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Abstract
Neural posterior estimation methods based on dis-
crete normalizing flows have become established
tools for simulation-based inference (SBI), but
scaling them to high-dimensional problems can be
challenging. Building on recent advances in gen-
erative modeling, we here present flow matching
posterior estimation (FMPE), a technique for SBI
using continuous normalizing flows. Like diffu-
sion models, and in contrast to discrete flows, flow
matching allows for unconstrained architectures,
providing enhanced flexibility for complex data
modalities. Flow matching, therefore, enables
exact density evaluation, fast training, and seam-
less scalability to large architectures—making it
ideal for SBI. To showcase the improved scalabil-
ity of our approach, we apply it to a challenging
astrophysics problem: for gravitational-wave in-
ference, FMPE outperforms methods based on
comparable discrete flows, reducing training time
by 30% with substantially improved accuracy.

1. Introduction
The ability to readily represent Bayesian posteriors of ar-
bitrary complexity using neural networks would herald a
revolution in scientific data analysis. Such networks could
be trained using simulated data and used for amortized in-
ference across observations—bringing tractable inference
and speed to a myriad of scientific models. Thanks to in-
novative architectures such as normalizing flows (Rezende
& Mohamed, 2015; Papamakarios et al., 2021), approaches
to neural simulation-based inference (SBI) (Cranmer et al.,
2020) have seen remarkable progress in recent years. Here,
we show that modern approaches to deep generative model-
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NPE

Figure 1. Comparison of network architectures (left) and flow tra-
jectories (right). Discrete flows (NPE, top) require a specialized
architecture for the density estimator. Continuous flows (FMPE,
bottom) are based on a vector field parametrized with an uncon-
strained architecture. FMPE uses this additional flexibility to put
an enhanced emphasis on the conditioning data x, which in the
SBI context is typically high dimensional and in a complex do-
main. Further, the optimal transport path produces simple flow
trajectories from the base distribution (inset) to the target.

ing (particularly flow matching) deliver substantial improve-
ments in simplicity, flexibility and scaling when adapted to
SBI.

The Bayesian approach to data analysis is to compare ob-
servations to models via the posterior distribution p(θ|x).
This gives our degree of belief that model parameters θ
gave rise to an observation x, and is proportional to the
model likelihood p(x|θ) times the prior p(θ). One is typi-
cally interested in representing the posterior in terms of a
collection of samples, however obtaining these through stan-
dard likelihood-based algorithms can be challenging for in-
tractable or expensive likelihoods. In such cases, SBI offers
an alternative based instead on data simulations x ∼ p(x|θ).
Combined with deep generative modeling, SBI becomes a
powerful paradigm for scientific inference (Cranmer et al.,
2020). Neural posterior estimation (NPE) (Papamakarios
& Murray, 2016; Lueckmann et al., 2017; Greenberg et al.,
2019), for instance, trains a conditional density estimator
q(θ|x) to approximate the posterior, allowing for rapid sam-
pling and density estimation for any x consistent with the
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training distribution.

The NPE density estimator q(θ|x) is commonly taken to be
a (discrete) normalizing flow (Rezende & Mohamed, 2015;
Papamakarios et al., 2021). Normalizing flows transform
noise to samples through a discrete sequence of basic trans-
forms. These have been carefully engineered to be invertible
with simple Jacobian determinant, enabling efficient maxi-
mum likelihood training, while producing expressive q(θ|x).
Although many such discrete flows are universal density ap-
proximators (Papamakarios et al., 2021), in practice, they
can be challenging to scale to very large networks.

Recent studies (Sharrock et al., 2022; Geffner et al.,
2022) propose neural posterior score estimation (NPSE),
an approach that models the posterior distribution with
score-matching (or diffusion) networks. These techniques
were originally developed for generative modeling (Sohl-
Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020),
achieving state-of-the-art results in many domains, includ-
ing image generation (Dhariwal & Nichol, 2021; Ho et al.,
2022). Like normalizing flows, diffusion models transform
noise into samples, but with trajectories parametrized by
a continuous “time” parameter t. The trajectories solve a
stochastic differential equation (Song et al., 2020) (SDE)
defined in terms of a vector field vt, which is trained to
match the score of the intermediate distributions pt. NPSE
has several advantages compared to NPE, in particular the
freedom to use unconstrained network architectures.

