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Abstract
In observation-driven sciences like astrophysics,
interpretable empirical models are highly valu-
able. Symbolic regression (SR) addresses this
need by automatically discovering analytic equa-
tions from data. However, physical data often con-
tains inherent structural properties that remain un-
derutilized in this process. We propose a method
that identifies additive and multiplicative sepa-
rability in datasets—determining whether an un-
known model y = f(x) can be decomposed into
simpler components y = f1(x1) + f2(x2) or
y = f2(x2)·f2(x2). Our approach recursively de-
composes intricate datasets into simpler submod-
els, revealing the underlying hierarchical graph
structure to enhance interpretability and enable
more efficient SR. When combined with Φ-SO
– a deep reinforcement learning framework for
SR, our method achieves state-of-the-art perfor-
mance, outperforming all baselines on SRBench’s
Feynman benchmark.

1. Introduction
New physical knowledge emerges from observations of nat-
ural phenomena. However, as physicists we often only ob-
serve the net result of complex systems with interacting sub-
phenomena—especially in astrophysics, where controlled
laboratory experiments are impossible, and we must rely
solely on observational data. Historically, progress in our
field has relied on decomposing such complex observations
into simpler, interpretable physical laws.
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Montréal, Montréal, Canada 2Ciela - Montreal Institute for Astro-
physical Data Analysis and Machine Learning, Montréal, Canada
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The rise of deep learning has shifted this paradigm: many
phenomena are now modeled via neural networks, which,
while powerful, sacrifice interpretability. This opacity hin-
ders their integration into overarching physical theories ex-
pressed as analytical equations.

Unveiling graph structure in data To address this chal-
lenge, we propose a neural network framework that explic-
itly discovers hierarchical structures in physical datasets.
Our approach identifies two fundamental decomposition
patterns: (1) additive/multiplicative separability and (2)
compositionality through nonlinear unary functions (e.g.,
1
□ ,□2, exp ...)1. These patterns form the natural build-
ing blocks of analytical physical representations. For an
intricate function f : Rn → R, we decompose it into
interpretable submodels {fi}Ni=1, each operating on dis-
tinct input subsets. The complete model reconstructs as
f = g ◦ (f1, . . . , fN ), where the composition function g hi-
erarchically combines submodels through either elementary
operations (+, ×) or nonlinear transformations.

Symbolic Regression (SR) The extracted hierarchical struc-
ture directly informs a symbolic regression process, which
infers an analytical form for f from data (x, y). Unlike
numerical parameter optimization, SR explores the space
of functional forms by optimizing arrangements of math-
ematical operators (e.g., +, ×, sin, exp), input variables
and free constants. This combinatorial search is NP-hard,
making prior knowledge of the data’s structure—such as
separability—critical for efficiency. Our work bridges this
gap by automatically detecting and exploiting such struc-
ture.

In §1.1, we contextualize our contributions within existing
literature on SR and structural decomposition.

1.1. Related Works & Contribution

Traditional SR Methods SR has historically relied on
genetic programming (GP), emulating natural evolution
to explore equation spaces. This approach underpins
frameworks like Eureqa (Schmidt & Lipson, 2009),

1While symmetry detection represents another important struc-
tural pattern, we defer its systematic treatment to future work.
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Figure 1. Structure-Aware Symbolic Regression. (a) Automated decomposition of an intricate dataset (x, y) into interpretable sub-
models through recursive detection of additive/multiplicative separabilities, including those nested within nonlinear operations. (b)
Structure-informed inference where the discovered hierarchy guides SR through a prior, enabling exact recovery of the ground-truth
equation via deep RL.

PySR (Cranmer, 2023), and others (Stephens, 2015; Cava
et al., 2019; Kommenda et al., 2020; Virgolin et al., 2021;
Russeil et al., 2024).

Deep Learning-Based SR Recent advances employ neu-
ral networks for SR through two dominant approaches: (1)
generative transformer models trained to map datasets to cor-
responding equations (Kamienny et al., 2022; Lalande et al.,
2023; Biggio et al., 2020; 2021), and (2) deep reinforcement
learning (RL) where networks iteratively generate and refine
equations via policy gradient methods, as in DSR (Petersen
et al., 2021a; Landajuela et al., 2021) and Φ-SO (Tenachi
et al., 2023a; 2024). Our work extends the second paradigm,
utilizing its inherent flexibility to incorporate structural pri-
ors and per-submodel length constraints.

