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Abstract
Galactic archaeology—the study of stellar mi-
gration histories—provides insights into galaxy
formation and evolution. However, establishing
causal relationships between observable stellar
properties and their birth conditions remains chal-
lenging, as key properties like birth radius are
not directly observable. We employ Rank-based
Latent Causal Discovery (RLCD) to uncover the
causal structure governing the chemodynamics of
a simulated Milky Way galaxy. Using only five
observable properties (metallicity, age, and orbital
parameters), we recover in a purely data-driven
manner a causal graph containing two latent nodes
that correspond to real physical properties: the
birth radius and guiding radius of stars. Our study
demonstrates the potential of causal discovery
models in astrophysics.

1. Introduction
The advent of large astronomical surveys has propelled
much of the current interest in applying deep learning to
astronomy. However, the observational nature of astron-
omy—where controlled experiments are impossible—often
requires us to develop a deep understanding of the mechanis-
tic causal relations governing astrophysical systems, beyond
merely identifying correlations within observed variables.

Much of the advancement in astrophysics has relied on
human intervention through forward modeling to match
observations, and the statistical validation of physical
models to decipher causal structures between fundamental
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plinäres Zentrum für Wissenschaftliches Rechnen, Im Neuen-
heimer Feld 205, Heidelberg, Germany. Correspondence to: Zehao
Jin <zj448@nyu.edu>.

ML4Astro 2025, Vancouver, CA. Copyright 2025 by the author(s).

drivers and emergent observations. This traditional
approach, while successful, is inherently limited by human
intuition and the complexity of the systems under study.

This raises the question: would it be possible to discover
the underlying causal structure through automated causal
graphical inference? Recent advances in causal discovery
(e.g., Spirtes et al., 2001; Pearl, 2009; Pearl et al., 2016)—
which infers causal relationships from purely observational
data—suggest this may indeed be feasible. In principle,
latent variable models and directed acyclic graphs provide
the statistical framework to distinguish between competing
causal structures, potentially revealing relationships that
human-guided analysis might overlook.

Causal discovery through probabilistic graphical models
has a long history (Geiger & Heckerman, 1994; Spirtes
et al., 1995; 2001; Chickering, 2002; Shimizu et al., 2006;
Zhang, 2008; Huang et al., 2018; Deleu et al., 2022), and
recently, physical sciences have begun to recognize its po-
tential. (Runge et al., 2019; Li et al., 2020; Schölkopf et al.,
2021; Zhang et al., 2024; Yao et al., 2024). These successes
demonstrate that causal discovery can reveal non-obvious re-
lationships in complex systems where traditional approaches
may struggle.

While astrophysical studies have been relatively late to adopt
these methods, efforts to directly infer causal structures
from astronomical data are beginning to emerge, includ-
ing a preliminary pilot study by Pasquato et al. (2023)
and Bayesian analyses of causal structures underlying
galaxy–supermassive black hole coevolution (Jin et al.,
2025). However, due to the complexity of these astronom-
ical systems and the indirect nature of observations, many
inferred causal graph structures remain tentative and diffi-
cult to connect directly to known physical mechanisms.

To bridge this gap between causal discovery and physical
understanding, we focus our investigation on galactic
archaeology—the study of chemodynamic histories that
shape the galaxies today. This field offers an ideal testbed
for causal discovery methods because while the underlying
physics is relatively well-understood, properties that
govern stellar evolution—such as birth radius and historical
orbital parameters—are not directly observable. These
“missing” latent variables create a suitable scenario for
causal discovery: we need methods that can both identify
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these hidden factors and establish their causal relationships
with observable quantities.

2. Methodology
To test whether causal discovery can recover physically
meaningful latent variables in galactic archaeology, we re-
quire data where both observable properties and ground-
truth birth conditions are available. Simulated galaxies pro-
vide this unique opportunity, allowing us to validate the
causal structures discovered by our method against known
physical quantities.