We here propose to use flow matching, another recent tech-
nique for generative modeling, for Bayesian inference, an
approach we refer to as flow-matching posterior estimation
(FMPE). Flow matching is also based on a vector field vt and
thereby also admits flexible network architectures (Fig. 1).
For flow matching, however, vt directly defines the veloc-
ity field of deterministic sample trajectories, which solve
ordinary differential equations (ODEs). As a consequence,
flow matching allows for additional freedom in designing
non-diffusion paths such as optimal transport, and provides
direct access to the density (Lipman et al., 2022). We apply
FMPE to gravitational wave inference (see Section 3) and
to a standard benchmark for SBI (see Appendix C).

2. Flow matching posterior estimation
In this section, we give a brief introduction to the flow
matching technique (additional information in App. A) and
discuss key differences when applying flow matching to
simulation based inference instead of generative modelling.

2.1. Flow matching

Flow matching was recently introduced as an efficient ap-
proach to train continuous normalizing flows. Continuous
flows (Chen et al., 2018) are a family qt(θ|x) of distributions

parametrized by “time” t ∈ [0, 1], where q0(θ|x) = q0(θ) is
a fixed base distribution and q1(θ|x) = q(θ|x) the target dis-
tribution. They can be generated by a time-dependent vector
field vt,x on the sample space describing the velocities of
the sample trajectories. The advantage of continuous flows
is that vt,x(θ) can be simply specified by a neural network
taking Rn+m+1 → Rn. In contrast, discrete normalizing
flows are built using highly restricted bijections.

Continuous flows cannot be efficiently trained by maximiz-
ing the likelihood. An alternative training objective for
continuous normalizing flows is provided by flow match-
ing (Lipman et al., 2022). This directly regresses vt,x on
a vector field ut,x that generates a target probability path
pt,x. It has the advantage that training does not require
integration of ODEs, however it is not immediately clear
how to choose (ut,x, pt,x), and how to make this objective
tractable. The key insight of Lipman et al. (2022) is that,
if the path is chosen on a sample-conditional basis,1 then
the training objective becomes extremely simple. Indeed,
given a sample-conditional probability path pt(θ|θ1) and a
corresponding vector field ut(θ|θ1), the sample-conditional
loss is given by

LSCFM = E t∼U [0,1], x∼p(x),
θ1∼p(θ|x), θt∼pt(θ|θ1)

∥vt,x(θt)− ut(θt|θ1)∥2 .

(1)
Remarkably, minimization of this loss is equivalent to re-
gressing vt,x(θ) on the marginal vector field ut,x(θ) that
generates pt(θ|x) (Lipman et al., 2022).

There is a lot of freedom in choosing a sample-conditional
path pt(θ|θ1), here we focus on the optimal transport path
introduced by Lipman et al. (2022) where pt(θ|θ1) =
N (tθ1, σ

2
t ), with σt = 1 − (1 − σmin)t for a small con-

stant σmin. The sample-conditional vector field then has the
simple form ut(θ|θ1) = σ−1

t (θ1 − (1− σmin)θ).

To apply flow matching to SBI we use Bayes’ theorem to
make the usual replacement Ep(x)p(θ|x) → Ep(θ)p(x|θ) in
the loss function (1), eliminating the intractable expectation
values. This gives the FMPE loss

LFMPE = E θ1∼p(θ),x∼p(x|θ1),
t∼p(t), θt∼pt(θt|θ1)

∥vt,x(θt)− ut(θt|θ1)∥2 ,

(2)
which we minimize using empirical risk minimization over
samples (θ, x) ∼ p(θ)p(x|θ), i.e., training data is generated
by sampling θ from the prior, and then simulating data x cor-
responding to θ. This is similar to NPE training, but replaces
the log likelihood maximization with the sample-conditional
flow matching objective. Note that in this expression we also
sample t ∼ p(t), t ∈ [0, 1] (see Sec. 2.3), which generalizes
the uniform distribution in (6). This provides additional
freedom to improve learning in our experiments.

1We refer to conditioning on θ1 as sample-conditioning to
distinguish from conditioning on x.
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2.2. Network architecture

Generative diffusion or flow matching models typically op-
erate on complicated and high dimensional data in the θ
space (e.g., images with millions of pixels). One typically
uses U-Net (Ronneberger et al., 2015) like architectures,
as they provide a natural mapping from θ to a vector field
v(θ) of the same dimension. The dependence on t and an
(optional) conditioning vector x is then added on top of this
architecture.