Neuro-Symbolic Approaches Alternative approaches em-
bed symbolic operations (e.g., 1

□ , □2, exp ...) within com-
pact neural architectures, enforcing sparsity to recover inter-
pretable equations (Fiorini et al., 2024; Scholl et al., 2023;
Martius & Lampert, 2017; Brunton et al., 2016; Sahoo et al.,
2018). While we similarly incorporate nonlinearities, our
method differs by hierarchically composing them through
symbolic regression of submodels without explicit sparsity
constraints.

Separability Detection Prior work on separability-
leveraging SR includes AIF (Udrescu & Tegmark, 2020;
Udrescu et al., 2020) and its RL hybrid uDSR (Landajuela
et al., 2022). However, these methods are limited to addi-
tive separability and cannot handle multiplicative separa-
bilities or nonlinear-nested structures—key limitations our
approach addresses.

Gradient Estimation Accurate separability detection re-
quires precise gradient estimation. While derivative-
constrained training is well-studied in physics-informed
neural networks (PINNs) (Raissi et al., 2019) and Sobolev
training (Czarnecki et al., 2017), few works address deriva-
tive estimation from data alone. Our solution employs
NestyNet2, a novel architecture enabling high-fidelity
derivative computation from potentially noisy observations.

Our Approach Our framework: (1) employs NestyNet
as a high-fidelity function emulator, (2) leverages its pre-
cise derivatives to recursively detect additive/multiplicative
separabilities—even when nested within nonlinear func-
tions—and (3) constructs an interpretable graph of sub-
functions that informs a deep RL-based symbolic regression
(SR) process through structural priors. This focuses the
search on analytically plausible expressions matching the
discovered hierarchy.

Sections 2–4 detail our methodology, results, and conclu-
sions respectively.

2. Method
Learning Precise Derivatives To identify separabilities,
we require an emulator f that accurately fits the data
(x, y) ∈ Rnx×ny while providing reliable first and sec-
ond derivatives ∂f/∂x and ∂2f/∂x2. We employ the
NestyNet architecture—a shallow network with exact

2The NestyNet architecture and its derivative estimation ca-
pabilities are described in a forthcoming paper by Rodrigo Ibata.
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derivative expressions:

y = a log(1 + exp(Kx+ b)) (1)

where K ∈ Rh×nx is a weight matrix, b ∈ Rh a bias vector,
and a ∈ Rny×h a scaling matrix, with trainable parameters
θ = {K, b, a}.

This design enables analytical computation of derivatives,
avoiding numerical inaccuracies from auto-differentiation
in deeper networks3. The Jacobian and Hessian are given
by (σ denoting the sigmoid function):

∇xy = K⊤ (aσ(Kx+ b)) (2)

∂2y

∂xi∂xj
= K⊤ (aσ′(Kx+ b))K (3)
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Figure 2. Second-Order Optimization Advantage in Physics.
Training dynamics of a shallow dense network under different opti-
mization strategies. The second-order Levenberg-Marquardt (LM)
method outperforms both Adam (first-order) and L-BFGS (Zhu
et al., 1997) (quasi-Newton) in final accuracy and convergence
speed, especially for subtle features.

Levenberg-Marquardt Optimization While the universal
approximation theorem (Hornik et al., 1989) guarantees that
this shallow architecture can represent any smooth func-
tion given sufficient width h, traditional gradient descent
approaches—which rely on minimizing a scalar loss func-
tion L(θ) = ∑

i(y
⟨i⟩ − f(x⟨i⟩, θ))2 via partial derivatives

∇θL = (∂L/∂θ1, . . . , ∂L/∂θM )—prove impractical for
complex tasks with optimizers like Adam (Kingma & Ba,
2015) or SGD (Robbins & Monro, 1951). This limitation
motivated the development of deep architectures (LeCun
et al., 2015).