2.1. Simulation Data

The simulated galaxy studied in this work is taken from the
NIHAO-UHD project (Buck et al., 2018; 2020), a set of
high-resolution cosmological zoomed-in hydrodynamical
simulations of Milky Way-mass galaxies. NIHAO (Nu-
merical Investigation of a Hundred Astronomical Objects)
comprises 100 simulated galaxies with halo masses rang-
ing from ∼ 109 − 1012M⊙. The dark matter halos were
selected from a large-scale dark matter simulation based on
an isolation criterion (no similar mass companion within
three virial radii at redshift z = 0, Wang et al., 2015).

The NIHAO-UHD simulations employ a modified version of
the smoothed particle hydrodynamics (SPH) solver GASO-
LINE2 (Wadsley et al., 2017), with star formation and feed-
back modeled following (Stinson et al., 2006; 2013). These
galaxies show agreement with observed Milky Way prop-
erties and local disk galaxies (Obreja et al., 2019; Buck,
2019), making them suitable analogs for our analysis. The
simulations have been extensively validated in studies of
MW-mass galaxies (e.g., Buck et al., 2018; 2019; Hilmi
et al., 2020; Sestito et al., 2021; Obreja et al., 2022; Lu et al.,
2022a;b; Wang et al., 2023).

We focus on the g2.79e12 simulation. We select disk stars
with [Fe/H] > -1 located between 7-10 kpc at present day, a
range chosen to ensure adequate sampling while matching
typical observational surveys. To incorporate realistic ob-
servational uncertainties, we add uncertainties to age (10%),
[Fe/H] (0.02 dex), and [O/Fe] (0.06 dex).

Given the distinct formation histories of the high- and low-α
disk populations in the Milky Way (Bensby et al., 2014; Hay-
den et al., 2015), we separate stars using the criterion [O/Fe]
= -0.13[Fe/H] + 0.17. The high-α disk formed rapidly in
a turbulent, gas-rich environment, while the low-α disk
formed through gradual secular evolution (Conroy et al.,
2022; Xiang & Rix, 2022). This pilot study focuses on the
low-α disk, where secular processes dominate and causal
relationships may be clearer to identify.

For our causal discovery analysis, we use five observable

variables that trace stellar migration: metallicity [Fe/H], age,
and three orbital parameters—vertical action Jz , angular
momentum Lz , and eccentricity e. These quantities are
routinely measured in spectroscopic surveys and encode in-
formation about both stellar birth conditions and subsequent
dynamical evolution.

2.2. Discovery of Causal Structures

Having established our dataset, we now turn to the causal
discovery analysis. Inferring causal relationships in astro-
physical systems is complicated by unobserved (latent) vari-
ables—quantities that influence our observations but cannot
be directly measured. These latent variables can confound
relationships between observables or mediate their interac-
tions, making causal inference challenging.

To address this challenge, we employ the Rank-based Latent
Causal Discovery (RLCD) algorithm (Dong et al., 2024),
which can uncover causal structures involving latent fac-
tors within linear systems. The key insight behind RLCD
is that latent variables leave statistical signatures in the re-
lationships between observed variables—specifically, they
create rank deficiencies in the covariance matrix that can be
detected and interpreted.

In our framework, we model the causal relationships using a
Structural Causal Model (SCM). Consider a simple example:
if birth radius (latent) influences both current metallicity and
angular momentum (observed), then metallicity and angular
momentum will be correlated through their shared latent
cause. The SCM captures such relationships mathematically
through a directed acyclic graph G := (VG ,EG), where
arrows represent causal influences. Each variable Vi in this
graph is generated according to a linear equation:

Vi =
∑

Vj∈PaG(Vi)
aijVj + εVi

, (1)

where PaG(Vi) denotes the variables that directly cause Vi

(its ”parents” in the graph), aij quantifies the strength of
the causal effect from Vj to Vi, and εVi

represents random
noise. The complete set of variables VG includes both
observed variables XG (our five measured quantities) and
latent variables LG (the hidden factors we aim to discover).