For SBI, the data x is often associated with a complicated
domain, such as image or time series data, whereas param-
eters θ are typically low dimensional. In this context, it is
therefore useful to build the architecture starting as a map-
ping from x to v(x) and then add conditioning on θ and t.
In practice, one can therefore use any established feature ex-
traction architecture for data in the domain of x, and adjust
the dimension of the feature vector to n = dim(θ). In our
experiments, we found that the (t, θ)-conditioning is best
achieved using gated linear units (Dauphin et al., 2017) to
the hidden layers of the network (see also Fig. 1); these are
also commonly used for conditioning discrete flows on x.

2.3. Re-scaling the time prior

The time prior U [0, 1] in (6) distributes the training capacity
uniformly across t. We observed that this is not always
optimal in practice, as the complexity of the vector field
may depend on t. For FMPE we therefore sample t in (2)
from a power-law distribution pα(t) ∝ t1/(1+α), t ∈ [0, 1],
introducing an additional hyperparameter α. This includes
the uniform distribution for α = 0, but for α > 0, assigns
greater importance to the vector field for larger values of t.

3. Gravitational-wave inference
3.1. Background

Gravitational waves (GWs) are ripples of spacetime pre-
dicted by Einstein and produced by cosmic events such as
the mergers of binary black holes (BBHs). GWs propa-
gate across the universe to Earth, where the LIGO-Virgo-
KAGRA observatories measure faint time-series signals
embedded in noise. To-date, roughly 90 detections of merg-
ing black holes and neutron stars have been made (Abbott
et al., 2021c), all of which have been characterized using
Bayesian inference to compare against theoretical models.2

These have yielded insights into the origin and evolution of
black holes (Abbott et al., 2021a), fundamental properties
of matter and gravity (Abbott et al., 2018; 2021b), and even

2BBH parameters θ ∈ R15 include black-hole masses, spins,
and the spacetime location and orientation of the system (see Tab. 2
in the Appendix). We represent x in frequency domain; for two
LIGO detectors and complex f ∈ [20, 512] Hz, ∆f = 0.125 Hz,
we have x ∈ R15744.

the expansion rate of the universe (Abbott et al., 2017).

Under reasonable assumptions on detector noise, the GW
likelihood is tractable,3 and inference is typically performed
using tools (Veitch et al., 2015; Ashton et al., 2019; Romero-
Shaw et al., 2020; Speagle, 2020) based on Markov chain
Monte Carlo (Metropolis et al., 1953; Hastings, 1970) or
nested sampling (Skilling, 2006) algorithms. This can take
from hours to months, depending on the nature of the event
and the complexity of the signal model, with a typical anal-
ysis requiring up to ∼ 108 likelihood evaluations. The ever-
increasing rate of detections means that these analysis times
risk becoming a bottleneck. SBI offers a promising solution
for this challenge that has been actively studied in the litera-
ture (Cuoco et al., 2020; Gabbard et al., 2022; Green et al.,
2020; Delaunoy et al., 2020; Green & Gair, 2021; Dax et al.,
2021; 2022; Chatterjee et al., 2022; Dax et al., 2023). A
fully amortized NPE-based method called DINGO recently
achieved accuracies comparable to stochastic samplers with
inference times of less than a minute per event (Dax et al.,
2021). However, DINGO uses group-equivariant NPE (Dax
et al., 2021; 2022) (GNPE), an NPE extension that integrates
known conditional symmetries. GNPE, therefore, does not
provide a tractable density, which is problematic when ver-
ifying and correcting inference results using importance
sampling (Dax et al., 2023).

3.2. Experiments

We here apply FMPE to GW inference. As a baseline, we
train an NPE network with the settings described in (Dax
et al., 2021) with a few minor changes (see Appendix B).4

This uses an embedding network (Radev et al., 2020) to
compress x to a 128-dimensional feature vector, which is
then used to condition a neural spline flow (Durkan et al.,
2019). The embedding network consists of a learnable linear
layer initialized with principal components of GW simula-
tions followed by a series of dense residual blocks (He et al.,
2015). This architecture is a powerful feature extractor for
GW measurements (Dax et al., 2021). As pointed out in
Section 2.2, it is straightforward to reuse such architectures
for FMPE, with the following three modifications: (1) we
provide the conditioning on (t, θ) to the network via gated
linear units in each hidden layer; (2) we change the dimen-
sion of the final feature vector to the dimension of θ so
that the network parameterizes the conditional vector field
(t, x, θ) → vt,x(θ); (3) we increase the number and width of
the hidden layers to use the capacity freed up by removing

3Noise is assumed to be stationary and Gaussian, so
for frequency-domain data, the GW likelihood p(x|θ) =
N (h(θ)|Sn)(x). Here h(θ) is a theoretical signal model based on
Einstein’s theory of general relativity, and Sn is the power spectral
density of the detector noise.

