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Abstract

This work proposes a scalable probabilistic la-
tent variable model based on Gaussian processes
(Lawrence, 2004) in the context of multiple ob-
servation spaces. We focus on an application in
astrophysics where it is typical for data sets to
contain both observed spectral features as well
as scientific properties of astrophysical objects
such as galaxies or exoplanets. In our applica-
tion, we study the spectra of very luminous galax-
ies known as quasars, and their properties, such
as the mass of their central supermassive black
hole, their accretion rate and their luminosity, and
hence, there can be multiple observation spaces.
A single data point is then characterised by differ-
ent classes of observations which may have differ-
ent likelihoods. Our proposed model extends the
baseline stochastic variational Gaussian process
latent variable model (GPLVM) (Lalchand et al.,
2022) to this setting, proposing a seamless gen-
erative model where the quasar spectra and the
scientific labels can be generated simultaneously
when modelled with a shared latent space acting
as input to different sets of Gaussian process de-
coders, one for each observation space. Further,
this framework allows training in the missing data
setting where a large number of dimensions per
data point may be unobserved. We demonstrate
high-fidelity reconstructions of the spectra and
the scientific labels during test-time inference and
briefly discuss the scientific interpretations of the
results along with the significance of such a gen-
erative model.
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1. Introduction
Many challenges in the contemporary physical sciences
arise from the analysis of large scale, noisy and high-
dimensional datasets (Clarke et al., 2016). Generative latent
variable models of late have supplanted traditional dimen-
sionality reduction techniques as they offer the simultaneous
benefits of a probabilistic interpretation and data generation
while learning a faithful embedding of the high-dimensional
training data in low-dimensional latent space. A generative
probabilistic framework like the GPLVM (Lawrence, 2004)
works by optimising the parameters of a Gaussian process
decoder from low dimensional latent space (Z ∈ RN×Q)
to high-dimensional data space (X ∈ RN×D) such that
Q << D and points close in latent space are nearby in
data space. Since the decoder is a non-parametric Gaussian
process, the kernel function controls the inductive biases
of the function mapping like smoothness and periodicity.
There typically is no encoder mapping hence, these models
are also called Gaussian process decoders.

This work proposes a novel formulation of the GPLVM
based on the idea of a shared latent space. The earlier work
by Ek (2009) was the first to propose the idea of a shared
data generation process but precluded truly scalable infer-
ence due to the standard O(N3) scaling. We extend this
framework in two important ways. First, we show that the
shared GPLVM is compatible with stochastic variational in-
ference (SVI) (Hoffman et al., 2013) where we derive a joint
evidence lower bound which factorises across multiple ob-
servation spaces due to conditional independence but share
predictive strength though inducing locations and latent vari-
ables. Secondly, we train the entire model in the presence of
missing dimensions in one or both of the observation spaces.
Crucially, we demonstrate that it is possible to share pre-
dictive strength by learning a common latent variable space
Z across multiple-outputs (X,Y ) where Y ∈ RN×L is an
additional observation space with L dimensions. In this
way we indirectly model the relationships and correlation
structure between the different observation spaces.

We demonstrate this scalable model in an astrophysical
application using data of quasars. Quasars are the most lu-
minous galaxies in the universe, powered by accretion onto
a central supermassive black hole (SMBH) with millions to
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billions of solar masses in size. Understanding the forma-
tion, growth, and evolution across cosmic time of quasars
and their SMBHs is one of the major goals of observa-
tional cosmology today. To this end, precise measurements
of the physical properties of quasars are crucial, but usu-
ally require very expensive and extremely time-intensive
observations, since multiple epochs of observations are re-
quired to accurately determine the quasar’s SMBH mass for
instance. The high-dimensional data used in this work con-
tains 20,000 quasars with their spectral information (along
590 dimensions/pixels) along with 4 scientific labels per
quasar: their black hole mass, luminosity, redshift and so-
called Eddington ratio – a measure of the quasar’s accretion
rate. By modelling the spectra and scientific labels through
a generative model acting on a shared latent space we aim
to reason about the physical properties of the quasars just
through its “single-epoch” spectral information, thus circum-
venting the time-intensive multi-epoch observations. Earlier
work on applying probabilistic generative modelling to high-
dimensional quasar spectra using Gaussian processes (Eilers
et al., 2022) have been constrained on scalability and exam-
ine less than 50 astronomical objects. This is because the
authors use exact GPs and construct the full data marginal
likelihood for both spectra and labels, this set-up scaled
cubically in the number of objects. By using inducing point
based sparse GPs (Titsias, 2009) and stochastic variational
inference we demonstrate our framework on datasets 400×
bigger.

