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Abstract

Pre-trained Large Language Models (LLMs)
have revolutionized text processing, yet adapt-
ing Transformer-based neural networks to non-
textual scientific modalities typically requires spe-
cialized architectures and extensive computational
resources. We demonstrate that LLaMA-3.1-8B
can be efficiently repurposed to predict galaxy red-
shifts from spectroscopic data through Low-Rank
Adaptation (LoRA), achieving competitive perfor-
mance while preserving its linguistic capabilities.
Using only 16 GPU-hours and adapting 0.04%
of model parameters, our approach achieves a
mean absolute error of 0.04 in redshift predic-
tion while retaining over 85% of performance
on AstroBench and 89% on general QA tasks
from eval-harness. This minimal-effort adapta-
tion—requiring only simple standard fine-tuning
APIs—lowers barriers to entry for domain sci-
entists and enables integrated agentic workflows
where a single model handles both spectroscopic
data for quantitative analysis and natural language
for reasoning.

1. Introduction
Transformer-based models have revolutionized natural lan-
guage processing through Large Language Models (LLMs)
(Brown et al., 2020; Radford et al., 2019; Zhang et al.,
2023), leveraging the scalable transformer architecture’s
self-attention mechanism (Vaswani et al., 2017). This mech-
anism’s ability to capture long-range dependencies has en-
abled successful extensions beyond text to images (Doso-
vitskiy et al., 2020), graphs (Kipf & Welling, 2017), and
spectral data (Liu et al., 2021; Fu et al., 2021).
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In astronomy, transformers have shown promise for pro-
cessing time series (e.g., Pan et al., 2024b) and spectro-
scopic data (e.g., Leung & Bovy, 2024; Różański et al.,
2025), where long-range correlations encode critical physi-
cal information. These models exhibit neural scaling laws,
demonstrating potential for scaling to larger architectures
(Pan et al., 2024a; Różański & Ting, 2025). However, astro-
nomical applications typically train specialized transform-
ers from scratch, requiring computational resources and
domain expertise. These models often employ custom to-
kenization schemes, specialized positional encodings, and
domain-specific masking strategies—each requiring careful
design and validation (Różański et al., 2025).

These specialized models face several practical limitations.
First, they cannot leverage the rapidly evolving LLM ecosys-
tem, including optimized inference frameworks (Yuan et al.,
2024), quantization techniques (Zhao et al., 2024), and de-
ployment tools designed for text transformers. Second,
astronomy-specific architectures often lack compatibility
with fast inference systems like vLLM or TensorRT-LLM
(Kwon et al., 2023), limiting their deployment at scale.
Third, integrating these models into agentic workflows like
(Moss, 2025) requires building custom interfaces between
LLMs and domain-specific components, often increasing
system complexity, maintenance burden, and high token
consumption.

This raises a fundamental question: can we repurpose ex-
isting pre-trained LLMs to process entirely new scientific
modalities through efficient adaptation? Such approaches
have started to gain attention in other fields, including chem-
istry (Jablonka et al., 2024), material design (Gruver et al.,
2024), and protein design (Lv et al., 2024), but have not
been demonstrated in astronomy yet. Such an approach
would lower the barrier to entry for astronomers while ben-
efiting from mature LLM infrastructure. Crucially, any
adaptation must preserve the model’s original text process-
ing and reasoning capabilities—the goal is augmentation,
not replacement.

We demonstrate that LLaMA-3.1-8B, fine-tuned via Low-
Rank Adaptation (LoRA) (Hu et al., 2021), can effectively
predict galaxy redshifts from spectroscopic data while re-
taining its language capabilities. This parameter-efficient
approach shows that generic transformer models can serve
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as versatile scientific tools, processing both textual and spec-
troscopic modalities without requiring specialized architec-
tures or extensive training from scratch.

