveraging its diversity in cosmological and feedback
parameters to train and validate our model. For this work
we focus on Ly-α Forest observables, so we are interested
in neutral hydrogen density, temperature, and line of sight
(LOS) velocity. The grid LOS velocity is not available in
the CMD dataset, so we construct it from available particle
data.

To test our model on larger simulation boxes, we also use the
TNG50 simulation (Nelson et al., 2019). Like the CAMELS
boxes, it uses AREPO hydrodynamics code along with a
TNG subgrid physics model. However, it has ∼ 3 times the
volume (35 h−1 Mpc) at significantly higher particle den-
sity of 21603. This change of both simulation volume and
resolution will provide a robust test for the generalization
of our model.

2.2. Particle Mesh Simulations

For our conditioning field, we use particle mesh simulations
with matched initial conditions of the full hydrodynami-
cal simulations. We use a JAX implementation (Lanzieri
et al., 2022) of the FastPM algorithm (Feng et al., 2016).
Fast particle mesh algorithms have become a standard tool
for field level inference since they are straightforward to
take analytical derivatives of output quantities with respect
to initial conditions, this enables derivative based optimiza-
tion/sampling methods for initial condition inference.(Seljak
et al., 2017; Modi et al., 2018; Horowitz et al., 2019; 2021)

For our particle mesh simulations, we take the parti-
cle/velocity initial conditions given in the CAMELS simu-
lation set and use them as ICs for our particle mesh code.
We down-sample the particles uniformly to 2563, and use
a force resolution B = 2 to provide more accurate diffuse
large scale structure necessary for Ly-α statistics. We use a
CIC painting scheme to readout the particle masses, total ve-
locities, and line of sight velocities on a 1283 grid to match
those in the CAMELS multifield set. We use the matter
density and total velocity as inputs to our interpolant model.
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Figure 2. Comparison of redshift space Ly-α flux for both the
original TNG50 simulation and that mapped via BaryonBridge
code. We also compare to an analytical approximation given via the
Flucuating Gunn-Peterson Approximation (FGPA) on the original
dark matter field.

2.3. Mapping to Ly-α Forest

For our example observable, we focus on Ly-α forest since
it is a field-level quantity which has high dependance on
both astrophysics (Kooistra et al., 2022) and cosmology
(Lukić et al., 2014). The expression for optical depth, τ , in
real space, as given in (Lukić et al., 2014), is:

τν ≡
∫

nHIσνdr. (1)

In this expression, ν denotes the frequency, σν is the cross-
section for the Ly-α transition, and dr represents an element
of proper distance. When adopting a Doppler-broadened
line profile—characterized by a Gaussian shape—the ex-
pression becomes:

τν =
πe2

mec
f12

∫
nHI

∆νD

exp

[
−
(

ν−ν0

∆νD

)2
]

√
π

dr, (2)

Here, e is the elementary charge, me is the electron mass,
and c is the speed of light. The quantity ν0 refers to the
central frequency of the transition, f12 is the oscillator
strength for the Ly-α resonance, and ∆νD = (b/c)ν0 is
the Doppler width, with the Doppler parameter defined as
b =

√
2kBT/mH . We use a JAX version of the differen-

tiable GPU-accelerated code THALAS (Ding et al., 2024) to
calculate these quantities from simulations.

3. Stochastic Interpolant Models
We employ Stochastic Interpolants, as formulated in
(Albergo et al., 2023; Chen et al., 2024) and first ap-
plied in the cosmological context in (Cuesta-Lazaro
et al., 2024), to model the conditional distribution
p(δbaryons|δdarkmatter, C,A). Given a dark matter

density field, δdarkmatter, and a set of cosmologi-
cal and astrophysical parameters C, A, (in our case,
Ωm, σ8, ASN1, ASN2, AAGN1, AAGN2) we seek to gener-
ate a probabilistic ensemble of possible baryon distributions
δbaryons. A stochastic interpolant Is can be constructed as:

Xs = αsx0 + βsx1 + σsWs, (3)

where Ws is a Wiener process that can be sampled as Ws =√
sz with z ∼ N (0, I). The interpolant maps a point mass

measure at x0 to the conditional distribution p(xs|x0) as s
varies from 0 to 1. In our application, x0 = δdarkmatter and
x1 = δbaryons.