2. Stochastic Variational GPLVM with a
Shared latent space

The fundamental contribution of this work is to develop
an inference scheme to show that a shared latent space
with a joint evidence lower bound enables highly scalable
inference through SVI. We summarise that in the section
below:

2.1. SV-GPLVM: Stochastic Variational GPLVM

In the traditional formulation underlying GPLVMs we
have a training set comprising of N D-dimensional real
valued observations X ≡ {xn}Nn=1 ∈ RN×D. These
data are associated with N Q-dimensional latent variables,
Z ≡ {zn}Nn=1 ∈ RN×Q where Q << D provides dimen-
sionality reduction (Lawrence, 2004). The forward map-
ping (Z −→ X) is governed by GPs independently defined
across dimensions D. The sparse GP formulation describing
the data is as follows:

p(Z) =

N∏
n=1

N (zn;0, IQ),

p(F |U,Z, θ) =
D∏

d=1

N (fd;KnmK−1
mmud, Qnn) (1)

p(X|F,Z) =

N∏
n=1

D∏
d=1

N (xn,d; fd(zn), σ
2
x),

where Qnn = Knn − KnmK−1
mmKmn, F ≡ {fd}Dd=1,

U ≡ {ud}Dd=1 and xd is the dth column of X . Knn

is the covariance matrix corresponding to a user chosen
positive-definite kernel function kθ(x, x

′) evaluated on la-
tent points {xn}Nn=1 and parameterised by hyperparame-
ters θ shared across dimensions. The inducing variables
per dimension {ud}Dd=1 are distributed with a GP prior
ud|Z̃ ∼ N (ud;0,Kmm) computed on inducing input lo-
cations Z̃ ∈ RM×Q which live in latent space with Z and
have dimensionality Q (matching zn).

The crux of SVI applied to sparse variational GPs as pro-
posed in the seminal work of Hensman et al. (2013) is that
we can variationally integrate out ud by learning their varia-
tional distributions q(ud) ∼ N (md, Sd) numerically using
stochastic gradient methods. Essentially, by keeping the
representation of ud uncollapsed. While (Hensman et al.,
2013) proposed SVI for GP regression, (Lalchand et al.,
2022) extended this work to GPLVMs where the inputs Z
to the GPs are unobserved and each dimension of the high-
dimensional output space xd is modelled by an independent
GP fd but with shared kernel hyperparameters. If we
choose to optimize the latent variables Z as point estimates
rather than variationally integrate them out, one can bound
the intractable log-marginal likelihood p(X|θ) in the model
formulation above with the following evidence lower-bound,

p(X|θ) ≥
∫

p(F |U,Z)q(U) log
p(X|F,Z)p(U |Z̃)p(Z)

q(U)
dFdU = Lx

(2)

=
∑
n,d

⟨log p(xn,d|fd, zn, σ
2
x)⟩q(.) − KL(q(U)||p(U |Z̃)) + log p(Z)

where the variational distribution q(.) is given by,

p(F,U |X) =
[ D∏
d=1

p(fd|ud, Z)q(ud)
]
≈ q(F,U) (3)

Latent point estimates of Z can be learnt along θ and vari-
ational parameters (Z̃,md, Sd) by taking gradients of the
ELBO above. An important constraint however is that this
formulation assumes a single kernel matrix (single set of
kernel hyperparameters) underlying all the D independent
GPs. In the next section, we introduce the idea of an addi-
tional observation space with L dimensions and how they
can be modelled by their own stack of independent GPs fl

and learn their own set of hyperparameters for additional
flexibility but share the latent embedding Z and inducing
inputs Z̃ to model correlations between the different output
spaces.
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Figure 1. Scientific label prediction based on unseen (X∗, Y ∗). The scatter are colored by SNR which is a measured quantity available as
part of the dataset but is not used during training. The dashed black line ( ) denotes a 45◦ line to aid visualisation of reconstruction
accuracy. The vertical and horizontal orange lines ( ) denotes posterior predictive standard deviation and the recorded measurement
uncertainty for each object (data point) and dimension.

