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Abstract

Field-level inference provides a means to opti-
mally extract information from upcoming cosmo-
logical surveys, but requires efficient sampling of
a high-dimensional parameter space. This work
applies Microcanonical Langevin Monte Carlo
(MCLMC) to sample the initial conditions of the
Universe, as well as the cosmological parameters
σ8 and Ωm, from simulations of cosmic struc-
ture. MCLMC is shown to be over an order of
magnitude more efficient than traditional Hamil-
tonian Monte Carlo (HMC) for a ∼ 2.6 × 105

dimensional problem. Moreover, the efficiency of
MCLMC compared to HMC greatly increases as
the dimensionality increases, suggesting gains of
many orders of magnitude for the dimensionali-
ties required by upcoming cosmological surveys.

1. Introduction
Modern cosmology has many open problems, ranging from
measuring the neutrino mass to uncovering the nature of
dark energy. To answer these questions, upcoming surveys
of cosmic structure, such as DESI (DESI Collaboration,
2016), PFS (Takada et al., 2014), Rubin Observatory LSST
(LSST Science Collaboration, 2009), Euclid (Laureijs et al.,
2011), SPHEREx (Doré et al., 2014), SKA (Dewdney et al.,
2009), and Roman Space Telescope (Spergel et al., 2013)
will provide unprecedented amounts of high-resolution data.
These rich datasets promise much information from small
scales, however, the nonlinear nature of these scales presents
a challenge in optimally extracting the information. One
promising method to extract all of the information is field-
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level inference, which performs Bayesian inference of the
initial conditions for every voxel in the cosmic field, as well
as the cosmological parameters. This involves sampling a
high dimensional parameter space: for modern survey vol-
umes of 10 (Gpc/h)3 with resolutions of order 4Mpc/h
this leads to 108 dimensions or more, which can be pro-
hibitively slow to converge with standard samplers.

The traditionally used method for sampling in field-level
inference is (Metropolis adjusted) Hamiltonian Monte Carlo
(HMC) (Duane et al., 1987; Neal et al., 2011; Betancourt,
2017). This method excels over pure Metropolis-Hastings
(MH) by employing gradient information. However, in order
to ensure detailed balance each step must undergo an accept-
reject criterion, which in turn requires a small step size and
reduces the efficiency. Recently, alternative sampling meth-
ods called Microcanonical Hamiltonian/Langevin Monte
Carlo (MCHMC/MCLMC) (Robnik et al., 2022; Robnik &
Seljak, 2023) have been introduced. These samplers move
fast in regions of low density and slow in the regions of high
density, in contrast to HMC. They also do not require an
accept-reject criterion, allowing a larger tolerance of energy
fluctuations, in turn enabling a larger step size and larger
effective sample size (ESS). Moreover, their ESS scales
with dimensionality more favorably than HMC.

In this work we perform field-level inference to jointly sam-
ple the initial modes, and the cosmological parameters Ωm

and σ8. The parameter Ωm corresponds to the amount of
matter in the Universe and σ8 corresponds to the amplitude
of density fluctuations. There is an often reported tension
between measurements of σ8 made by different cosmologi-
cal experiments (Di Valentino, 2021), thus using field-level
inference to give an optimal measurement would aid in
resolving this tension.

The structure of the paper is as follows. In §2 we review
field-level inference and outline the HMC, MCHMC, and
MCLMC methods. In §3 we discuss related work. In §4
we apply the methods and analyse the ESS as a function of
nonlinearity and dimensionality. We finally conclude in §5.

2. Background
We now outline field-level inference in §2.1, HMC in §2.2,
MCHMC in §2.3, and MCLMC in §2.4.
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2.1. Field-Level Inference

The goal of field-level inference is to infer the initial modes
of the Universe s and/or the cosmological parameters λ.
Given a forward model f(s, λ), which in this work com-
putes the 3d dark matter overdensity field, the posterior is
given by

−2 logP (s, λ|d) =
∑
k⃗

[ |fk⃗(s, λ)− dk⃗|
2

Nk⃗

+ |sk⃗|
2

]
, (1)

where the first term is the likelihood, with data d and noise
N , the second term is the prior, and the sum is over all voxels
in k-space. Note that s is defined to have unit variance.

Inferring s corresponds to the task of reconstructing the ini-
tial conditions of the Universe, however, often s are treated
as nuisance parameters and one marginalizes over s to yield
only constraints on the cosmological parameters λ.