The interpolant satisfies boundary conditions α0 = β1 = 1
and α1 = β0 = σ0 = 0. For our implementation, we
choose αs = 1− s, βs = s2, and σs = 1− s.

The conditional distribution defined by the interpolant,
p(Is|x0), corresponds to the law of a solution to a stochastic
differential equation (SDE) that can be used as a generative
model (Chen et al., 2024):

dXs = bs(Xs, x0)ds+ σsdWs, Xs=0 = x0, (4)

where the drift term bs is learned by parameterizing a neural
network b̂s(x, x0, s) and minimizing the objective:

Lb

[
b̂s

]
=

∫ 1

0

dsE
[
|b̂s(Is, x0, s)−Rs|2

]
. (5)

Here, Rs is determined by the interpolant as Rs = α̇sx0 +
β̇sx1 + σ̇sWs, where the dots represent derivatives with
respect to s.

Unlike conditional diffusion models, like the ones used
for mapping dark matter fields to galaxies (Bourdin et al.,
2024), stochastic interpolants leverage a base distribution x0

that is already structurally similar to the target distribution,
simplifying the mapping that the neural network needs to
learn.

We implement the drift term using a fully convolutional 3D
U-Net architecture. The fully convolutional nature allows us
to train the model on small-volume hydrodynamical simula-
tions (e.g., CAMELS) while performing inference on larger
volumes. The interpolant time parameter s is encoded to-
gether with the cosmological and astrophysical parameters
and incorporated into the network input alongside Xs.

4. Results
We have trained our network, described in Sec. 3 to map
from the fast particle mesh simulations to the CAMELS
simulations described in Sec. 2. We then map our output
baryon fields to the Ly-α flux statistics described in Sec. 2.3.
For redshift space distortions, we use the dark matter line
of sight velocities from the particle mesh without machine
learning augmentation.
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4.1. Inference over larger volumes: TNG50

For a robust test of the utility of our trained model, we
run a particle mesh simulation with matched initial con-
ditions to that of the TNG50 simulation and calculate a
binned density and total velocity field. We apply our trained
BaryonBridge on this volume. From the output NHI

and T fields, combined with the line of sight velocity from
the particle mesh dark matter simulation, we calculate the
Ly-α forest as described in Sec 2.3. We show our qualitative
performance in a slice in Figure 1, finding excellent visual
agreement, including predictions of thermal shocks which
were difficult to to recover in past machine-learning based
approaches (Harrington et al., 2022), although with some
loss of sharpness on the edges. We show the calculated Ly-
α power spectra in Figure 2, finding excellent quantitative
agreement with less that 3 % error up to a k ∼ 8 h Mpc−1.

In total, our model requires only 7 GPU-minutes for infer-
ence, one minute on four GPUs for particle mesh and three
minutes on one GPU for a model sample, and 96 GPU-hours
for training, compared to TNG50’s 130 million CPU core
hours.

For an analytical comparison, we use the Fluctuating-Gunn
Peterson Approximation for the temperature and baryon
density field as described in Harrington et al. (2022). This
method goes beyond the “standard” FGPA method used
(e.g. that used in Horowitz et al. (2019); Kooistra et al.
(2022)) by predicting a temperature and density field with an
exponential mapping, and then passing through an equation
of state code to calculate the neutral hydrogen fraction and
line of sight integration code.