2.2. Shared joint variational lower bound

In the astrophysical application we focus on in this work we
have two observation spaces corresponding to N quasars.
We denote the quasar spectra (pixels) with the matrix
X ∈ RN×D and the scientific labels corresponding to the
N objects with Y ∈ RN×L. The GPLVM construction
models each column (pixel dimension and label dimension)
with an independent GP, with the GPs corresponding to the
pixel dimensions {fd}Dd=1 and label dimensions {fl}Ll=1

modelled with their own independent kernels and kernel
hyperparameters, θx and θy . Within each observation space
the kernel hyperparameters are shared, so we learn 2 sets of
hyperparameters corresponding to two observation spaces.

fd ∼ GP(0, kθx) fl ∼ GP(0, kθy ) (4)

The priors over finite function values are given by,

p(fd|θx) = N (0,K(d)
nn ) p(fl|θy) = N (0,K(l)

nn) (5)

where K
(d)
nn and K

(l)
nn denote the N × N kernel matrices

which rely on their own set of hyperparameters. The two
observation spaces also yield two data likelihoods given by,

p(X|f1:D, Z) =

N∏
n=1

D∏
d=1

N (xn,d; fd(zn), σ
2
x) (6)

p(Y |f1:L, Z) =

N∏
n=1

L∏
l=1

N (yn,l; fl(zn), σ
2
y) (7)

In the absence of sparsity the log-marginal likelihood
of the joint model compartmentalises nicely due to the
assumed factorisation in the likelihoods. We marginalise
out the latent function values f1:D and f1:L per dimension,1

1Note that there are D + L dimensions in total.

p(X,Y |θx, θy, Z)

=

∫ ∫
p(X|f1:D, Z)p(Y |f1:L, Z)p(fd|θx)p(fl|θy)df1:Ddf1:L

=

∫
1:D

p(X|f1:D)p(fd|θx)df1:D

∫
1:L

p(Y |f1:L)p(fl|θy)df1:L

=

D∏
d=1

p(xd|θx)
L∏

l=1

p(yl|θy) =
D∏

d=1

N (0,K(d)
nn + σ2

x)

×
L∏

l=1

N (0,K(l)
nn + σ2

y)

where xd and yl denote a single column/dimension of
the observation spaces X and Y . The log marginal
likelihood objective is then given by the following,

log p(X,Y |θx, θy, Z) =

D∑
d=1

logp(xd|θx, Z) +

L∑
l=1

log p(yl|θy, Z)

(8)

With sparse GPs each of the terms in the decomposition
above can be bounded by Lx, while the inducing points Z̃
can be shared between the terms yielding the joint evidence
lower bound.

log p(X,Y |θx, θy, Z) ≥
∑
n,d

⟨log p(xn,d|fd, zn, σ
2
x)⟩q(.)

−
∑
d

KL(q(ud)||p(ud|Z̃)) +
∑
n,l

⟨log p(yn,l|fl, zn, σ
2
y)⟩q(.)

−
∑
l

KL(q(ul)||p(ul|Z̃)) + log p(Z) (9)

The joint variational lower bound in eq. 9 is optimised
for the shared latent embedding Z (local variational pa-
rameters), kernel hyperparameters and global variational
parameters.We include the full training algorithm and detail
the prediction framework in the appendix.

3. Experiments
In this section we demonstrate experiments aimed at assess-
ing the reconstruction quality of unseen quasar spectra and
scientific attributes. The data used in this work are quasar
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Figure 2. Reconstruction plots of unseen quasar spectra with ±2σ predictions intervals. Note that the rightmost plot demonstrates
extrapolation at test-time where pixel dimensions [504-576] were missing. The blue curve denotes the posterior predictive mean at each
dimension.

