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Abstract

We explore the use of a Neural Ratio Estimator
(NRE) to determine the Hubble constant (H0) in
the context of time delay cosmography. Assum-
ing a Singular Isothermal Ellipsoid (SIE) mass
profile for the deflector, we simulate time delay
measurements, image position measurements, and
modeled lensing parameters. We train the NRE to
output the posterior distribution of H0 given the
time delay measurements, the relative Fermat po-
tentials (calculated from the modeled parameters
and the measured image positions), the deflector
redshift, and the source redshift. We compare
the accuracy and precision of the NRE with tra-
ditional explicit likelihood methods in the limit
where the latter is tractable and reliable, using
Gaussian noise to emulate measurement uncer-
tainties in the input parameters. The NRE posteri-
ors track the ones from the conventional method
and, while they show a slight tendency to overes-
timate uncertainties, they can be combined in a
population inference without bias.

1. Introduction
Over the past decades, the inflationary ΛCDM model has
had striking success in explaining cosmic microwave back-
ground (CMB) observations and the detailed evolution of
the Universe. The current expansion rate of the Universe,
known as the Hubble constant (H0), is essential for many
studies, including understanding the nature of dark energy,
neutrino physics, and testing general relativity. In the past
decade, the measured values of H0 from different probes
have diverged: the latest CMB and Type Ia supernovae data
now disagree at more than 4σ (Riess et al., 2022).
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Time delay cosmography can provide an independent mea-
surement of H0 with different systematics from existing
methods. This can be done using the time delays between
the multiple images of a strongly lensed variable light source.
Previous measurements have achieved a precision between
2% and 8% (Birrer & Treu, 2021) using this method. Mean-
while, 1% precision is required to solve the Hubble tension
(Weinberg et al., 2013; Treu et al., 2022). This could be
achieved with data available in the next decade with a new
generation of survey telescopes. The Rubin Observatory, in
particular, is expected to detect thousands of strongly lensed
quasars (Oguri & Marshall, 2010).

However, current analysis methods have limitations in terms
of complexity and scalability. They rely on likelihood-based
approaches, such as Markov Chain Monte Carlo (MCMC)
and nested sampling, which require explicit likelihoods and
are not amortized. They also require sampling joint poste-
rior distributions of nuisance parameters while only the H0

marginal is of interest. Hence, they scale poorly as nuisance
parameters are included to ensure unbiasied inference.

The simulation-based inference (SBI) framework allows
handling complex, high-dimensional data and models that
are difficult or intractable to analyze using traditional
likelihood-based methods by only relying on the availability
of a realistic simulation pipeline. Neural Ratio Estimators
(NREs; Cranmer et al. 2015), a specific class of SBI meth-
ods, leverage the power of machine learning to allow amorti-
zation of the inference process as well as implicit marginal-
ization over large sets of nuisance parameters, providing an
efficient way to estimate low-dimensional variables.

We demonstrate the application of an NRE to time delay
cosmography by predicting the H0 posterior distribution
given Fermat potentials calculated from modeled lens pa-
rameters and image positions, the time delay measurements,
and the deflector and source redshifts. We use a Set Trans-
former architecture (Lee et al., 2019), which allows for the
amortization over lensing systems with two or four lensed
images by the same model.

While previous works have explored how machine learning
can be used for the measurement of H0 with time-delay
cosmography, contributions (e.g. Hezaveh et al. 2017; Lev-
asseur et al. 2017; Morningstar et al. 2019; Pearson et al.
2019; Wagner-Carena et al. 2021; Schuldt et al. 2021; Park
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et al. 2021) have been limited to using neural networks (NN)
to estimate the lens parameters posterior. The approach pre-
sented here is therefore complementary, since it bridges the
remaining gap to fully amortize the inference of H0 from
strong lensing data.

Section 2 introduces the methodology. Section 3 describes
the simulations. Section 4 presents the NN architecture and
training procedure. Results are presented in section 5.

2. Time-delay cosmography
Gravitational lensing occurs when images from a distant
source get distorted by the presence of matter bending space-
time along the line of sight. In strong gravitational lensing,
there is formation of multiple images of background sources
due to this effect. The lensing equation,

β = θ −α (θ) , (1)

summarizes this phenomenon by retracing the source plane
angular position β of a ray observed at the image plane
angular position θ after a mass deflector has deviated it by
an angle α. The lensing potential ψ of the massive object
determines the angular deflection α and the convergence κ
according to

α (θ) = ∇ψ (θ) ; ∇2ψ (θ) = 2κ (θ) . (2)

Gravitational lensing affects the light rays travel time from
their source to the observer in two ways : by changing
their path length and through the lensing potential itself.
The presence of a mass deflector in the light’s trajectory
lengthens its travel time by an amount proportional to the
Fermat potential ϕ, which is fully determined by the mass
distribution in the lens and is given by

ϕ (θ,β) ≡ (θ − β)
2

2
− ψ (θ) . (3)

To infer H0 with time delay cosmography, one observes
a multiply-imaged time-varying background source. Each
path giving rise to each image is affected by a different Fer-
mat potential, resulting in a different light travel time. This
allows the evaluation of the relative travel times between
paths ∆t, which are called time delays. They are calculated
between pairs of images. They are related to H0 by

∆t ≡ D∆t

c
∆ϕ , (4)

where c is the speed of light, ∆ϕ is the difference of Fermat
potential at the position of the two distinct images, and D∆t

is the time delay distance, given by

D∆t ≡ (1 + zd)
DdDs

Dds
. (5)

Here, zd is the deflector redshift, Dd is the diameter angular
distance between the observer and the deflector, Ds is the
diameter angular distance between the observer and the
source, Dds is the diameter angular distance between the
deflector and the source. These distances are where the H0

dependence is contained.