2.2. Hamiltonian Monte Carlo

The traditional approach for sampling in the context of field-
level inference is HMC (Duane et al., 1987; Neal et al., 2011;
Betancourt, 2017). Given a d-dimensional target distribu-
tion p(z) ∝ e−L(z), where z ∈ Rd, HMC uses the gradient
∇L(z) to improve the sampling efficiency compared no-
gradient methods such as MH. It considers the Hamiltonian
H(z,Π), where Π is the canonical momentum, and samples
the canonical ensemble in 2d-dimension phase space, de-
noted by p(z,Π) ∝ e−H(z,Π). The success of HMC relies
on the tuning of the Hamiltonian such that the marginal of
p(z,Π) over Π converges to the target distribution,

p(z) ∝
∫
Rd

dΠ e−H(z,Π). (2)

The most popular choice is the Hamiltonian of a particle
in a potential, H(z,Π) = 1

2Π
2(z) + L(z), for which the

solution is the set of ODEs,

dz = udt,

du = −∇L(z)dt, (3)

where t is time and u is velocity. Following Hamiltonian
dynamics ensures the trajectory conserves the Hamiltonian,
or energy, allowing efficient exploration at a fixed energy
level. Different energy levels must be explored to obtain an
accurate set of samples, which is achieved by resampling
the momentum Π according to its marginal distribution (a
normal distribution) and results in inefficiencies (Betancourt,
2017). Moreover, HMC additionally requires an MH accept-
reject step, which necessitates a sufficiently small step size
to ensure a frequent rate of acceptance.

2.3. Microcanonical Hamiltonian Monte Carlo

Unlike HMC which considers the marginal of the canonical
distribution, the approach of MCHMC is to tune the Hamil-
tonian such that the microcanonical distribution marginal-
ized over the momentum variables gives the target distribu-
tion, as follows

p(z) ∝
∫
Rd

dΠ δ(H(z,Π)− E), (4)

where δ(·) denotes the delta function, and E is the energy.
There are many solutions for the Hamiltonian, but the one
adopted for MCHMC yields the equations of motion,

dz = udt,

du = P (u)f(z)dt, (5)

where we have introduced the projection P (u) ≡ (I−uuT )
and force f(z) ≡ −∇L(z)/(d− 1) (Ver Steeg & Galstyan,
2021; De Luca & Silverstein, 2022; Robnik et al., 2022).
The key difference to HMC in Eqn. (3) is the projection.
Unlike HMC, the MCHMC dynamics converges to the target
distribution while maintaining a constant energy.

However, following Eqns. 5 exactly will not ensure ergodic-
ity; for example, Nöther’s Theorem implies that any sym-
metry will lead to a conserved quantity and in turn confine
the dynamics to a subspace of the energy surface. Ergod-
icity can be achieved by energy-conserving momentum re-
sampling (Chernov & Markarian, 2006; De Luca & Silver-
stein, 2022; Robnik & Seljak, 2023), in which billiard-like
bounces to the momentum are introduced such that the di-
rection of the trajectory is changed, but the magnitude of
the momentum, and thus the energy, is the same. Introduc-
ing momentum decoherence in this manner is analogous to
the resampling of the momentum in HMC, but with fixed
energy. The frequency of momentum resampling is a hyper-
parameter of MCHMC.

2.4. Microcanonical Langevin Monte Carlo

To further speed up reaching ergodicity, the ODEs can be
modified by considering Langevin dynamics (Grenander &
Miller, 1994; Girolami & Calderhead, 2011) such that,

dz = udt, (6)
du = P (u) [f(z)dt+ ηdW ] , (7)

where η is a hyperparameter and W is a standard normal
random vector. This additional term proportional to η can
be understood physically as a diffusion term which enforces
better exploration of the target, in turn boosting ergodicity.

MCLMC has two hyperparameters, the step size and the
amount of noise η. Both of these parameters can be tuned
during a burn-in stage by monitoring fluctuations in the
energy and ensuring they are below a certain threshold.
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Figure 1. Samples of initial modes. Left: power spectrum of whitened modes, Center: cross-correlation, Right: transfer function.

Figure 2. Samples of cosmological parameters. Dashed lines sig-
nify the truth.

3. Related Work
Current approaches for sampling in field-level inference
field-level inference include approximating the posterior
around the optimum (Seljak et al., 2017; Millea & Seljak,
2022) and HMC (Jasche & Wandelt, 2013). Hybrid HMC
approaches based on variational inference have also been
developed (Modi et al., 2023).

In terms of MCHMC, one type of microcanonical hamilto-
nian dynamics in the context of sampling was first explored
by Ver Steeg & Galstyan (2021). The dynamics have also
been applied in the context of optimization by De Luca &
Silverstein (2022). A more general solution to sampling
was provided by Robnik et al. (2022), and the extension to
Langevin dynamics was made by Robnik & Seljak (2023)
in the context of lattice field theory. Robnik et al. (2022);
Robnik & Seljak (2023) showed MCHMC/MCLMC to be
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Figure 3. Comparison of ESS per gradient evaluation for different
levels of nonlinearity. Top: ESS of MCLMC (blue) and HMC (or-
ange), for the modes (x) and cosmological parameters (+). Bottom:
Ratio of ESS from MCLMC versus HMC.

superior to other HMC-based methods, such as NUTS (Hoff-
man et al., 2014), which we will thus not consider here.