4Our implementation builds on the public DINGO code from
https://github.com/dingo-gw/dingo.
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Figure 2. Results for GW150914 (Abbott et al., 2016). Top: Cor-
ner plot showing 1D marginals on the diagonal and 2D 50% cred-
ible regions. We display four GW parameters (distance dL, time
of arrival tc, and sky coordinates α, δ); these represent the least
accurate NPE parameters. Bottom: Deviation between inferred
posteriors and the reference, quantified by the Jensen-Shannon
divergence (JSD). The FMPE posterior matches the reference
more accurately than NPE, and performs similarly to symmetry-
enhanced GNPE. (We do not display GNPE results on the top due
to different data conditioning settings in available networks.)

the discrete normalizing flow.

We train the NPE and FMPE networks with 5 · 106 simula-
tions for 400 epochs using a batch size of 4096 on an A100
GPU. The FMPE network (1.9 · 108 learnable parameters,
training takes ≈ 2 days) is larger than the NPE network
(1.3 · 108 learnable parameters, training takes ≈ 3 days),
but trains substantially faster. We evaluate both networks on
GW150914 (Abbott et al., 2016), the first detected GW. We
generate a reference posterior using the method described
in (Dax et al., 2023). Fig. 2 compares the inferred posterior
distributions qualitatively and quantitatively in terms of the
Jensen-Shannon divergence (JSD) to the reference.5

5We omit the three parameters ϕc, ϕJL, θJN in the evaluation
as we use phase marginalization in importance sampling and the
reference therefore uses a different basis for these parameters (Dax
et al., 2023). For GNPE we report the results from (Dax et al.,
2021), which are generated with slightly different data condition-

FMPE substantially outperforms NPE in terms of accuracy,
with a mean JSD of 0.5 mnat (NPE: 3.6 mnat), and max
JSD < 2.0 mnat, an indistinguishability criterion for GW
posteriors (Romero-Shaw et al., 2020). We believe that this
is related to the network structure as follows. The NPE
network allocates roughly two thirds of its parameters to
the discrete normalizing flow and only one third to the em-
bedding network (i.e., the feature extractor for x). Since
FMPE parameterizes a much simpler vector field, it can
devote its network capacity to the interpretation of the high-
dimensional x ∈ R15744, and thereby scales much better
to larger networks and achieve much higher accuracy. Re-
markably, FMPE accuracy is even comparable to GNPE,
which leverages physical symmetries to simplify data and
has been validated in a variety of settings (Dax et al., 2021;
2022; 2023; Wildberger et al., 2023).

Finally, we find that the Bayesian evidences inferred
with NPE (log p(x) = −7667.958 ± 0.006) and FMPE
(log p(x) = −7667.969±0.005) are consistent within their
statistical uncertainties. A correct evidence is only obtained
in importance sampling when the inferred posterior q(θ|x)
covers the entire posterior p(θ|x) (Dax et al., 2023), indicat-
ing that FMPE induces mass-covering posteriors.

4. Conclusions
We introduced flow matching posterior estimation, a new
simulation-based inference technique based on continuous
normalizing flows. In contrast to existing neural posterior
estimation methods, it does not rely on restricted density
estimation architectures such as discrete normalizing flows,
and instead parametrizes a distribution in terms of a con-
ditional vector field. This enables more flexible network
architectures and seamless scaling (like score matching),
while enabling flexible path specification and direct access
to the posterior density.

On the challenging task of gravitational-wave inference,
FMPE substantially outperformed comparable discrete
flows, producing samples on par with a method that explic-
itly leverages symmetries to simplify training. Additionally,
flow matching latent spaces are more naturally structured
than those of discrete flows, particularly when using paths
such as optimal transport. Looking forward, it would be
interesting to exploit such structure in designing learning
algorithms. This performance and flexibilty underscores
the capability of continuous normalizing flows to efficiently
solve inverse problems.

ing. Therefore, we do not display the GNPE results in the corner
plot, and the JSDs serve only as a rough comparison. The JSD for
the tc parameter is not reported in (Dax et al., 2021) due to a tc
marginalized reference.
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A. Background
In this section we give a slightly extended version of Section 2.