We instead employ the Levenberg-Marquardt algorithm
(Levenberg, 1944; Marquardt, 1963). The method computes
the Jacobian matrix Jij = ∂f(x⟨i⟩)/∂θj and approximates
the explicit Hessian as J⊤J , then solves the linear system
(J⊤J + λI)∆θ = J⊤(y − f(x, θ)) for parameter updates.
Unlike first-order methods (e.g., SGD) that only estimate
descent directions, this approach directly computes parame-
ter updates ∆θ to minimize χ2 by combining gradient and

3Where gradients must be obtained through the iterative appli-
cation of the chain rule.

curvature information. As shown in Figure 2, this second-
order optimization better captures fine-scale data variations
(Ranganathan, 2004).

Additive separability We detect additive separability by
testing whether our emulator f decomposes into sub-
functions f1 and f2 operating on different input subsets
x1 and x2, satisfying y = f1(x1) + f2(x2). In this
case, the mixed second-order partial derivatives vanish, i.e.,

∂2y
∂xi∂xj

= 0 for i ̸= j. To verify separability between a
variable pair (xi, xj), we therefore evaluate the condition:

med
(∣∣∣∣ ∂2y

∂xi∂xj

∣∣∣∣) < ϵadd (4)

Where ϵadd is an empirically determined threshold for negli-
gible interactions (with med denoting the median operation
across sample points). This test is applied across variable
pairs and input partitions, when multiple valid separations
exist, we select the configuration minimizing dim(x2) to
prioritize the most interpretable decomposition.

Multiplicative Separability Similarly, we detect multiplica-
tive separability by testing whether our emulator f decom-
poses into sub-functions f1 and f2 operating on distinct
input subsets x1 and x2, such that y = f1(x1) · f2(x2). To
verify separability between a pair of variables (xi, xj) where
i ̸= j, we test for the form y = f1(xi) ·f2(xj), allowing for
a potential additive constant b giving y = f1(xi)·f2(xj)+b.
This is done by verifying the mixed second-order partial
derivatives relationship:

med
(∣∣∣∣ ∂2y

∂xi∂xj

1

(y − bmed)
− ∂y

∂xi

∂y

∂xj

1

(y − bmed)2

∣∣∣∣) < ϵmul

(5)

where ϵmul is an empirically determined threshold for negli-
gible interactions, and bmed = med(b), with b = y − ∂y

∂xi
·

∂y
∂xj

· 1
∂2y/∂xi∂xj

. Since b should be constant across all input
values when the separation is valid, we additionally verify
that its scaled scatter is small:

med(|b− med(b)|)
med(|y|) < ϵbmad

(6)

Where ϵbmad
is an empirically determined threshold for

negligible scatter. Again, when multiple valid separations
exist, we select the configuration minimizing dim(x2) to
prioritize the most interpretable decomposition.

Numerical values for trehsold parameters are given in Table
2.

Recursive Structure Search Upon detecting separability,
we emulate each sub-function using distinct NestyNet
instances. This modular approach enables iterative de-
composition, where each sub-function undergoes further
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Criterion Threshold Value

ϵadd 10−4

ϵmul 10−12

ϵbmad 10−3

Table 1. Detection thresholds for separability analysis

separability analysis, progressively transforming intricate
datasets into interpretable graphs of simpler models. When
no separability is found in f(x), we additionally exam-
ine separabilities on transformed versions FNL(f(x)) us-
ing a library of common physical nonlinearities: FNL ∈
{□−1,□2,

√
□, exp(□)}, with gradients computed via the

chain rule. This unique capability allows discovery of nested
structures like f(x1, x2) =

√
f1(x1) + f2(x2), as illus-

trated in Figure 1 (Panel a).

Structural Prior Integration The discovered graph struc-
ture guides the symbolic regression process through proba-
bilistic priors, enhancing efficiency without rigid constraints.
Our framework employs a recurrent neural network (RNN)
to sequentially generate trial expressions while dynamically
enforcing structural compatibility. During token generation,
the algorithm tracks its position within the structure tree and
modifies the RNN’s output distribution to reflect the current
context.

For sub-expression nodes, the probability of sampling input
variables outside the permitted subset is reduced to near-zero
values4. At separability nodes, the distribution is similarly
constrained to favor relevant operators: additive separabil-
ities preferentially select from +,−, while multiplicative
separabilities bias toward ×, /. This approach maintains the
RNN’s exploratory capability while strongly encouraging
structurally valid expressions.