4.2. Parameter variations: CAMELS Boxes

We also test our trained BaryonBridge model on vali-
dation boxes in the original IllustrisTNG-LH set held back
from training. This set spans a range of cosmological and
astrophysical properties, allowing us to validate our condi-
tional mapping. Across our conditioning set, we find high
accuracy in our output quantities of NHI and T in terms of
quantity power spectra and cross correlation coefficient. In
particular, we find < 10% error in the power spectra across
the validation set up to a k ∼ 10 h Mpc−1 as well as a
correlation coefficient > 0.9 up to a k ∼ 4 h Mpc−1 for
both of these fields.

We select a few extreme values, shown in Table 4.2, to
further analyze in terms of the downstream task of Ly-α
analysis. We show the Ly-α power spectra in Fig 3, find-
ing excellent agreement, with less than 5% error up to a
k = 10 h Mpc−1 across the parameter space. The worst
performing validation case, Parameters C, is quite extreme
in both cosmological and astrophysical parameters, but still
has acceptable error properties. We have also calculated the

Ωm σ8 AS1 AS2 AA1 AA2
∆⟨F ⟩
⟨F ⟩

A 0.46 0.87 3.81 0.70 1.50 1.78 0.2%
B 0.22 0.79 0.82 0.27 0.55 1.11 0.2%
C 0.14 0.68 2.34 2.83 0.79 0.54 0.3%

Table 1. Validation parameter sets used to demonstrate our condi-
tional model. We also show the relative error on the inferred mean
Ly-α flux.
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Figure 3. Power spectra statistics corresponding to the models in
Tab. 4.2. The shaded region shows the variance of independent
samples drawn from the same initial conditions; i.e. a model
prediction of uncertainty in the underlying mapping.

cross correlation coefficent, finding r > 0.9 up to k ∼ 5.0
h Mpc−1 across all validation parameter sets.

5. Discussion and Conclusion
In this work, we have demonstrated a fast and accurate
way to map from relatively low-resolution dark matter sim-
ulations to full hydrodynamical quantities in the case of
Ly-α observables. We have trained our methods on rela-
tively small (25 h−1 Mpc)3 boxes from the CAMELS set
and tested them on the larger TNG50 box, finding excellent
performance on downstream tasks like Ly-α power spectra
analysis. This method can be used not only for fast genera-
tion of mock catalogs for next generation surveys, but could
also play a critical role in dynamical forward modeling field
level approaches.

Remaining variance between BaryonBridge and the
CAMELS results could in part be caused by poor reso-
lution in low-mass regions from the underlying JaxPM sim-
ulation and full dark matter simulations. These difference
could in part be alleviated via (conditional) refinement meth-
ods or neural augmentations on the particle mesh methods
(Lanzieri et al., 2022; Payot et al., 2023).

In this work, we have focused on neutral hydrogen and
temperature as they are required quantities for Ly-α flux
statistics. However, in preliminary tests we have found
no fundamental restriction on target fields available in the
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CAMELS multifield dataset. In addition, thematically simi-
lar techniques have been used to map to highly non-linear
quantities like stellar mass (Ono et al., 2024). Currently,
memory limitations and training-time expediency require
some specialization to only a few target fields at once.

We calculate the Ly-α statistics from the predicted gas tem-
perature and density fields rather than directly inferring the
transmitted flux for several key reasons. First, predicting the
underlying physical fields enables us to study correlations
with other observables. Second, this approach transforms
the problem into a local mapping between the dark matter
distribution and gas properties, avoiding the need to model
the complex long-range correlations that arise when target-
ing the Ly-α field directly in redshift space. Finally, the
causal relationship between baryonic feedback processes
and the observed Ly-α absorption is more naturally captured
by modeling their separate effects on the temperature and
density fields, which then combine to determine the Lyman
alpha field.

It is notable that all steps in our analysis framework, JaxPM
particle mesh outputs to BaryonBridge baryon quanti-
ties to THALAS Ly-α flux are differentiable allowing an
end-to-end pipeline for explicit field level inference (e.g.
Horowitz et al. (2019); Porqueres et al. (2019)). We will
further explore this application in future works.
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