Metrics (−→) RMSE
Models (−→) Baseline Shared (ours)

Spectra 0.181 ± 0.005 0.1416 ± 0.008
Blackhole Mass 0.298 ± 0.011 0.233 ± 0.014
Luminosity 0.261 ± 0.025 0.228 ± 0.022
Eddington Ratio 0.206 ± 0.006 0.182 ± 0.009

Table 1. Summary of test-time reconstruction abilities for the spec-
tra and the scientific labels. Square root mean-squared error
(RMSE) on un-normalised data (± standard error of mean) evalu-
ated on average of 10 splits with 80% of the data used for training.

spectra (X space) observed as part of the Sloan Digital Sky
Survey (SDSS) DR16 (Lyke et al., 2020). We chose all
quasars with spectra that have a signal-to-noise ratio (SNR)
per pixel > 10. The four scientific labels for these quasars
are (1) their SMBH mass, (2) their bolometric luminosity,
i.e. the total power output across all electromagnetic wave-
lengths, (3) their redshift which denotes the factor by which
the emitted wavelengths have been “stretched” due to the ex-
pansion of the universe, and (4) their Eddington ratio, which
is a measure of the accretion and growth rate of the SMBH.
All measurements were previously uniformly determined by
Wu and Shen (2022). The baseline model in the experiments
refers to the canonical stochastic variational GPLVM (Lalc-
hand et al., 2022) which treats multiple observation spaces
using D + L independent GPs with the same kernel and
optimising a single set of kernel hyperparameters. In terms
of the lower bound, the baseline model has the same struc-
ture of the shared lower bound (eq. 9) without independent
terms (involving l) for the scientific labels.

It may be important to note that the approach in Eilers et al.
(2022) does not scale to 20, 000 objects making a direct
comparison infeasible; further smaller datasets (under 1000)
objects do not necessitate stochastic variational training
which is mainly motivated by the need to train on much
bigger datasets.

3.1. Reconstructing Quasar spectra

We assess the quality of our probabilistic generative model
in reconstructing unseen quasar spectra. At test-time we deal
with unseen spectra and scientific labels stacked row-wise
and denoted by (X∗

gt, Y
∗
gt). The 2-step prediction learns

low-dimensional shared latent variables Z∗ (point estimate
per data point), followed by a forward pass through the GP
decoder corresponding to the spectra Z∗ → X∗

est.. Note
that the ground truth spectra contains several missing pix-
els (dimensions) and the probabilistic decoder provides a
reasonable reconstruction at those locations. In fig. 2 we
visualise the reconstruction (posterior predictive mean) of 4
test quasars along with ground-truth measurements and 2σ
uncertainty intervals. We achieve a remarkably good recon-
struction even when a significant chunk of the ground-truth
spectra are missing (rightmost plot). Further, the prediction
intervals capture the the ground spectra providing robust
coverage at peaks and extrapolated regions.

3.2. Predicting unseen scientific labels Y ∗

The L dimensions corresponding to the scientific labels in
the dataset governed by their own GP decoders {fl}Ll=1

are a critical prediction quantity. The ability to reconstruct
these quantities from learnt latent variables underscores the
generalisation abilities of our model. In fig. 1 we demon-
strate the accuracy of our reconstructions by plotting each
of the dimensions against ground truth held-out data. We
show reconstructions for 200 test points in fig. 1 sampled
randomly from the full test set containing 2000 quasars.
section 3 reports the RMSE on the full test set. Each point
on the scatter denotes a quasar and the x-axis denotes the
ground-truth measurement. The orange vertical error bars
denote 2σ intervals computed by extracting the diagonals
from the GP posterior predictive for each dimension. We
can observe a high-degree of prediction accuracy across the
three scientific labels and the ground-truth data is incorpo-
rated within the 2σ interval for over 90% of the points in the
test set. Further, we can observe that the reconstruction qual-
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ity is robust and independent of the signal-to-noise (SNR)
ratio as there is no strong pattern of correlation between
prediction quality and SNR. table 2 summarises the NLLs
(quality of uncertainty) for two modes of inference 1) where
the scientific attributes for an unseen test quasar (with fully
observed spectra and labels) were reconstructed from the
latent estimate Z∗ and 2) where the scientific attributes were
reconstructed only from the spectra. The model exhibits
reasonable behaviour reflecting higher uncertainty (higher
NLL) in the latter case with marginal to no degradation in
the accuracy of the estimate as seen from the scatter plots in
fig. 7 relative to fig. 1.