Normalizing flows. A normalizing flow (Rezende & Mohamed, 2015; Papamakarios et al., 2021) defines a probability
distribution q(θ|x) over parameters θ ∈ Rn in terms of an invertible mapping ψx : Rn → Rn from a simple base distribution
q0(θ),

q(θ|x) = (ψx)∗q0(θ) = q0(ψ
−1
x (θ)) det

∣∣∣∣∂ψ−1
x (θ)

∂θ

∣∣∣∣ , (3)

where (·)∗ denotes the pushforward operator, and for generality we have conditioned on additional context x ∈ Rm. Unless
otherwise specified, a normalizing flow refers to a discrete flow, where ψx is given by a composition of simpler mappings
with triangular Jacobians, interspersed with shuffling of the θ. This construction results in expressive q(θ|x) and also
efficient density evaluation (Papamakarios et al., 2021).

Continuous normalizing flows. A continuous flow (Chen et al., 2018) also maps from base to target distribution, but
is parametrized by a continuous “time” t ∈ [0, 1], where q0(θ|x) = q0(θ) and q1(θ|x) = q(θ|x). For each t, the flow is
defined by a vector field vt,x on the sample space. This corresponds to the velocity of the sample trajectories,

d

dt
ψt,x(θ) = vt,x(ψt,x(θ)), ψ0,x(θ) = θ. (4)

We obtain the trajectories θt ≡ ψt,x(θ) by integrating this ODE. The final density is given by

q(θ|x) = (ψ1,x)∗q0(θ) = q0(θ) exp

(
−
∫ 1

0

div vt,x(θt) dt

)
, (5)

which is obtained by solving the transport equation ∂tqt + div(qtvt,x) = 0.

The advantage of the continuous flow is that vt,x(θ) can be simply specified by a neural network taking Rn+m+1 → Rn, in
which case (4) is referred to as a neural ODE (Chen et al., 2018). Since the density is tractable via (5), it is in principle
possible to train the flow by maximizing the (log-)likelihood. However, this is often not feasible in practice, since both
sampling and density estimation require many network passes to numerically solve the ODE (4).

Flow matching. An alternative training objective for continuous normalizing flows is provided by flow matching (Lipman
et al., 2022). This objective allows us to directly regress vt,x on a vector field ut,x that generates a target probability path
pt,x. Then training does not require integration of ODEs, however it is not immediately clear how to construct a suitable
path (ut,x, pt,x). The key insight of (Lipman et al., 2022) is that, if the path is chosen on a sample-conditional basis,
then the training objective becomes extremely simple. Indeed, given a sample-conditional probability path pt(θ|θ1) and a
corresponding vector field ut(θ|θ1), we specify the sample-conditional flow matching loss as

LSCFM = Et∼U [0,1], x∼p(x), θ1∼p(θ|x), θt∼pt(θ|θ1) ∥vt,x(θt)− ut(θt|θ1)∥2 . (6)

Remarkably, minimization of this loss is equivalent to regressing vt,x(θ) on the marginal vector field ut,x(θ) that generates
pt(θ|x) (Lipman et al., 2022). Note that in this expression, the x-dependence of vt,x(θ) is picked up via the expectation
value, with the sample-conditional vector field independent of x.

There exists considerable freedom in choosing a sample-conditional path. Ref. (Lipman et al., 2022) introduces the family
of Gaussian paths

pt(θ|θ1) = N (θ|µt(θ1), σt(θ1)
2In), (7)

where the time-dependent means µt(θ1) and standard deviations σt(θ1) can be freely specified (subject to boundary
conditions6). We focus on the optimal transport paths introduced by Lipman et al. (2022). They are defined by µt(θ1) = tθ1
and σt(θ1) = 1− (1− σmin)t. The sample-conditional vector field then has the simple form

ut(θ|θ1) =
θ1 − (1− σmin)θ

1− (1− σmin)t
. (8)

