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Abstract
General-purpose large language models (LLMs),
despite their broad capabilities, often struggle
with specialized domain knowledge, a limitation
particularly pronounced in fields such as astron-
omy. This study introduces AstroSage-Llama-
3.1-70B. Developed from the Meta-Llama-3.1-
70B foundation, AstroSage underwent exten-
sive continued pre-training on a vast corpus
of astronomical literature, followed by super-
vised fine-tuning and model merging. Beyond
its 70-billion parameter scale, this model im-
proves on our previous 8-billion parameter ver-
sion with refined datasets, optimized hyperpa-
rameters, and reasoning capabilities. Evaluated
on the Astrobench, AstroSage achieves 86.2%
accuracy, surpassing all tested models including
o3, Claude-3.7-Sonnet, GPT-4.1, and Deepseek-
R1. This work demonstrates that domain spe-
cialization, when applied to large-scale models,
can enable specialized systems to outperform
even the most advanced commercial alternatives
within their domain while achieving approxi-
mately 100x improvement in cost-efficiency.

1. Introduction
Astronomy and its related fields demand sophisticated tools
that can process vast amounts of specialized knowledge.
Large Language Models (LLMs) have emerged as promis-
ing assistants for this domain, offering capabilities as re-
search collaborators, educational resources, and knowledge
repositories (Perkowski et al., 2024). Domain-specialized
models demonstrate particular cost-effectiveness in such
contexts, as their parameters can be optimized for spe-

cific knowledge domains rather than distributed across the
breadth of general internet content (Turc et al., 2019).

AstroSage-Llama-3.1-8B (de Haan et al., 2025), estab-
lished that a relatively modest 8-billion parameter LLM,
when extensively trained on astronomical content, could
match or exceed the performance of much larger general-
purpose models on astronomical knowledge tasks. This
finding highlighted the potential of domain specializa-
tion for creating efficient, high-performing AI assistants
(Schick and Schütze, 2021).

In this study, we introduce AstroSage-Llama-3.1-70B, a
70-billion parameter language model that represents an
advancement in specialized AI for astronomy. Our cen-
tral research question asks whether domain specialization
merely improves efficiency or can enable specialized mod-
els to outperform even the largest commercial alternatives
(Rae et al., 2021). Following Meta-Llama-3.1-8B, we ap-
plied similar domain specialization techniques to the larger
Meta-Llama-3.1-70B foundation (Dubey et al., 2024). Be-
yond the increased parameter count, we implemented sev-
eral key enhancements: expanded and refined datasets for
both continued pre-training and supervised fine-tuning; op-
timized learning hyperparameters based on public bench-
marks and our own experimentation; and an explicit rea-
soning capability that enables step-by-step analytical pro-
cesses before generating answers, often referred to as
chain-of-thought (Suzgun et al., 2022).

The core hypothesis driving this work is that a larger spe-
cialized model can elevate AI performance across astron-
omy, astrophysics, space science, cosmology, astroparticle
physics, astronomical instrumentation, and related fields.
While AstroSage-8B successfully matched larger models’
performance, AstroSage-70B aims to surpass even ad-
vanced commercial alternatives. Beyond testing this hy-
pothesis, we are making our trained model openly avail-
able to serve as a resource for researchers, educators, and
students in the field.
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2. Model Architecture and Training
AstroSage-70B is derived from the Meta-Llama-3.1-70B
architecture (Dubey et al., 2024). This base model was
selected for consistency with AstroSage-8B, which chose
Meta-Llama-3.1-8B for its state-of-the-art general capa-
bilities and permissive licensing. The tokenizer from
Meta-Llama-3.1-70B-Instruct was used without modifica-
tion. Following our established methodology (Nguyen
et al., 2023), the development process comprised three
main stages: continued pre-training (CPT), supervised
fine-tuning (SFT), and model merging (Dassanaike-Perera
et al., 2023).

The objective of CPT is to imbue the base model with
extensive domain-specific knowledge from astronomical
literature (Blecher et al., 2023). The CPT dataset for
AstroSage-70B builds upon the comprehensive corpus de-
veloped previously, which included approximately 250,000
arXiv preprints from astro-ph and gr-qc categories span-
ning 2007-2024, nearly 30,000 Wikipedia articles related
to astronomy, and internet-available textbooks. The knowl-
edge cutoff for the astronomical papers remains January
2024.

