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Abstract
The simulation cost for cosmological simulation-
based inference can be decreased by combining
simulation sets of varying fidelity. We propose an
approach to such multi-fidelity inference based
on feature matching and knowledge distillation.
Our method results in improved posterior qual-
ity, particularly for small simulation budgets and
difficult inference problems.

1. Introduction
Cosmology is seeing an increase in attention for simulation-
based inference (SBI) methods. Many proofs-of-concept
have appeared, and even applications to real data are now
possible (e.g., Hahn et al., 2024; Lemos et al., 2024; Gatti
et al., 2024; Thiele et al., 2024; Novaes et al., 2025). Such
applications do not, at the moment, enjoy the same degree of
trust as do traditional likelihood-based analyses. To increase
the trustworthiness of SBI in cosmology methodological
developments are necessary, in particular in maximizing the
posterior’s quality with a realistic simulation budget.

SBI enables us to constrain model parameters in situa-
tions where the likelihood of an observed data vector is
not tractable. In many such cases, we are able to simulate
samples from the likelihood. Given a training set of such
simulated samples, SBI (Cranmer et al., 2020) is an um-
brella for algorithms that can learn approximations to the
likelihood or functionally equivalent objects: e.g., posterior
estimation (NPE, Greenberg et al., 2019; Lueckmann et al.,
2017; Papamakarios & Murray, 2016), likelihood estima-
tion (NLE, Papamakarios et al., 2019; Lueckmann et al.,
2019), ratio estimation (NRE, Hermans et al., 2020), and
quantile estimation (NQE, Jia, 2024b).

There is no free lunch in SBI. Posterior approximations can
be dramatically wrong (Hermans et al., 2022). This is partic-
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Figure 1. Graphical summary of the proposed multi-fidelity archi-
tecture and training loss. Filled circles indicate the components
of our proposed training loss. The notation is given in Section 3,
particularly Eq. (5). Hatched components are weight-initialized
(dotted arrows) from pretraining on D2, the cross-hatched ones
being frozen. The final model only evaluates the path indicated in
orange. The right side shows the weight-initialization scheme we
compare to.

ularly pertinent in situations with a very limited simulation
budget (Lueckmann et al., 2021; Homer et al., 2024; Bairagi
et al., 2025). Cosmological simulations are extremely ex-
pensive if they are to capture all relevant physics accurately.
For current and upcoming data sets, we will only be able
to run very few simulations with a fidelity matching the
data precision. This problem has been studied in a few re-
cent works. By combining accurate analytic descriptions
on large scales with cheaper small-scale simulations, the
computational expense can be decreased (Modi & Philcox,
2023; Zhang et al., 2025). Sequential methods (e.g., Cole
et al., 2022) concentrate the simulation budget in the most
informative regions of parameter space.

In this work, we focus on the approach of multi-fidelity
inference. In this setup, we assume a cascade of simulation
sets with varying levels of fidelity, culminating in a small
high-fidelity set matching the observation’s precision. Prior
work in this direction, specializing on the case of two fidelity
levels, has proposed a calibration step in NQE (Jia, 2024a),
and transfer learning via weight initialization (Krouglova
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Figure 2. Performance evaluation for the cosmological inference problem. We show, from left to right, test loss, two-sample classifier
accuracy, and maximum mean discrepancy. Lower is better for all.

et al., 2025; Saoulis et al., 2025). For an arbitrary number of
fidelity levels, the loss function can be stabilized via control
variates (Hikida et al., 2025). These existing approaches
highlight the potential of multi-fidelity SBI to reduce the
required simulation budget.

Our contribution employs a tailored training setup which
enables training on multiple fidelity simulations simultane-
ously. The training constructs stochastic mappings between
the embedded data vectors at different fidelity levels and a
latent space corresponding to the highest fidelity. Figure 1
illustrates our architecture and training process, a derivation
is presented in Section 3. Our approach is a superset of
weight initialization. We demonstrate that it outperforms
weight initialization in examples where the two can be com-
pared. Furthermore, our approach can accommodate any
number of fidelity levels and is applicable even in situations
when the observations or embeddings at different fidelities
differ in shape. Empirically, it is also found to converge
faster than weight initialization.