2. Dataset
As a proof of concept, we chose galaxy redshift predic-
tion—a fundamental cosmology task where accurate photo-
metric redshifts enable large-scale structure studies (New-
man & Gruen, 2022). While focusing on this high-impact
application, our approach should generalize to other spec-
troscopic tasks where sequential patterns encode physical
information. We compiled galaxy spectra from SDSS DR16,
selecting galaxies (type = 3) with 0 < z < 0.50 < z < 0.5
and dereddened i < 18 to ensure nearby, luminous sources
(Ahumada et al., 2020). The query retrieved identifiers,
coordinates, redshifts, photometric measurements, and spec-
troscopic details. We obtained FITS format spectra from
the SDSS Science Archive Server, handling data reduction
differences between SDSS and eBOSS pipelines. After con-
verting from logarithmic to linear wavelength scales and
normalizing fluxes, we obtained 10,000 galaxy samples.
With equal-frequency binning, we sample 3,000 galaxies
for training that uniformly span the redshift range. A vali-
dation set of 1,000 galaxies across the full redshift range is
reserved for unbiased evaluation.

3. Methodology
To adapt pre-trained LLMs for spectroscopic analysis, we
must address two fundamental challenges: representing
continuous spectral data in a format LLMs can process,
and fine-tuning the model without sacrificing its linguistic
capabilities.

3.1. Tokenization

A key challenge lies in tokenization. Specialized astronomy
transformers (Pan et al., 2024b; Różański et al., 2025) train
custom MLP-based tokenizers from scratch, learning op-
timal representations for spectral features. However, this
approach requires modifying the model architecture and
training pipeline—precisely the barriers we aim to avoid.

Instead, we test whether standard LLM tokenizers can han-
dle spectra with minimal adaptation. We serialize each
flux value into digits using a configurable base representa-
tion with specified precision. For example, with base=10
and prec=2, the value 4.56 → "4|5|6" where the lead-
ing space indicates positive sign and “—” separates in-
dividual digits. Complete spectra become concatenated
strings with “ ,” delimiting values. For instance, [4.56,
7.54, 11.2] becomes "4|5|6 , 7|5|4 , 1|1|2|0
,". The serialization handles signed values, removes lead-
ing zeros for variable-length representation, and includes

proper separators for unambiguous parsing. Each input is
prepended with "Galaxy spectrum is rescaled
and encoded to an input series:" and target
with "Redshift: ". With a total of 3,000 galaxies, this
amounts to roughly 1.6M tokens. While suboptimal com-
pared to learned tokenization, this approach requires zero
architectural changes and tests the lower bound of what’s
achievable with minimal effort.

3.2. Model Selection and Fine-tuning

Having established a tokenization strategy, we selected a
model balancing capability with accessibility. LLaMA-3.1-
8B-Instruct represents an optimal trade-off: smaller models
might lack the capacity to retain linguistic abilities while
learning new modalities, while larger models exceed typical
astronomy computing budgets. The 8B parameter scale
provides sufficient capacity for multi-modal learning while
remaining trainable on modest GPU clusters.

We employed Low-Rank Adaptation (LoRA), which decom-
poses weight updates into low-rank matrices W +∆W =
W + BA where B ∈ Rd×r and A ∈ Rr×k with r ≪
min(d, k) (Hu et al., 2021). This approach freezes the origi-
nal weights W while training only the compact matrices A
and B. LoRA has become the standard fine-tuning method
across both open and proprietary models—OpenAI, An-
thropic, and other providers offer LoRA-based fine-tuning
APIs. While we use open-weight models for experimental
flexibility, our approach translates directly to proprietary
platforms where astronomers could upload their data and
utilize built-in fine-tuning pipelines.

Using rank-8 adapters (3.4M parameters, ∼0.04% of to-
tal model parameters), two training epochs require only
16 A100 GPU hours total—well within typical astronomy
computing allocations. In addition, each galaxy training
point occupies less than 7% of the 8K context window of
LLaMA-3.

4. Results
After fine-tuning, our model serializes galaxy spectra flux
values into tokens, generating responses as "Redshift:
[value]". We extract numerical predictions and compare
against true spectroscopic redshifts for performance met-
rics. Beyond spectroscopic accuracy (mean absolute error,
MAE), we evaluate pre-trained capability retention using
eval-harness benchmarks (Gao et al., 2023) and AstroBench,
following Ting et al. (2025).