Scientific Labels (−→) Black hole Mass Luminosity Eddington Ratio
Fully observed test-point -0.1251 -0.2339 -0.1814
Only spectra observed -0.1209 -0.2235 -0.1626

Table 2. Summary of test-time uncertainty quantification under the
full and split reconstruction framework. Negative log-likelihood
(lower is better) on un-normalised observed data.

4. Significance
Our new generative model allows us to simultaneously
model the spectral properties of quasars as well as their
scientific labels, thus opening up novel possibilities to study
the evolution of quasars across cosmic time and the forma-
tion and growth of SMBHs. Additionally, we have shown
that our model is able to predict other physical proper-
ties of quasars such as their bolometric luminosities (see
Fig. 1). This implies that we can obtain a measurement of
the quasars’ absolute luminosities from their spectra alone,
which enables us to use quasars as so-called “standard can-
dles”. Standard candles are incredibly valuable for astron-
omy, as knowing the luminosity of an object allows one to
determine its distance. Previously, supernovae have been
famously used as standard candles, which lead to the Nobel
Prize winning discovery of the expansion of our universe
and the existence of dark energy (Riess et al., 1998). Our
new model allows us to use quasars as standard candles and
can be probed to larger distances due to their on average
much higher luminosities, enabling new constraints on the
dark energy content of our universe in the future.
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A. Schematic and Graphical Model
In fig. 3 we present a schematic of the model architecture
with double observation spaces (X,Y ), the corresponding
stacks of individual GPs {fd} and {fl} which model the
individual columns of the spectra X and scientific attributes
Y respectively and the low-dimensional latent space Z. The
dimensionality of the latent and observation spaces are de-
noted by Q, D,L respectively and N denotes the number
of objects / data points (quasars). Note that the correlation
between the two observation spaces are not explicitly but im-
plicitly modelled through a shared latent space. Generating
a single data point (xn,yn) (a row across X and Y ) entails
a forward pass through the GPs, where xn = [. . . , xnd, . . .]
is generated as [f1(zn), f2(zn), . . . , fD(zn)] and yn =
[. . . , ynl, . . .] is generated as [f1(zn), . . . , fL(zn)].

B. Algorithm
Below we enclose the pseudo-code in Algorithm 1 for
stochastic variational inference in the context of the shared
model for clarity. Let Lx and Ly denote the ELBO’s for
each of the observation spaces and let L(B)

x and L(B)
y denote

the ELBOs formed with a randomly drawn mini-batch of
the data (across all dimensions). For a mini-batch (subset)
of the data XB ⊂ X , the mini-batch ELBO is given by,

Lx ≃ L(B)
x =

N

B

∑
b,d

⟨log p(xb,d|fd, zb, σ
2
x)⟩q(.) +

∑
b

log p(zb)


−

∑
d

KL(q(ud)||p(ud|Z̃)) (10)

where the scaling term is important for the mini-batch
ELBO to be an estimator of the full-dataset ELBO.

B.1. Computational Cost

The training cost of the canonical stochastic variational
GPLVM is dominated by the number of inducing points
O(M3D) (free of N ) where M << N and D is the data-
dimensionality (we have D GP mappings fd, one per out-
put dimension). The practical algorithm is made further
scalable with the use of mini-batched learning. In our
shared model with 2 sets of GPs the dynamics of the train-
ing cost are the same except that they go up linearly in
the number of additional dimensions (L), making the cost
O(M3(D + L)). The number of global variational param-
eters to be updated in each step (parameters of q(U)) is
MQ+M(D + L) +M2(D + L), where MQ are the M
Q-dimensional inducing inputs Z̃ (shared), M(D + L) is
the size of the mean parameters of the inducing variables
ud, ul and M2(D + L) are the full-rank covariances of the
inducing variables. The local variational parameters Z (the
latent embedding shared across GPs) are of size NQ and
model hyperparameters (kernel hyperparameters) are of size
2Q + 4, which account for Q input lengthscales, a scalar
signal variance and noise variance per GP group {fd} and
{fl}. We use the squared exponential kernel with automatic
relevance determination across both sets of GPs.