In this work, we focus on the case of NPE. The extension to
NRE appears natural but will be deferred to future work. We
consider a cosmology example with a traditional summary
statistic, though the extension to field-level inference, as
considered in Saoulis et al. (2025), is straightforward.

2. Results
We evaluate performance by considering the example of
the matter power spectrum at redshift z = 0 in 5-parameter
ΛCDM. The high-fidelity data is taken from the BSQ set
of the Quijote simulation suite (Villaescusa-Navarro et al.,
2020), which uses a tree-PM algorithm for accurate small
scale clustering. The low-fidelity data was produced using
FastPM (Feng et al., 2016), a PM code which is cheaper by a
factor of ∼10–100 per simulation, using the same prior. The
FastPM simulations paired with Quijote (D1) are matched in
parameters and seeds.1 We truncate at kmax = 0.5hMpc−1

1Matching seeds is, in principle, not required as the transfer
network rψ can absorb the additional stochasticity. However,
performance of the proposed method benefits from matching the
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Figure 3. Posteriors on an example realization from the test set.
We compare models trained on 100 high-fidelity simulations to the
reference posterior (grey) trained on 28k high-fidelity simulations.

to dimensionality 79.

We take MLPs for the embedding and transfer networks,
and a spline flow (Durkan et al., 2019) from sbi (Tejero-
Cantero et al., 2020; Durkan et al., 2020) for the density es-
timator. Hyperparameters are optimized with optuna (Ak-
iba et al., 2019).

For all multi-fidelity runs we use 10k low-fidelity samples
with 100, 300, or 1k high-fidelity samples. We evaluate
performance using a held-out test set of 2k high-fidelity
simulations, and compare to reference posteriors computed
by training standard NPE on 28k high-fidelity samples.

Figure 2 shows three different evaluation metrics as a func-
tion of the high-fidelity set size. NLTP is the test loss,
C2ST is the two-sample classifier accuracy (Lopez-Paz &

seeds.
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Oquab, 2018), and MMD is the kernel-based maximum
mean discrepancy (Gretton et al., 2012). Our approach con-
sistently outperforms weight initialization, with most benefit
for small high-fidelity sets. As an example, in Figure 3 we
show a comparison of posteriors. Our method results in
posteriors quite close to those obtained with weight initial-
ization, while the estimation only with small high-fidelity
data is far from the reference.

3. Methods
3.1. Preliminaries

NPE is a problem to estimate the conditional distribution
p(θ | x) given realizations of simulator’s parameters θ and
outcomes x as training data. In the standard NPE, we learn
a density estimator qϕ(θ | x) parametrized by ϕ, typically a
conditional normalizing flow, by minimizing

Ep(x) KL
(
p(θ | x) || qϕ(θ | x)

)
= −Ep(θ,x) log qϕ(θ | x)− Ep(x)H(p(θ | x)).

Let D = {(θ1, x1), . . . , (θn, xn)} be data drawn from p(x |
θ)p(θ). As the entropy H(p) is constant wrt ϕ, we solve

minimize
ϕ

1

n

∑
(θ,x)∈D

− log qϕ(θ | x). (1)

3.2. Proposed Method

Let p(x | θ) and p(y | θ) be the likelihoods of two simula-
tors to model the same target with different fidelity: x ∈ X
is with relatively high fidelity, and y ∈ Y is with lower
fidelity. Evaluating the values of p(x | θ) and p(y | θ) is in-
tractable, and we only have samples drawn from them. The
high-fidelity simulator is much heavier to run than the low-
fidelity simulator, so we typically have D1 = {(θi, xi, yi) |
i = 1, . . . , n1} and D2 = {(θi, yi) | i = 1, . . . , n2}, where
n1 < n2 by a large margin.

Our goal is to estimate the conditional distribution of θ | x.
However, the standard NPE loss in Equation (1) for x can
be computed only on the θ-x pairs in small D1. We thus
want to utilize the information from the θ-y pairs, available
in larger D2 as well, for learning the θ-x relation. To this
end, we introduce additional loss functions as presented in
Sections 3.2.1 and 3.2.2. For the sake of simplicity, we here
only discuss the case of two levels of fidelity, but extending
the method to more fidelity levels is straightforward.