The validation set comprised 20% of galaxy spectra span-
ning the full redshift range. We analyze how learning rate,
LoRA rank, training epochs, and dataset size affect the trade-
off between modality adaptation and knowledge retention.
Figure 1 illustrates the learning rate’s critical role in bal-
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Figure 1. Trade-off between spectroscopic accuracy and language benchmark retention across learning rates. Top: Predicted vs. true
redshifts for validation galaxies, with contours representing the full validation set of 2,000 spectra and individual points shown for clarity.
Learning rate 10−5 (left) preserves language capabilities but yields poor redshift predictions (MAE=0.104), while 10−4 (middle) achieves
optimal spectroscopic accuracy (MAE=0.043) with acceptable language degradation, and 10−3 (right) shows intermediate spectroscopic
performance (MAE=0.065) with substantial language degradation. Bottom: Percent change in language benchmarks after fine-tuning.
The optimal learning rate 10−4 (orange) balances accurate redshift prediction with less than 15% degradation in scientific reasoning tasks
while maintaining strong general knowledge performance.

ancing spectroscopic accuracy and language preservation.
At 10−4, we achieve MAE=0.043 with less than 15% de-
cline in scientific reasoning and 89.4% retention of general
QA performance. The lowest rate (10−5) preserves over
95% of language capabilities but yields poor spectroscopic
performance (MAE=0.104), while the highest rate (10−3)
improves redshift prediction (MAE=0.065) but degrades
reasoning tasks by less than 20%. Higher learning rates
enable faster modality adaptation but disrupt the pre-trained
representations more aggressively.

Beyond learning rate, our ablation studies reveal consistent
patterns across other hyperparameters (Table 1). Increas-
ing LoRA rank from 4 to 16 improves redshift accuracy
(MAE decreases from 0.078 to 0.057) by allowing more
parameters to adapt, but higher ranks show diminishing
returns while causing greater language degradation. This
aligns with LoRA theory: higher ranks enhance expressive
capacity but risk overwriting original knowledge. In addi-
tion, the training duration also matters: one epoch yields
incomplete adaptation (MAE=0.099), whereas three epochs
only marginally improve spectroscopy (MAE=0.074) at the
cost of language degradation. These trade-offs highlight
the importance of careful hyperparameter tuning to align

scientific performance with language retention.

Our chosen fiducial configuration—learning rate 10−4,
LoRA rank 8, two epochs—achieves MAE = 0.043 while
retaining over 85% of original language capabilities, demon-
strating an effective balance between spectroscopic accuracy
and linguistic preservation. The 85.2% retention of QA per-
formance in AstroBench indicates that the model can still
understand complex scientific concepts in astronomy and
answer technical questions for integrated scientific work-
flows. This minimal degradation enables agentic analysis
where the model processes raw spectra, derives physical
parameters, and then reasons about the results in natural
language. Below is a condensed conversation illustrating its
dual capability:

Step 1 - User provides spectrum: [Galaxy
spectrum data]
Model prediction: Photometric redshift: 0.315

Step 2 - User: What type of galaxy is expected
at the redshift you just predicted? Which surveys
could observe it?
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Table 1. Performance Comparison Across Different Fine-tuning Configurations

Learning Rate LoRA Rank Training size Epochs Redshift MAE† Scientific QA∗ General QA∗

Varying Learning Rate (rank = 8, epochs = 2, samples = 3,000)

10−5 8 3,000 2 0.104 96.5% 95.1%
10−4 8 3,000 2 0.043 85.2% 89.4%
10−3 8 3,000 2 0.065 76.2% 79.8%

Varying LoRA Rank (rate = 10−4, epochs = 2, samples = 3,000)

10−4 4 3,000 2 0.078 87.8% 91.2%
10−4 8 3,000 2 0.043 85.2% 89.4%
10−4 16 3,000 2 0.057 82.1% 86.7%

Varying Number of Epochs (rate = 10−4, rank = 8, samples = 3,000)

10−4 8 3,000 1 0.099 87.9% 91.5%
10−4 8 3,000 2 0.043 85.2% 89.4%
10−4 8 3,000 3 0.074 83.7% 88.1%
† Lower is better. ∗ Higher is better. Fiducial configurations in gray . Blue: best , second .

Model: At redshift z=0.315, this is likely a massive
elliptical galaxy. These are among the most massive
and evolved galaxies, typically formed through
mergers. The redshift corresponds to a lookback
time of ∼3.8 billion years, during an active epoch
of galaxy evolution.

Observable by: SDSS, DES, HST, ALMA (dust/-
gas), and future surveys like Euclid and LSST. The
galaxy is receding at ∼84,000 km/s, with spectral
features like Hα shifted from 656nm to 863nm.