In this framework, the posterior distribution of H0 generally
takes the form

P (H0|∆t,d) ∝
∫

dζ P (∆t|H0, ζ,M)P (ζ|d,M)P (H0)

(6)
where d represents the lensing observation, ζ is a set of pa-
rameters describing the lensing system, and M includes all
observational effects (e.g. instrumental noise, point spread
function, image covariance matrix, deflector’s light, and
dust). In this context, the lensing parameters and the ob-
servational effects are nuisance parameters that must be
integrated out to obtain the marginal distribution of H0.
The main proposal of this work is to replace the traditional
Monte Carlo methods to numerically approximate the H0

posterior.

3. Simulations
In this work, we consider the case where the deflected light
is emitted by a variable point source, such as an Active
Galactic Nucleus (AGN) or a supernova. We do not con-
sider any light profile for its host galaxy because in the
following we assume that the modeling of the lensed image
was performed in a previous analysis stage (e.g. with a BNN
as in Park et al. 2021). We assume that the source is being
distorted by a deflector following as Singular Isothermal
Ellipsoid (SIE; Kormann et al. 1994), plus external shear.
This model is described by 7 parameters: Einstein radius
θE , x− and y−components of the position (xd, yd), axis
ratio f and its orientation ϕd, and modulus γext and orien-
tation ϕext of the external shear. Details about the range of
uniform prior used for these parameters, the cosmology, and
the variable source are included in Table 1.

We compute time delay distances according to Equation
(5). The H0 value, the source and the deflector redshifts are
drawn from uniform prior distributions detailed in Table 1.
We assume a flat ΛCDM cosmology. With the Fermat po-
tential at the image positions and the time delay distance,
we calculate the time delays from Equation (4) and relative
Fermat potentials from Equation (3), meaning that doubles
have one time delay - Fermat potential pair, while quads
have three.

For the noise model, the goal is to emulate the results of
a standard analysis, which models the system parameters
from the lensing observation and measures the time delays
from the image light curves. Therefore, we add Gaussian
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Table 1. Prior distributions of all the parameters needed to generate
Fermat potentials and time delays in our framework

Parameter Distribution

Cosmology

Hubble constant (km s−1 Mpc−1) H0 ∼ U(50, 90)
Dark energy density ΩΛ = 0.7
Matter energy density Ωm = 0.3

Deflector

Redshift zd ∼ U(0.04, 0.5)
Position (′′) xd, yd ∼ U(−0.3, 0.3)
Einstein radius (′′) θE ∼ U(0.5, 2.0)
Axis ratio f ∼ U(0.30, 0.99)
Orientation (rad) φd ∼ U(−π/2,

π/2)

External Shear

Modulus γext ∼ U(0, 0.2)
Orientation (rad) φext ∼ U(−π/2,

π/2)

Variable point light source

Redshift zs ∼ U(1, 3)
Position (′′) xs, ys = (0, 0)

noise to the lensing parameters, the image positions and the
source position. As standard deviations, we use each pa-
rameter’s average error from the BNN in Park et al. (2021).
From those noisy estimates, we compute the Fermat poten-
tials. For the time delays, we add Gaussian noise to the
ones generated with the true parameters. This replicates
the uncertainty yielded by the light curve measurements, as
well as the mass-sheet degeneracy (Park et al., 2021). Ta-
ble 2 summarizes all the standard deviations of the Gaussian
noise distributions.

4. Methods
4.1. Neural Ratio Estimation

In this work, we train a Neural Ratio Estimator to learn
the posterior distribution of H0. At its core, a NRE learns
the ratio between two distributions of the parameters of
interest Θ (in our case H0), and the simulated observations
x: the joint distribution p(x,Θ), which we can sample using
our simulator, and the product of the marginals p(x) p(Θ),
which we can sample by pairing randomly simulations and
parameters sampled from the prior.