3.2.1. FEATURE MATCHING

We aim to minimize the y-based posterior KL:

Ep(y) KL
(
p(θ | y) || qϕ(θ | y)

)
= −Ep(θ,y) log qϕ(θ | y)− Ep(y)H(p(θ | y)).

Recall that the network of the density estimator, qϕ, is de-
signed to receive x (and not y) as the condition, so we cannot
compute − log qϕ(θ | y) directly. It can be upper bounded
by Jensen’s inequality as

− log qϕ(θ | y) = − log

∫
rψ(x | y)qϕ(θ | x)p(x | y)

rψ(x | y)
dx

≤ −
∫
rψ(x | y) log qϕ(θ | x)p(x | y)

rψ(x | y)
dx

= −Erψ(x|y) log qϕ(θ | x) + KL
(
rψ(x | y) || p(x | y)

)
,

where rψ(x | y) is a conditional distribution of x given y
parametrized with ψ. We thus should minimize

−Ep(θ,y)Erψ(x|y) log qϕ(θ | x) and (2)

Ep(y) KL
(
rψ(x | y) || p(x | y)

)
. (3)

The newly introduced model, rψ(x | y), probabilistically
transforms y to x.2 Equation (2) reads as the NPE loss
computed on the transformed condition x ∼ rψ(x | y).
Equation (3) enforces rψ(x | y) close to the true transfor-
mation, but computing the KL is challenging because we
cannot evaluate p(x | y) and only have access to the samples
from p(x, y). As a surrogate of (3), we suggest minimizing
the KL in the opposite direction:

Ep(y) KL
(
p(x | y) || rψ(x | y)

)
= −Ep(x,y) log rψ(x | y) + const. (3′)

3.2.2. RESPONSE DISTILLATION

Let q̃ξ(θ | y) be the density estimator of p(θ | y) trained on
the large dataset D2 with the standard NPE loss, i.e.,

ξ = argmin
ξ′

1

n2

∑
(θ,y)∈D2

− log q̃ξ′(θ | y).

We aim to inform our estimator, qϕ(θ | x), from q̃ξ(θ | y)
based on knowledge distillation (Hinton et al., 2015). We
minimize the (expectation of) KL between the two:

Ep(y) KL(q̃ξ(θ | y) || qϕ(θ | y))
= −Ep(y)Eq̃ξ(θ|y) log qϕ(θ | y)− Ep(y)H(q̃ξ(θ | y)).

Since ξ is fixed already, the last term is constant. As
− log qϕ(θ | y) can be upper bounded as discussed earlier,
the quantity to minimize is

− Ep(y)Eq̃ξ(θ|y) log qϕ(θ | y)
≤ −Ep(y)Eq̃ξ(θ|y)Erψ(x|y) log qϕ(θ | x)

+ Ep(y) KL(rψ(x | y) || p(x | y))︸ ︷︷ ︸
same as (3)

.

2We will discuss in Section 3.2.3 more practical cases where
embedding nets are applied to x and y.
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Note that the KL in the last term already appeared in Equa-
tion (3). Finally we are interested in minimizing

−Ep(y)Eq̃ξ(θ|y)Erψ(x|y) log qϕ(θ | x), (4)

which is equivalent to minimizing the KL divergence be-
tween q̃ξ(θ | y) and qϕ(θ | x).

3.2.3. IMPLEMENTATION

We often use so-called embedding networks to extract
summary statistics from observations, which were omit-
ted in the discussion so far for notational simplicity. Let
Sτ : x 7→ Sτ (x) and Sσ : y 7→ Sσ(y) be the embedding
networks for x and y, parametrized with τ and σ, respec-
tively. The embedding networks are taken as multi-layer
perceptrons reducing the dimensionality in order to sim-
plify the learning problem for the normalizing flow. With
these embedding nets taken into consideration, the proposed
method proceeds as follows.

Step 1. Train an NPE model on D2 ordinarily by

minimize
ξ,σ

1

n2

∑
(θ,y)∈D2

− log q̃ξ(θ | Sσ(y)).