For context, specialized spectroscopic redshift estimation
methods can achieve lower MAE, even at sub-0.01 level
(Bolton et al., 2012), suggesting our approach reaches com-
petitive though not state-of-the-art performance. However,
the value lies not in surpassing specialized methods but in
demonstrating that general-purpose LLMs can achieve rea-
sonable accuracy on scientific tasks while maintaining their
broader capabilities, enabling truly integrated workflows
where a single model handles the complete pipeline from
raw data to scientific interpretation.

5. Conclusion and Broader Impact
This work demonstrates that pre-trained LLMs can be effi-
ciently adapted to process non-textual scientific data through
parameter-efficient fine-tuning. However, the tokenization,
fine-tuning process, and the resulting performance may
vary across the type of modalities. This approach contrasts
sharply with training specialized models from scratch (e.g.
Leung & Bovy, 2024; Różański et al., 2025), which re-

quires orders of magnitude more computational resources
while sacrificing the ability to process natural language. Our
findings have several important implications for scientific
computing:

Democratizing Access: The approach substantially lowers
barriers to entry for domain scientists. Rather than develop-
ing specialized architectures or training models from scratch,
astronomers can leverage existing LLM infrastructure, fine-
tuning APIs, and established deployment pipelines.

Enabling Integrated Workflows: Our approach enables
truly end-to-end scientific analysis within a single model.
As demonstrated in our results, the same model that pro-
cesses raw spectroscopic data to derive redshifts can imme-
diately reason about the physical implications—discussing
galaxy types, evolutionary stages, and observational strate-
gies. This eliminates the need for complex interfaces be-
tween specialized components and enables more natural
human-AI collaboration in scientific discovery.

Revealing Transferable Representations: Our results sug-
gest that foundation models trained on text contain remark-
ably transferable representations applicable to diverse scien-
tific modalities. The success of adapting a language model
to spectroscopic analysis—achieving less than 15% degra-
dation in reasoning capabilities—implies that transformer
pre-training captures general computational strategies for
processing sequential information that transcend specific
data types. While there are successful demonstrations of
unified prediction frameworks like this in other specific sci-
entific modalities (Hu et al., 2025; Zhang et al., 2025), this
area requires a deeper investigation.

As LLM infrastructure continues its rapid advancement,
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parameter-efficient adaptation offers a practical path to de-
mocratize AI-driven scientific analysis. By building on
existing foundation models rather than starting from scratch,
the scientific community can benefit from ongoing improve-
ments in language modeling while maintaining the flexi-
bility to incorporate domain-specific data. This approach
promises to accelerate scientific discovery by enabling mod-
els that can seamlessly navigate between quantitative anal-
ysis and conceptual reasoning—a capability increasingly
essential for tackling complex agentic challenges.
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Payne: Enhancing Spectral Emulation Accuracy and Data
Efficiency by Capturing Long-range Correlations. ApJ,
980(1):66, February 2025. doi: 10.3847/1538-4357/
ad9b99.

Ting, Y. S., Nguyen, T. D., Ghosal, T., Pan, R., Arora,
H., Sun, Z., de Haan, T., Ramachandra, N., Wells, A.,
Madireddy, S., and Accomazzi, A. AstroMLab 1: Who
wins astronomy jeopardy!? Astronomy and Comput-
ing, 51:100893, April 2025. doi: 10.1016/j.ascom.2024.
100893.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Yuan, Z., Shang, Y., Zhou, Y., Dong, Z., Zhou, Z., Xue, C.,
Wu, B., Li, Z., Gu, Q., Lee, Y. J., et al. Llm inference
unveiled: Survey and roofline model insights. arXiv
preprint arXiv:2402.16363, 2024.

Zhang, G., Li, Y., Luo, R., Hu, P., Zhao, Z., Li, L., Liu,
G., Wang, Z., Bi, R., Gao, K., et al. Unigenx: Unified
generation of sequence and structure with autoregressive
diffusion. arXiv preprint arXiv:2503.06687, 2025.

Zhang, J. et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2307.09288, 2023.

Zhao, Y., Lin, C.-Y., Zhu, K., Ye, Z., Chen, L., Zheng, S.,
Ceze, L., Krishnamurthy, A., Chen, T., and Kasikci, B.
Atom: Low-bit quantization for efficient and accurate llm
serving. Proceedings of Machine Learning and Systems,
6:196–209, 2024.

6