RLCD works by analyzing patterns in how observed vari-
ables covary. When latent variables are present, they con-
strain these covariation patterns in detectable ways. The
algorithm identifies how many latent variables exist, which
observed variables they influence, and whether latent vari-
ables influence each other. This enables reconstruction of a
complete causal graph including both observed and hidden
factors. The method has been validated on synthetic and
real-world datasets (Dong et al., 2024; 2025).

After discovering the causal structure, we quantify the
strength of each causal relationship by estimating the coef-
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Figure 1. Causal structure discovered by RLCD from five observ-
able stellar properties. Blue ellipses represent observed variables,
while red ellipses show the two latent variables identified by the
algorithm. The analysis reveals that L1 corresponds to birth radius
and L2 to guiding radius, as validated by comparison with ground
truth. Numbers on arrows indicate the strength of causal relation-
ships (edge coefficients aij) in the linear SCM.

ficients aij . As latent variables have no inherent scale, we
fix the variance of each latent variable to unity—a standard
convention that allows unique parameter estimation (Dong
et al., 2025). We use maximum likelihood estimation to find
the parameters that best explain our observed data given the
discovered causal structure.

Finally, with the causal structure and parameters determined,
we estimate the latent variable values for each individual
star. This involves finding the latent values that best recon-
struct the observed properties according to our linear model,
minimizing the prediction error.

3. Results
Applying RLCD to our five observable stellar properties
yields the causal structure shown in Figure 1. The algorithm
identifies two latent variables, L1 and L2, whose connec-
tions to the observed variables provide insights into the
underlying physics of stellar migration (Sellwood & Binney,
2002).

The discovered causal structure aligns well with our under-
standing of galactic chemical evolution. The latent variable
L1 influences both metallicity ([Fe/H]) and vertical action
(Jz), while age shows similar causal connections. This
pattern suggests that L1 encodes information about stel-
lar birth conditions—stars born at different galactic radii
have distinct metallicities due to radial abundance gradi-
ents, and their vertical motions retain memory of their birth
environments through the differential gravitational poten-
tial. Meanwhile, L2 directly influences angular momentum
(Lz) and eccentricity (e), the two quantities that together
define a star’s guiding radius. Stars can develop eccentric

Figure 2. Validation of discovered latent variables. Left: Com-
parison between renormalized L1 and birth radius inferred using
the Lu et al. (2024) method. Right: True guiding radius from
simulation versus renormalized L2. The discovered L1 achieves
comparable performance to (Lu et al., 2024) for birth radius infer-
ence, while L2 directly recovers the true guiding radius.

orbits through gravitational scattering with giant molecu-
lar clouds—a process known as “blurring” that preserves
angular momentum while increasing eccentricity.

Based on these causal relationships, we hypothesize that L1

corresponds to birth radius (Rb) and L2 to guiding radius
(Rg). Both quantities play fundamental roles in galactic
dynamics: radial migration displaces stars from their birth
radii over time (Minchev et al., 2013; Sharma et al., 2021;
Lu et al., 2024), while orbital heating increases random
motions around the guiding radius (Sellwood & Binney,
2002). Birth radius serves as the primary indicator of radial
migration because it represents the initial condition from
which stars have migrated, while guiding radius tracks the
secular evolution of orbital eccentricity. Traditional meth-
ods estimate birth radii from age and metallicity under the
assumption that the metallicity gradient is linear (Minchev
et al., 2018; Lu et al., 2024), while guiding radii can be
calculated directly from angular momentum. The causal
structure discovered by RLCD independently recovers these
known relationships.