6The sample-conditional probability path should be chosen to be concentrated around θ1 at t = 1 (within a small region of size σmin)
and to be the base distribution at t = 0.
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hyperparameter values

residual blocks 2048, 4096× 3, 2048× 3, 1024× 6, 512× 8, 256× 10,
128× 5, 64× 3, 32× 3, 16× 3

residual blocks (t, θ) embedding 16, 32, 64, 128, 256
batch size 4096
learning rate 5.e-4
α (for time prior) 1

residual blocks 2048× 2, 1024× 4, 512× 4, 256× 4, 128× 4, 64× 3,
32× 3, 16× 3

residual blocks (t, θ) embedding 16, 32, 64, 128, 256
batch size 4096
learning rate 5.e-4
α (for time prior) 1

Table 1. Hyperparameters for the FMPE models used in the main text (top) and in the ablation study (bottom, see Fig. 3). The network is
composed of a sequence of residual blocks, each consisting of two fully-connected hidden layers, with a linear layer between each pair of
blocks. The ablation network is the same as the embedding network that feeds into the NPE normalizing flow.

Neural posterior estimation (NPE). NPE is an SBI method that directly fits a density estimator q(θ|x) (usually a
normalizing flow) to the posterior p(θ|x) (Papamakarios & Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019).
NPE trains with the maximum likelihood objective LNPE = −Ep(θ)p(x|θ) log q(θ|x), using Bayes’ theorem to simplify the
expectation value with Ep(x)p(θ|x) → Ep(θ)p(x|θ). During training, LNPE is estimated based on an empirical distribution
consisting of samples (θ, x) ∼ p(θ)p(x|θ). Once trained, NPE can perform inference for every new observation using
q(θ|x), thereby amortizing the computational cost of simulation and training across all observations. NPE further provides
exact density evaluations of q(θ|x). Both of these properties are crucial for the physics application in section 3, so we aim to
retain these properties with FMPE.

B. Gravitational-wave inference
We here provide the missing details and additional results for the gravitational wave inference problem analyzed in Section 3.

B.1. Network architecture and hyperparameters

Compared to NPE with normalizing flows, FMPE allows for generally simpler architectures, since the output of the network
is simply a vector field. This also holds for NPSE (model also defined by a vector) and NRE (defined by a scalar). Our
FMPE architecture builds on the embedding network developed in (Dax et al., 2021), however we extend the network
capacity by adding more residual blocks (Tab. 1, top panel). For the (t, θ)-conditioning we use gated linear units applied to
each residual block, as described in Section 2.2. We also use a small residual network to embed (t, θ) before applying the
gated linear units.

In this Appendix we also perform an ablation study, using the same embedding network as the NPE network (Tab. 1, bottom
panel). For this configuration, we additionally study the effect of conditioning on (t, θ) starting from different layers of the
main residual network.

B.2. Data settings

We use the data settings described in (Dax et al., 2021), with a few minor modifications. In particular, we use the
waveform model IMRPhenomPv2 (Hannam et al., 2014; Khan et al., 2016; Bohé et al., 2016) and the prior displayed in
Tab. 2. Compared to (Dax et al., 2021), we reduce the frequency range from [20, 1024] Hz to [20, 512] Hz to reduce the
computational load for data preprocessing. We also omit the conditioning on the detector noise power spectral density (PSD)
introduced in (Dax et al., 2021) as we evaluate on a single GW event. Preliminary tests show that the performance with PSD
conditioning is similar to the results reported in this paper. All changes to the data settings have been applied to FMPE and
the NPE baselines alike to enable a fair comparison.

9



Flow Matching for Scalable Simulation-Based Inference

Description Parameter Prior

component masses m1, m2 [10, 120] M⊙, m1 ≥ m2

chirp mass Mc = (m1m2)
3
5 /(m1 +m2)

1
5 [20, 120] M⊙ (constraint)

mass ratio q = m2/m1 [0.125, 1.0] (constraint)
spin magnitudes a1, a2 [0, 0.99]
spin angles θ1, θ2, ϕ12, ϕJL standard as in (Farr et al., 2014)
time of coalescence tc [−0.03, 0.03] s
luminosity distance dL [100, 1000] Mpc
reference phase ϕc [0, 2π]
inclination θJN [0, π] uniform in sine
polarization ψ [0, π]
sky position α, β uniform over sky

Table 2. Priors for the astrophysical binary black hole parameters. Priors are uniform over the specified range unless indicated otherwise.
Our models infer the mass parameters in the basis (Mc, q) and marginalize over the phase parameter ϕc.