C. Experimental set-up
In this section we detail the configuration of the experiments
in section 3 of the main paper. We conduct experiments
across two data sets with 1K and 20K points. For each of
the datasets we repeat every experiment with 10 random
seeds yielding different splits of the 80% training data. The
baseline model in the experiments refers to the canonical
stochastic variational GPLVM (Lalchand et al., 2022) which
treats multiple observation spaces using the same set of
independent GPs learning a single set of kernel hyperparam-
eters. The attributes of the data and sparse GP set-up are
given in table 3. We used a learning rate of 0.005 across all
parameters and ran the mini-batch loop with a batch size
of 100 for 10,000 iterations on an Intel Core i7 processor
with a GeForce RTX 3070 GPU with 8GB RAM memory.
In order to give an estimate of the scale of the model for the
20k dataset we enclose a summary snapshot of the number
of trainable parameters in our shared model.

D. Additional Experimental Results
D.0.1. RECONSTRUCTING MISSING SPECTRA

In this experiment we test the generative models ability
to learn from massively missing chunks of the spectra at
test-time. We observe a partial window of the spectra in
each plot (given by the shaded region), hence the latent
variables corresponding to these points are only informed by
the observed region. We then reconstruct the whole spectra
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Algorithm 1: Shared Stochastic GPLVM for Quasar Spectra

TRAINING FRAMEWORK

Input: ELBO objective L = Lx + Ly , gradient based optimiser optim(), observation spaces X (spectra) and Y (scientific
labels)

Initial model params:
θ = (θx, θy) (covariance hyperparameters for GP mappings f1:D, f1:L),
σ2 = (σ2

x, σ
2
y) (variance of the noise model for each likelihood),

Z ≡ {zn}Nn=1 (point estimates for latent embedding)
Initial variational params:

Z̃ ∈ RM×Q (inducing locations),
λ = {mh, Sh}D+L

h=1 (global variational params for inducing variables per dimension uh),

while not converged do
• Choose a random mini-batch of the data from both the observation spaces XB ⊂ X,YB ⊂ Y .

• Form a mini-batch estimate of the ELBO: L(B)
x + L(B)

y

• Gradient step for global parameters g ← ∇θ,σ2,Z̃,λ(L
(B)
x + L(B)

y )

• Gradient step for local parameters l← ∇ZB (L(B)
x + L(B)

y ) (where ZB are the latent embeddings corresponding to points in the
mini-batch)

• Update all parameters Z̃,θ, σ2, λ, ZB ≡ {zb}Bn=1 ←− optim() using gradients g, l

end
return θ, σ2, Z̃, λ, Z

PREDICTION FRAMEWORK
(Predict Z∗ corresponding to unseen X∗, Y ∗)

Input: Trained global and local parameters θ, σ2, Z̃, λ, Z, unseen observation spaces X∗ (spectra) and Y ∗ (scientific labels).
1. Initialise latent embedding Z∗ ≡ {zn∗}N

∗
n∗=1 corresponding to unseen points.

2. Extend the joint ELBO to include terms corresponding to the N∗ additional data points.
L∗

x ← Lx +
∑

n∗,d⟨log p(xn∗,d|fd, zn∗ , σ2
x)⟩q(.) +

∑
n∗ log p(zn∗)

L∗
y ← Ly +

∑
n∗,l⟨log p(yn∗,l|fl, zn∗ , σ2

y)⟩q(.) +
∑

n∗ log p(zn∗)

L∗ = L∗
x + L∗

y

3. Freeze all global and local parameters except for Z∗

while not converged do

• Gradient step for Z∗: l∗ ← ∇Z∗L∗

• Update Z∗ ← optim() using gradients l∗.

end
return Z∗

(Note that the gradients of Lx and Ly with respect to Z∗ are 0 and the only terms that are optimised are the additional terms
corresponding to the new data points.)
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Figure 3. Shared GPLVM with multiple observation spaces. The blocks on the right-hand side denote the double observation spaces
(X,Y ) of quasar spectra and scientific labels respectively. In the center are two stacks of GPs, one for each observation space which
control the data generation process through the shared latent space. In the figure above we assume Q = 2 (for ease of visualisation) since
we denote the GPs are two dimensional surfaces, however, typically Q can be higher than 2 corresponding to higher dimensional GPs.
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Figure 4. The graphical model of the shared GPLVM with two sets
of independent GPs and their respective hyperparameter sets.