This dataset was enhanced through application of ftfy
(Speer, 2019) for consistent Unicode text normalization
and rule-based repetition removal to correct OCR failures,
supplementing our perplexity-based cleaning methods (Li
et al., 2024). To preserve general language understand-
ing and mitigate catastrophic forgetting due to specializa-
tion (Pan et al., 2024), we incorporated a random selec-
tion of samples from the FineWeb dataset (Penedo et al.,
2023) into each training epoch. This addition of previous
pretraining tokens during CPT, sometimes known as “re-
play,” proved crucial. Notably, the specific FineWeb sam-
ples were varied for each epoch, ensuring diverse exposure
to general web text.

The CPT and SFT stages were conducted on the Oak Ridge
Leadership Computing Facility (OLCF) Frontier super-
computer using AMD Instinct MI250X GPUs. Our imple-
mentation employed the GPT-NeoX framework (Andonian
et al., 2022; Smith et al., 2022), which we adapted for com-
patibility with the Llama-3.1 architecture. Training was
distributed across 2,048 Graphics Compute Dies (GCDs)
using a multi-dimensional parallelism strategy: tensor par-
allelism 8, pipeline parallelism 8, and data parallelism
32. As GPT-NeoX does not currently support DeepSpeed
ZeRO stage 2/3 with pipeline parallelism, we used ZeRO
stage 1 (Rasley et al., 2020) with activation checkpoint-
ing enabled. This configuration achieved a computational
throughput of approximately 50 TFLOPS/s per GCD, con-
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sistent with performance metrics reported by Dash et al.
(2023).

Following CPT, the model underwent SFT to develop
its instruction-following (Zhou et al., 2023) and con-
versational capabilities, and to instill behaviors such as
chain-of-thought and self-reflection. Figure 2 illustrates
the composition of the SFT dataset. Its largest compo-
nent is NVIDIA’s Llama-Nemotron-Post-Training-Dataset
(Bercovich et al., 2025), which was used to train mod-
els that consistently demonstrate excellent performance on
public benchmarks such as LMArena (Chiang et al., 2024),
suggesting it is a strong dataset for eliciting reasoning and
aligning with human preferences. This dataset provides
reasoning components covering science, code, mathemat-
ics, and general chat, establishing a foundation for analyti-
cal thinking across different domains.

We also included the OpenHermes 2.5 dataset, which helps
build general instruction-following capabilities and adher-
ence to the system prompt. To enhance domain expertise,
we incorporated custom domain-specific Q&A datasets
from both our previous work and (de Haan, 2025), which
together comprise approximately 30% of the training data.
After combination, the dataset was deduplicated and shuf-
fled. A loss mask was applied to train the model exclusively
on assistant completions, excluding user queries and sys-
tem prompts. The chat template adheres to the Llama-3.1
standard.

The model was fine-tuned on this SFT dataset for 0.6
epochs, consuming approximately 13,000 GPU-hours on
the same infrastructure. Hyperparameters mirrored those of
the CPT stage, with the exception of weight decay, which
was removed. Figure 1 illustrates the training dynamics
during both phases, showing consistent improvement with-
out overfitting indicators.

To create the final, publicly released AstroSage-70B, we
employed model merging using the mergekit library (God-
dard et al., 2024). This technique allows us to combine
the strengths of our specialized SFT model with the robust
instruction-following capabilities of other popular fine-
tuned Llama-3.1-70B variants (Yadav et al., 2024). The
final mixture was created using the DARE-TIES method
(Yu et al., 2024) with the AstroSage-70B-CPT model as
the base. The components include 70% AstroSage-70B-
SFT, 15% Llama-3.1-Nemotron-160-Instruct, 7.5% Meta-
Llama-3.3-70B-Instruct, and 7.5% Meta-Llama-3.1-70B-
Instruct.

3. Features and Capabilities
AstroSage-70B is designed for a wide range of applica-
tions within the astronomical domain. Potential applica-
tions include addressing factual queries, literature review
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Figure 1. Training dynamics for continued pre-training (CPT) and
supervised fine-tuning (SFT). The top panel shows loss trajectory
across 2.5 epochs of CPT followed by 0.6 epochs of SFT. The
bottom panel shows the learning rate schedule including warm-
up periods, learning rate decay, and manual adjustments.
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Figure 2. Composition of the AstroSage-70B SFT training
dataset. The combination of reasoning-focused datasets (41.8%)
with domain-specific astronomy Q&A (30.8%) reflects our strat-
egy to develop a model combining analytical thinking with spe-
cialized knowledge.

and summarization, assisting with manuscript preparation,
brainstorming and hypothesis formulation, concept learn-
ing, programming support, and serving as a component in
agentic systems (Sun et al., 2024). The general capabilities
of large models for such few-shot tasks were extensively
demonstrated by Brown et al. (2020).