Step 2. Train an NPE model qϕ(θ | Sτ (x)) with the pro-
posed loss. First, if possible, initialize ϕ with ξ. We then
solve the following problem:

minimize
ϕ,τ,ψ

L1 + αL2 + βL3, (5)

where each loss term is given as3

L1 =
1

n1

∑
(θ,x)∈D1

− log qϕ(θ | Sτ (x)),

L2 =
1

n1,2

∑
(θ,y)∈D1,2

Eu∼rψ(·|Sσ(y)) − log qϕ(θ | u)

+
1

n1

∑
(x,y)∈D1

− log rψ(Sτ (x) | Sσ(y)),

L3 =
1

n1,2

∑
y∈D1,2

Eθ∼q̃ξ(θ|Sσ(y)), u∼rψ(·|Sσ(y)) − log qϕ(θ | u).

Here, D1,2 = D1 ∪ D2 and n1,2 = n1 + n2. The
expectations can be approximated with samples. We
empirically found that instead of rigorously computing
− log rψ(Sτ (x) | Sσ(y)), merely minimizing the squared
error Ev∥Sτ (x)− v∥2 where v ∼ rψ(· | Sσ(y)) resulted in
more stable learning. We note that further analysis of this
heuristic may lead to an interesting discussion. We take the
relative weights of the components in Eq. (5) as constant
throughout Step 2.

3In the notation of Fig. 1, line by line the loss terms are orange,
green, blue, and magenta.
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Figure 4. (Left) MMD between the true and learned posteriors
for GAUSSIAN. (Right) C2ST metrics for SLCP. The reference
performance is by NPE on a large high-fid. set with n1 = 100k.

4. Some More Numerical Examples
For controlled evaluation, we applied the proposed method
to two synthetic tasks: GAUSSIAN and SLCP.

In GAUSSIAN, θ is drawn from the standard normal distribu-
tion, and x and y are given as the affine transformation of θ
plus Gaussian noise. y is supposed to have “low-fidelity” by
setting dim y < dimx and being added stronger noise than
x is. We used dim θ = 10, dimx = 10, and dim y = 5.
We prepared a high-fidelity dataset of size n1 = 100 and a
low-fidelity dataset of size n2 = 5k.

SLCP is a standard task in SBI benchmarking (see, e.g.,
Lueckmann et al., 2021), featuring multimodal posteriors.
Originally the task is to infer 5 parameters of a 2D Gaussian
distribution given 4 samples drawn from it. We made a
“low-fidelity” version by taking only 3 samples instead. So
for SLCP, dim θ = 5, dimx = 8, and dim y = 6. We
tried different sizes of high-fidelity dataset, n1 = 1k, 2k,
5k, or 10k, and used the fixed size of low-fidelity dataset
with n2 = 100k. To provide a reference performance, we
also run an ordinary NPE on a large high-fidelity dataset of
size n1 = 100k.

The results are shown in Figure 4. We compare the proposed
method with two baselines: models trained only on the θ-x
pairs in D1 (high-fid. only) and models pretrained on D2

and then finetuned on D1 (weight init.). For the GAUSSIAN
task, the MMD between the true and the learned posterior
distributions are reported in the left panel. For SLCP, the
metrics of C2ST are reported in the right panel.4 Both sets
of results show the efficacy of the proposed method. It
achieves better performance in both tasks than the weight
initialization.

5. Conclusions
We have presented a new method for multi-fidelity SBI. Our
method contains transfer learning via weight initialization as

4For GAUSSIAN, MMD should be reliable because the poste-
riors are unimodal. For SLCP, MMD may be unreliable as the
posteriors are multimodal, thus we report C2ST metrics.
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a special case but extends it in several ways. Additional loss
terms contribute information from lower-fidelity samples
during the fine-tuning phase. Our setup allows for training
with an arbitrary number of fidelity levels, as well as shape
mismatch in the data summaries or embeddings.

In our evaluation on a cosmology example problem we find
moderate improvement from our method over weight initial-
ization. The improvement is more pronounced in examples
with complicated posterior shape (such as SLCP). Our pro-
posed method contains several heuristics which could enable
improvement in future work.
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