Dataset N D L Num inducing M Latent dim. Q
20K 22844 657 4 250 10

Table 3. Experimental configuration to reproduce experiments in
section 3 of the main paper.

from the latent variables informed by the partial spectra. We
enclose our results in fig. 6. The reconstruction entails the
inference steps: X∗

partial → Z∗ → X∗
full. We note that

both the quality of the mean prediction and the coverage of
the uncertainty intervals deteriorate compared to the fully
observed test point predictions. However, the coverage of
the prediction intervals is only weaker as we move away
from the shaded observed regions. Reconstruction quality
at the observed regions is much higher.

D.0.2. PREDICTING SCIENTIFIC LABELS ONLY FROM
SPECTRA X∗

Very often astronomers want to reason about the scientific
attributes of quasars just by analysing their spectra. In this
experiment we demonstrate precisely this use case where
the latent variables Z∗ are informed only by the spectra
X∗, computing the prediction entails the inference steps:
X∗ → Z∗ → Y ∗. We can note from fig. 7 that we can
predict the scientific labels with a high-degree of accuracy
with a marginal to no degradation in prediction quality, in
terms of both the mean estimate and the uncertainty inter-
vals. Compared to fig. 1 we do note that the uncertainty
intervals around each data point is slightly higher in this
experiment. This behaviour is perfectly reasonable and cap-
tures the higher epistemic uncertainty in this set-up. This
manifests in the marginally weaker log-likelihoods we show
in table 2.

D.1. Cross-validating M and Q

The two main parameters of our shared framework which
need to be fixed at the outset are: the number of induc-
ing points M and the latent space dimensionality Q. We
set M to be 250 in all the 20k experiments after extensive
cross-validation upto M = 1000 and found that M = 250
gave the best possible trade-off in terms of speed and accu-
racy. The reconstruction results with M = 1000 were only
marginally better than with M = 250 inducing points but
significantly increased compute due to the cubic scaling in
inducing points.
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Figure 5. Number of trainable parameters for the 20k model where model spectra refers to the GPs corresponding to X and
model labels refers to the GPs corresponding to Y observation space.

Figure 6. Reconstruction of a single spectra by masking out large wavelength chunks. The shaded orange regions denote the observed
wavelengths. Note in the 2nd and 4th plots the 2σ prediction intervals underestimate the ground-truth at the initial wavelengths (left)
as their observed regions are further out. On the contrary, the 1st and 3rd plots where the observed regions are closer to the initial
wavelengths tend to reconstruct those dimensions better.
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Figure 7. Scientific label prediction based on based on unseen X∗ only. The dashed black line ( ) denotes a 45◦ line to aid visualisation
of reconstruction accuracy. The vertical and horizontal orange lines ( ) denotes posterior predictive standard deviation and the recorded
measurement uncertainty for each object (data point) and dimension.

Figure 8. Sensitivity to Q: The negative ELBO objective for varying latent space dimensionality (lower is better)

In fig. 8 we visualise the evolution of the ELBOs across
varying latent dimensionality. We notice a meaningful im-
provement in increasing the dimensionality from Q = 2 but
very marginal gains beyond Q = 10; we use this setting
in experiments. It may be important to highlight that due
to automatic relevance determination of the squared expo-
nential kernel, setting a high latent dimensionality should
not degrade results as the model automatically prunes re-
dundant dimensions by driving the corresponding inverse
lengthscales to 0. However, they do increase the compute
cost, hence, it is important to set Q at a reasonable value
which is flexible enough for structure discovery and not too
constrained, while simultaneously minimising the computa-
tional burden.
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