A notable feature of AstroSage-70B is its explicit reasoning
capability. This aligns with recent advances in the broader
LLM field, where explicit reasoning has emerged as a
critical development for enhancing model performance on
complex tasks (Suzgun et al., 2022; Sprague et al., 2023).
The integration of reasoning mechanisms has become in-
creasingly common in state-of-the-art models, including
OpenAI’s o1 through o4 series, Anthropic’s Claude models
with “thinking mode,” DeepSeek-R1, and others. These de-
velopments demonstrate that exposing and structuring the

internal reasoning process allows models to tackle complex
problems more systematically, resulting in improved accu-
racy and reliability.

Building on these industry-wide insights, AstroSage-70B
implements explicit reasoning that can be activated at in-
ference time by setting the system prompt to “detailed
thinking on” and prefilling the assistant completion with
<think>. When enabled, the model generates a step-by-
step reasoning process before providing the final answer.
This is particularly beneficial for complex astronomical
problems requiring multi-step analysis. As the reasoning
tokens are enclosed within tags, they can easily be hidden
from the end-user if desired.

4. Evaluation
To evaluate the performance of AstroSage-70B, we uti-
lize the Astrobench (Ting et al., 2024). This benchmark
consists of 4,425 high-quality, human-verified multiple-
choice questions spanning astronomy, astrophysics, cos-
mology, and astronomical instrumentation. These ques-
tions are derived from Annual Review of Astronomy and
Astrophysics papers that were explicitly withheld from the
AstroSage training corpus. This ensures the model is eval-
uated on genuinely unseen material, and its performance is
not merely an artifact of training on the benchmark’s source
texts.

On this benchmark, AstroSage-70B achieves a score of
86.2% without enabling reasoning. As illustrated in Fig-
ure 3, this performance establishes AstroSage-70B as the
leading model, outperforming all other tested open-weight
and proprietary models. This includes a notable improve-
ment over AstroSage-8B, superseding also contemporary
large-scale general-purpose LLMs such as o3, GPT-4.1,
Claude-3.7-Sonnet, and Deepseek-R1. For context, profes-
sional astronomers score around 67% on this benchmark.

Our evaluation substantially updates the results presented
in (Ting et al., 2024), which was published in July 2024.
The benchmark analysis includes a cost-accuracy trade-off
visualization, represented by diagonal dashed lines in Fig-
ure 3. This analysis reveals that within a model family,
a tenfold increase in API cost typically corresponds to an
improvement of approximately 3.5 percentage points in ac-
curacy, a scaling trend consistent with observations in more
general contexts (Hoffmann et al., 2022; Rae et al., 2021).
Consequently, the distance between adjacent lines repre-
sents an order of magnitude gain in cost efficiency.

As highlighted by the vertical red arrows in Figure 3, our
domain specialization approach delivers remarkable effi-
ciency gains. Both AstroSage models jump approximately
two cost-efficiency lines compared to their respective base
models, representing improvement of approximately 100×
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Figure 3. Performance comparison on the AstroMLab-1 benchmark across 38 LLMs as of May 2025. Models are plotted by accuracy
(y-axis) versus inference cost per 0.1M tokens in USD (x-axis, logarithmic scale). AstroSage-70B achieves 86.2% accuracy, establishing
state-of-the-art performance and surpassing all tested models including more expensive proprietary offerings like o3, Claude-3.7-Sonnet,
and GPT-4.1. The diagonal dashed lines represent iso-efficiency contours where a tenfold increase in cost typically yields a 3.5 percent-
age point improvement in accuracy. Both AstroSage models (8B and 70B) jump approximately two efficiency lines above their respective
base Llama models, representing a ∼100× improvement in cost-efficiency. The Wilson Score interval shown indicates typical uncer-
tainty due to the finite question set.

in cost-efficiency. This demonstrates that targeted domain
specialization can achieve performance levels that would
otherwise require models costing two orders of magnitude
more at inference time.