We complement these constraints with length priors on sub-
functions, initially based on variable counts as a proxy for
complexity, with provisions for more sophisticated measures
in future implementations.

Symbolic Regression Our method builds upon the Φ-SO
(Physical Symbolic Optimization) algorithm, which incor-
porates several physics-oriented capabilities: dimensional
analysis (Tenachi et al., 2023b), simultaneous fitting across
multiple experimental realizations (Tenachi et al., 2024),
and integration of non-differentiable constraints such as
symbolic constraints on derivatives or primitives. In addi-
tion, the framework features a unique efficient free constant
optimization scheme leveraging automatic differentiation
of trial expressions. This established deep reinforcement
learning approach trains the generator network through pol-

4While maintained at non-zero to preserve theoretical explo-
ration capacity.

icy gradient methods, utilizing a risk-seeking optimization
strategy (Petersen et al., 2021b) adapted from (Rajeswaran
et al., 2017).

The complete workflow (Figure 1, Panel b) thus combines
structural awareness with the expressive power of deep learn-
ing SR, where priors focus the search space.

3. Results & Discussion
We evaluated our method using the standardized SRBench
framework (La Cava et al., 2021) (https://github.
com/cavalab/srbench), comparing against 17 base-
line methods on 116 ground-truth equations to be recovered
from their associated data from the Feynman SR benchmark
(Udrescu & Tegmark, 2020). Performance was assessed
via exact symbolic recovery using SymPy’s (Meurer et al.,
2017) equivalence checking.

0 25 50 75
Exact symbolic recovery (%)

PhySO (this work)
uDSR

PhySO
AI Feynman 2.0

PySR
DSR

AFP_FE / Eureqa
AFP

gplearn
GP-GOMEA
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NeSymReS*
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SINDy
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BSR

FEAT
FFX

MRGP

Figure 3. State-of-the-Art Performance on SRBench. Our
method outperforms all baselines in noiseless conditions including
traditional structure analysis methods, pure deep RL methods and
previous hybrids.

Performance Analysis As shown on (Figure 3), our method
(PhySO with structure analysis) achieves state-of-the-art ex-
act recovery (72%), outperforming: (1) AIF (the original
separability-based approach), (2) pure RL methods (DSR,
legacy PhySO), and (3) hybrid approaches (uDSR). This
advancement stems from three key innovations: (i) han-
dling multiplicative separabilities, (ii) detecting separabil-
ities nested within nonlinear transformations, and (iii) ef-
fectively integrating structural inference with RL through
adaptive priors rather than rigid decomposition.

Limitations and Future Directions While evaluated only
on noiseless data thus far, our method shows strong po-
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tential for noise robustness—contrasting with traditional
separability approaches. Two key innovations suggest this
resilience: (1) NestyNet’s capacity for stable derivative
estimation with noise, and (2) our prior-based architecture’s
safety mechanism—when separability detection falters, per-
formance defaults to standard RL baselines rather than fail-
ing catastrophically as AIF and uDSR that degrade severely
(< 10% recovery at 10% noise). Formal noise testing and
hyperparameter optimization remain for future work.

Current limitations also include detecting generalized sym-
metries and compositional structures as in (Udrescu et al.,
2020), which we plan to incorporate. In addition, our
method mostly excels in physical science applications valu-
ing interpretable exact solutions over numerical approxima-
tion, unlike SR approaches that sacrifice interpretability for
accuracy5.

4. Conclusion
We introduced a novel symbolic regression framework that
automatically discovers and exploits the inherent graph
structure of physical data through identification of additive
and multiplicative separabilities—including those nested
within nonlinear transformations. By incorporating this
structural insight as a prior within a reinforcement learning-
based SR process, we achieve state-of-the-art performance
(72% exact recovery) on the standard Feynman benchmark
from SRBench, significantly advancing physics-capable
SR.

While broadly applicable across scientific domains, our
method holds particular promise for astrophysics—a field
where observational data drives empirical modeling but con-
trolled experiments are impossible. This work continues
astrophysics’ tradition of developing data-driven modeling
techniques that ultimately benefit all physical sciences, now
augmented with modern machine learning while preserving
the interpretability crucial for theoretical advancement.
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