4. Experiments
We simulate the nonlinear dark matter field using pmwd
(Li et al., 2022), a differentiable particle-mesh (PM) code
written in JAX. It is capable of fitting 5123 particles on a
single 80GB NVIDIA A100 GPU, and can evaluate one PM
step in ∼ 0.1 seconds. This code takes the cosmological
parameters and the 3d intial gaussian field as input, and
outputs the final 3d nonlinear dark matter field. It can per-
form nonlinear modeling to various levels of accuracy; we
consider 3 levels of nonlineaarity, the Zel’dovich Approxi-
mation (ZA, or 1LPT), 2nd order Lagrangian perturbaiton
theory (2LPT), and 2LPT followed by 5 steps of PM simu-
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Figure 4. Scaling of ESS per gradient evaluation as a function of
dimensionality d for 1LPT. Top: ESS for MCLMC (blue) and
HMC (orange), for the modes (dashed) and cosmological parame-
ters (solid). Bottom: Ratio of ESS from MCLMC versus HMC.

lation. We consider three dimensionalities (corresponding
to the number of voxels): 163, 323, and 643. In each case
the voxel resolution is 4Mpc/h.

We perform inference over the initial modes in k-space (de-
noted s in §2.1), and the cosmological parameters Ωm and
σ8. We precondition the modes by the theoretical poste-
rior variance according to linear theory, i.e. by applying
the multiplicative factor (PL(k) +N)/N , where PL is the
linear power at the fiducial cosmology. This approximately
ensures all voxels in k-space have unit variance, improving
the sampler mixing. Similarly, we precondition the cosmo-
logical parameters to approximately have unit variance.

We run a chain of 10,000 samples with 2,000 steps of burn
in (to be conservative). During HMC burn in, the step
size is tuned to ensure a 65% acceptance rate. We use 40
leapfrog steps for HMC, which we found to be optimal.
For MCLMC we tuned the step size and noise to ensure
energy fluctuations per dimension are below a threshold of
10−4. We apply the Minimum-Norm integrator to solve the
MCLMC ODEs.

Fig. 1 shows the sampled modes for the 323 1LPT example.
There is excellent agreement between HMC and MCLMC.
Similarly, Fig. 2 shows the sampled cosmological parame-
ters, again showing excellent agreement. This implies that
MCLMC produces equally accurate samples to HMC.

Fig. 3 compares the ESS per gradient evaluation between
1LPT, 2LPT, and 5-step PM. We consider the ESS for the

modes and cosmological parameters separately. MCLMC
outperforms HMC in all cases. The increase in ESS is
greatest for 2LPT (two orders of magnitude), and lowest
for 5-step PM. This is likely affected by the use of linear
mode preconditioning, which we will improve upon in fu-
ture work.

In terms of the efficiency of the algorithms, Fig. 4 shows the
ESS per gradient evaluation as a function of dimensionality
for 1LPT. It can be seen in the top panel that while the ESS
of HMC steadily decreases, the ESS of MCLMC decreases
more mildly. This is because HMC requires a sufficiently
small step size to prevent a relative energy error greater than
unity: the energy scales with dimensionality, thus the step
size required to achieve a relative error of less than unity
decreases with dimensionality. On the other hand, MCLMC
has no such constraint, meaning that for a fixed condition
number there is no dependence of the ESS on dimension-
ality. In this case there is a slight increase in condition
number as we include larger scale modes, meaning there
is a slight decrease in ESS for MCLMC when moving to
higher dimensions. The lower panel of Fig. 4 shows how the
ESS ratio of MCLMC versus HMC greatly increases with
dimensionality. For 643 the improvement is a factor of 40
for the modes and 80 for the cosmological parameter. This
shows much promise to speed up sampling by many orders
of magnitude when moving to the higher dimensionalities
required to analyze upcoming cosmological data.

5. Conclusions
We have shown that MCLMC has over an order of mag-
nitude higher ESS than HMC in the context of field-level
inference. Moreover, the scaling of the ESS with dimen-
sionality is more favorable for MCLMC, showing great
promise to improve sampling efficiency by many orders of
magnitude when moving to the higher dimensions required
for upcoming cosmological data. We have also shown this
for various levels of nonlinearity (1LPT, 2LPT, and 5-step
PM); the improved efficiency of MCLMC makes it feasible
to sample even when performing highly nonlinear forward
modeling.

Future work includes application to the galaxy field, which
will require sampling over additional parameters describing
the matter–galaxy connection. Moreover, one can improve
constraints by perform joint inference with other cosmolog-
ical tracers, such as peculiar velocities (Bayer et al., 2022).
Additionally, the preconditioning of the posterior could be
improved to achieve a greater ESS, for example by fitting a
normalizing flow to the posterior before running MCLMC
(Hoffman et al., 2019). Finally, the method will be applied to
higher-dimensional maps which correspond to the data from
upcoming cosmological surveys, including survey masks
and systematic effects.
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