The original study predicted model improvements would
shift performance to the next diagonal line every three to
six months, a forecast that has proven accurate. An in-
teresting observation from our updated evaluation is that
while the 3.5 percentage point trade-off slope still holds
for some series, models like Qwen-3 and GPT-4.1 exhibit
steeper drop-offs in performance across their tiered offer-
ings. This suggests that current distillation approaches for
creating more affordable variants of powerful models may
be less effective for specialized knowledge domains like
astronomy (Turc et al., 2019).

In our evaluation methodology, we applied a consistent ap-
proach to models with reasoning capabilities. For models
with explicit reasoning modes, we enabled this feature dur-
ing testing. Interestingly, we found that enabling reason-
ing modes generally did not significantly improve scores
for most models on this benchmark, including AstroSage-
70B. This finding may be due to the Astrobench questions
primarily testing fast, intuitive knowledge recall rather than
complex multi-step reasoning where such modes typically
demonstrate advantages.

We acknowledge this as a limitation of current astronomy
benchmarks, which offer limited evaluation of problem-
solving capabilities requiring deep reasoning. Other work
has focused on creating benchmarks to specifically test
these abilities in domains like mathematics and general
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problem solving (Rein et al., 2023; Suzgun et al., 2022;
Hendrycks et al., 2021; Sprague et al., 2023; Wang et al.,
2024). Nevertheless, since a primary goal of our special-
ized training is to imbue the model with comprehensive do-
main knowledge, the benchmark results demonstrate suc-
cessful achievement of this objective.

5. Conclusion and Broader Impact
The development of AstroSage-70B advances specialized
language models for astronomy. Building on the founda-
tion established by AstroSage-8B, this 70-billion param-
eter model incorporates a more powerful base architec-
ture, enriched training datasets, refined training methodolo-
gies, and explicit reasoning capabilities. Our results sup-
port the central hypothesis of this work: domain special-
ization, when scaled to larger models, can enable special-
ized systems to surpass even the most advanced general-
purpose commercial models within their domain of exper-
tise. The improvement of approximately 100× in cost-
efficiency highlights the practical value of domain special-
ization, particularly important as the field moves toward de-
ploying AI assistants at scale (Fu et al., 2024).

An interesting trend emerged regarding the effectiveness
of model distillation and scaling. The performance drop-
off between flagship models and their smaller variants ap-
pears more pronounced than observed previously, particu-
larly in the 30-70B parameter range. This trend becomes
even more pronounced at smaller scales, highlighting the
potential importance of specialized training for deploying
cost-effective models (Pan et al., 2024).

Looking forward, two key areas warrant further investiga-
tion. First, development of more comprehensive bench-
marks that specifically evaluate reasoning capabilities in
astronomical contexts, including problem-solving tasks
that more closely resemble real research challenges (Wang
et al., 2024). Second, integration of AstroSage-70B with
astronomy-specific tools and workflows, moving toward
more comprehensive AI research assistants that can handle
both domain knowledge and practical research tasks (Chen
et al., 2024; Sun et al., 2024).

AstroSage-70B advances the integration of AI assistants
into astronomical research and education. By making our
specialized tools openly available, we aim to democratize
access to specialized LLMs and accelerate scientific dis-
covery (Perkowski et al., 2024).
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Ciucă, and UniverseTBD. AstroLLaMA-Chat: Scal-
ing AstroLLaMA with Conversational and Diverse
Datasets. Research Notes of the AAS, 8(1):7, January
2024. ISSN 2515-5172. doi: 10.3847/2515-5172/
ad1abe. URL https://dx.doi.org/10.3847/
2515-5172/ad1abe. Publisher: The American As-
tronomical Society.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Mil-
lican, Jordan Hoffmann, Francis Song, John Aslanides,
Sarah Henderson, Roman Ring, Susannah Young, Eliza
Rutherford, Tom Hennigan, Jacob Menick, Albin Cas-
sirer, Richard Powell, George van den Driessche,
Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang,
Amelia Glaese, Johannes Welbl, Sumanth Dathathri,
Saffron Huang, Jonathan Uesato, John Mellor, Irina Hig-
gins, Antonia Creswell, Nat McAleese, Amy Wu, Erich
Elsen, Siddhant Jayakumar, Elena Buchatskaya, David
Budden, Esme Sutherland, Karen Simonyan, Michela
Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gri-
bovskaya, Domenic Donato, Angeliki Lazaridou, Arthur
Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli,
Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas
Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama,
Cyprien de Masson d’Autume, Yujia Li, Tayfun Terzi,
Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego
de Las Casas, Aurelia Guy, Chris Jones, James Bradbury,
Matthew Johnson, Blake Hechtman, Laura Weidinger,
Iason Gabriel, William Isaac, Ed Lockhart, Simon Osin-
dero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem
Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hass-
abis, Koray Kavukcuoglu, and Geoffrey Irving. Scaling
Language Models: Methods, Analysis & Insights from
Training Gopher, December 2021.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, Yux-
iong He, Feng Yan, Elton Li, Kurt Keutzer, and Dario
Amodei. Deepspeed: System optimizations enable train-
ing deep learning models with over 100 billion parame-
ters, October 2020.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Julian
Michael, and Samuel R. Bowman. GPQA: A Graduate-
Level Google-Proof Q&A Benchmark, November 2023.
URL http://arxiv.org/abs/2311.12022.