To test our hypothesis, we leverage the simulation’s com-
plete stellar histories. After estimating individual stellar
values for L1 and L2 using the identified parameters, we
map these dimensionless quantities to physical units via
polynomial transformations, accounting for the centering
and standardization in our analysis. For L1, we compare
against birth radii inferred using the established method of
Lu et al. (2024), which estimates birth radii from [Fe/H]
and age based on assumptions from (Lu et al., 2022a). For
L2, we can directly compare against the true guiding radius
from the simulation.

Figure 2 presents the validation results. For guiding radius
(right panel), the agreement between L2 and the ground
truth is notable, with minimal scatter about the one-to-one
relation. This tight correlation confirms that L2 captures
guiding radius—unsurprising given that guiding radius is di-
rectly encoded in the angular momentum that L2 influences.
For birth radius (left panel), we compare L1 against the Lu
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Figure 3. Distribution of birth radii in chemical abundance space. Left: True birth radius from simulation. Middle: Birth radius inferred
using the Lu et al. (2024) method. Right: Renormalized L1 from causal discovery. Top row shows the age-metallicity plane, bottom row
shows the alpha-abundance plane. All three methods exhibit consistent patterns: younger, metal-rich stars originate from smaller galactic
radii (yellow) while older, metal-poor stars come from larger radii (blue), reflecting inside-out galaxy formation. The similarity across
columns validates that the discovered latent variable L1 captures birth radius information despite using no prior knowledge.

et al. method. This consistency between two independent
approaches—one theory-driven, one data-driven—suggests
both methods capture similar physical information about
stellar birth conditions.

Figure 3 provides further validation by examining birth ra-
dius distributions across chemical abundance space. All
three approaches—ground truth, Lu et al. inference, and
discovered L1—show consistent patterns. In the age-[Fe/H]
plane (top row), younger, metal-rich stars consistently ap-
pear at smaller birth radii, while older, metal-poor stars
occupy larger radii, reflecting the inside-out growth of the
galactic disk. The [O/Fe]-[Fe/H] plane (bottom row) reveals
how radial abundance gradients at different epochs imprint
on stellar chemistry. The discovered L1 reproduces these
chemical evolution patterns without incorporating any prior
knowledge, demonstrating that RLCD extracts physically
meaningful information from the data.

These results demonstrate that causal discovery can recover
physically meaningful latent variables from observational
data alone. The method not only identifies the correct num-
ber of hidden factors but also determines their proper causal
relationships with observables. For guiding radius, the near-
perfect recovery validates our approach. For birth radius, the
agreement with established methods and consistency across
chemical spaces confirms that causal discovery captures the
same underlying physics that astronomers have uncovered
through theoretical work. While we have assumed linear
relationships for this proof-of-concept, future work with
nonlinear causal discovery methods may further improve
the reconstruction of stellar birth properties.

4. Broader Impact
This work demonstrates that causal discovery can uncover
physically meaningful relationships in astrophysical systems
from observational data alone. By successfully identifying
birth radius and guiding radius as the latent variables gov-
erning stellar migration—without incorporating prior astro-
physical knowledge—we validate the potential of automated
causal inference in astronomy. The discovered structure not
only aligns with decades of theoretical understanding but
achieves predictive performance comparable to traditional
domain-specific methods. This suggests that causal discov-
ery can complement human-guided theoretical approaches,
potentially revealing relationships that intuition might
overlook in increasingly complex astronomical datasets.

Looking forward, our results establish a foundation for ap-
plying causal discovery across astronomy, where many phe-
nomena involve unobservable latent variables—from dark
matter shaping galaxy dynamics to stellar interiors driving
evolution. As astronomical surveys grow in scale and dimen-
sionality, such data-driven methods become essential for ex-
tracting physical insights. Future work extending to broader
stellar populations and real observations will face additional
challenges from selection effects and measurement uncer-
tainties. The combination of causal discovery with flexible
machine learning architectures promises interpretable AI
systems that both predict and explain, guided by discovered
causal structures rather than opaque correlations—moving
toward a new paradigm where data-driven methods and
physical understanding mutually reinforce our exploration
of the physical processes that engender the universe.
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