B.3. Additional results

Tab. B.3 displays the inference times for FMPE and NPE. NPE requires only a single network pass to produce samples and
(log-)probabilities, whereas many forwards passes are needed for FMPE to solve the ODE with a specific level of accuracy.
A significant portion of the additional time required for calculating (log-)probabilities in conjunction with the samples is
spent on computing the divergence of the vector field, see Eq. (5). Fig. 3 presents a comparison of the FMPE performance
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Figure 3. Jensen-Shannon divergence between inferred posteriors and the reference posteriors for GW150914 (Abbott et al., 2016). We
compare two FMPE models with the same architecture as the NPE embedding network, see Tab. 1 bottom panel. For the model in the first
row, the GLU conditioning of (θ, t) is only applied before the final 128-dim blocks. The model in the middle row is given the context
after the very first 2048 block.

using networks of the same hidden dimensions as the NPE embedding network (Tab. 1 bottom panel). This comparison
includes an ablation study on the timing of the (t, θ) GLU-conditioning. In the top-row network, the (t, θ) conditioning is
applied only after the 256-dimensional blocks. In contrast, the middle-row network receives (t, θ) immediately after the
initial residual block. With FMPE we can achieve performance comparable to NPE, while having only ≈ 1/3 of the network
size (most of the NPE network parameters are in the flow). This suggests that parameterizing the target distribution in terms
of a vector field requires less learning capacity, compared to directly learning its density. Delaying the (t, θ) conditioning
until the final layers impairs performance. However, the number of FLOPs at inference is considerably reduced, as the
context embedding can be cached and a network pass only involves the few layers with the (t, θ) conditioning. Consequently,
there’s a trade-off between accuracy and inference speed, which we will explore in a greater scope in future work.

C. SBI benchmark
We further evaluate FMPE on ten tasks included in the benchmark presented in (Lueckmann et al., 2021), ranging from
simple Gaussian toy models to more challenging SBI problems from epidemiology and ecology, with varying dimensions for
parameters (dim(θ) ∈ [2, 10]) and observations (dim(x) ∈ [2, 100]). For each task, we train three separate FMPE models
with simulation budgets N ∈ {103, 104, 105}. We use a simple network architecture consisting of fully connected residual
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Network Passes Inference Time (per batch)

FMPE (sample only) 248 26s
FMPE (sample and log probs) 350 352s

NPE (sample and log probs) 1 1.5s

Table 3. Inference times per batch for FMPE and NPE on a single Nvidia A100 GPU, using the training batch size of 4096. We solve the
ODE for FMPE using the dopri5 discretization (Dormand & Prince, 1980) with absolute and relative tolerances of 1e-7. For FMPE,
generation of the (log-)probabilities additionally requires the computation of the divergence, see equation (5). This needs additional
memory and therefore limits the maximum batch size that can be used at inference.
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Figure 4. Comparison of FMPE with NPE, a standard SBI method, across 10 benchmark tasks (Lueckmann et al., 2021).

blocks (He et al., 2015) to parameterize the conditional vector field. For the two tasks with dim(x) = 100 (B-GLM-Raw,
SLCP-D), we condition on (t, θ) via gated linear units as described in Section 2.2. For the remaining tasks with dim(x) ≤ 10
we concatenate (t, θ, x) instead. We reserve 5% of the simulations for validation.

For each task and simulation budget, we evaluate the model with the lowest validation loss by comparing q(θ|x) to the
reference posteriors p(θ|x) provided in (Lueckmann et al., 2021) for ten different observations x in terms of the C2ST
score (Friedman, 2003; Lopez-Paz & Oquab, 2016). This performance metric is computed by training a classifier to
discriminate inferred samples θ ∼ q(θ|x) from reference samples θ ∼ p(θ|x). The C2ST score is then the test accuracy of
this classifier, ranging from 0.5 (best) to 1.0. We observe that FMPE exhibits comparable performance to an NPE baseline
model for most tasks and outperforms on several (Fig. 4). As NPE is one of the highest ranking methods for many tasks in
the benchmark, these results show that FMPE indeed performs competitively with other existing SBI methods.

As NPE and FMPE both directly target the posterior with a density estimator (in contrast to most other SBI methods),
observed differences can be primarily attributed to their different approaches for density estimation. Interestingly, a great
performance improvement of FMPE over NPE is observed for SLCP with a large simulation budget (N = 105). The SLCP
task is specifically designed to have a simple likelihood but a complex posterior, and the FMPE performance underscores
the enhanced flexibility of the FMPE density estimator.
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