Timo Schick and Hinrich Schütze. It’s not just size that
matters: Small language models are also few-shot learn-
ers, April 2021.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick
LeGresley, Samyam Rajbhandari, Jared Casper, Zhun
Liu, Shrimai Prabhumoye, George Zerveas, Vijay Kor-
thikanti, Elton Zhang, Rewon Child, Reza Yazdani Am-

8

http://arxiv.org/abs/2103.03874
https://ieeexplore.ieee.org/abstract/document/10820712
https://ieeexplore.ieee.org/abstract/document/10820712
https://dx.doi.org/10.3847/2515-5172/ad1abe
https://dx.doi.org/10.3847/2515-5172/ad1abe
http://arxiv.org/abs/2311.12022


AstroSage: Leading Performance in Astronomy Q&A

inabadi, Julie Bernauer, Xia Song, Mohammad Shoeybi,
Yuxiong He, Michael Houston, Saurabh Tiwary, and
Bryan Catanzaro. Using DeepSpeed and Megatron to
Train Megatron-Turing NLG 530B, A Large-Scale Gen-
erative Language Model, February 2022. URL http:
//arxiv.org/abs/2201.11990.

Robyn Speer. ftfy: fixes text for you, 2019. URL https:
//doi.org/10.5281/zenodo.3257570.

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaud-
huri, and Greg Durrett. MuSR: Testing the Limits of
Chain-of-thought with Multistep Soft Reasoning, Octo-
ber 2023. URL arXiv:2310.16049v2.

Zechang Sun, Yuan-Sen Ting, Yaobo Liang, Nan Duan,
Song Huang, and Zheng Cai. Interpreting Multi-
band Galaxy Observations with Large Language Model-
Based Agents, September 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebas-
tian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha
Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and
Jason Wei. Challenging BIG-Bench Tasks and Whether
Chain-of-Thought Can Solve Them, October 2022. URL
http://arxiv.org/abs/2210.09261.

Yuan-Sen Ting, Tijmen de Haan, Tirthankar Ghosal,
Tuan Dung Nguyen, Alberto Accomazzi, Azton Wells,
Nesar Ramachandra, and Rui Pan. Astromlab-1: Who is
the best at astronomy?, July 2024.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Well-Read Students Learn Better: On the
Importance of Pre-training Compact Models, September
2019.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran
Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku,
Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue, and
Wenhu Chen. MMLU-Pro: A More Robust and Chal-
lenging Multi-Task Language Understanding Bench-
mark, November 2024.

Prateek Yadav, Tu Vu, Jonathan Lai, Alexandra
Chronopoulou, Manaal Faruqui, Mohit Bansal, and
Tsendsuren Munkhdalai. What Matters for Model
Merging at Scale?, October 2024.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li.
Language models are super mario: Absorbing abilities
from homologous models as a free lunch, June 2024.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha
Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and Le Hou.
Instruction-Following Evaluation for Large Language
Models, November 2023. URL http://arxiv.
org/abs/2311.07911.

9

http://arxiv.org/abs/2201.11990
http://arxiv.org/abs/2201.11990
https://doi.org/10.5281/zenodo.3257570
https://doi.org/10.5281/zenodo.3257570
arXiv:2310.16049v2
http://arxiv.org/abs/2210.09261
http://arxiv.org/abs/2311.07911
http://arxiv.org/abs/2311.07911

	Introduction
	Model Architecture and Training
	Features and Capabilities
	Evaluation
	Conclusion and Broader Impact