Assigning the class label y = 1 to the joint distribution and
the class label y = 0 to the product of the marginals, the
optimal discriminator d∗ that classifies samples from these
two distributions converges to the decision function

d∗(x,Θ) = p(y = 1 | x) = p(x,Θ)

p(x,Θ) + p(x) p(Θ)
(7)

Table 2. Standard deviation of the Gaussian noise distributions
used to mimic the uncertainties of lens modeling, time delay mea-
surements, and image position measurements

Observables Noise standard deviation

Time delays (days) 0.35
Image positions (′′) 0.001

Deflector

Position (′′) 0.005
Einstein radius (′′) 0.011
Ellipticities 0.039

External shear

Components 0.02

Active galactic nucleus

Position (′′) 0.012

The ratio r(x | Θ) between the distributions can be written
as a function of the discriminator :

r(x | Θ) ≡ p(x,Θ)

p(x) p(Θ)
=

d∗(x,Θ)

1− d∗(x,Θ)
(8)

The product between the estimator of r learnt by the NRE,
r̂(x | Θ), and the prior distribution yields a posterior dis-
tribution estimator. To conduct an inference with a trained
Neural Ratio Estimator, the estimator r̂(x | Θ) is calculated
multiple times for the same observation, but with different
parameter values at each computation.

4.2. Set Transformer Architecture

For the architecture of the discriminator, we use a Set Trans-
former (Lee et al., 2019) to make use of the fact that different
lensing configurations (doubles or quads) can have different
number of time delay-relative Fermat potential pairs, and
that those pairs are permutation invariant. We also explored
Deep Sets (Zaheer et al., 2017), however in our experiments
they were outperformed by the Set Transformer, and so we
only report on the latter.

The NRE takes as inputs the measured time delays, the
modeled relative Fermat potentials, a H0 value, the source’s
redshift, and the deflector’s redshift. See Appendix A Fig-
ure 3 for the specific details of the architecture.

4.3. Training

The training set, the validation set, and the test set contain
1,280,000 examples, 160,000 examples and 26,500 exam-
ples, respectively. The dataset is composed of approximately
45% doubles and 55% quads. We train the neural network
on batches of 1,000 examples with a binary cross entropy
loss as the objective function. At each batch, we draw a new
realization of noise for the time delays, the parameters, the
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Figure 1. Coverage diagnostic of the NRE. A perfectly consistent
distribution would fall on the dashed line. An underconfident
distribution would lay on the top-left area, while an overconfi-
dent distribution would be in the bottom-right region. The NRE
coverage, represented by the orange solid line, indicates a weak
underconfident behaviour.

image positions, and the source position. We then compute
the Fermat potentials. The training lasts for 5,000 epochs.
The learning rate starts at 1× 10−4, and decreases by half
every 500 epochs, as it was the optimal schedule we found
through a hyperparameter search.

5. Results and Discussion
In our framework, the general posterior in Equation (6) takes
the specific form

P (H0|∆t,∆ϕ, zd, zs) ∝
P (∆t|H0,∆ϕ, zd, zs)P (∆ϕ)P (H0)

(9)

P (∆ϕ) ∝
∫

dζ P (∆ϕ|ζ)P (ζ) (10)

where P (∆t|H0,∆ϕ) and P (ζ) are normal distributions,
P (∆ϕ|ζ) is a delta function, and P (H0) is a uniform distri-
bution. We sample this posterior with POLYCHORD (Hand-
ley et al., 2015a;b) and find agreement with the NRE posteri-
ors, as shown in some representative examples in Appendix
B. To assess the NRE’s accuracy, we perform a coverage test
(Hermans et al., 2021; Cole et al., 2022) using the highest
posterior density (HPD) interval of the NRE on the noisy
examples from the test set. Results are displayed in Figure 1.
The NRE shows a slightly underconfident behaviour, which
is preferable to overconfidence.

Moreover, the NRE offers a significant improvement in the
analysis speed. With POLYCHORD, the posterior sampling
process requires from 20 to 40 minutes on a CPU, and is not
amortized. By contrast, once trained, the NRE only requires
∼1 second to estimate the posterior of H0 for a given lens,
making the analysis more than 1000 times faster.
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Figure 2. Population inferences of H0 with the NRE. The blue
solid line, the pink dashed line, the green dashed-dotted line, and
the yellow dotted line represent populations of 3,000, 1,500, 500
and 50 lensing systems, respectively. The true value H0 = 70 km
s−1 Mpc−1 is indicated by the vertical black solid line. It falls
inside the 2σ interval for all populations.

We perform a population inference of H0. We simulate
noisy data from multiple lensing systems (doubles and
quads), fixing H0 = 70 km s−1 Mpc−1. Figure 2 shows the
population inferences of 3,000, 1,500, 500 and 50 lensing
systems. The NRE appears unbiased because all posteriors
enclose the truth in their 2σ interval.

One of the main advantages of a simulation-based approach
such as the NRE over traditional maximum-likelihood meth-
ods is that it implicitly marginalizes over nuisance param-
eters (Hermans et al., 2019). This is because, even though
the simulator samples all parameters to generate the mock
data, the classes and the loss function are independent of
the nuisance parameters. While here our simulations re-
mained simple, including further nuisance parameters in the
inference is now reduced to simulating them.

Another important advantage of SBI methods is that they
do not require any assumption about the form of the poste-
rior. The complexity of the posterior is only limited by the
simulations themselves, which can include complex envi-
ronment, noise, selection effects, etc. In contrast, traditional
explicit-likelihood methods require an analytical form for
both the prior and the likelihood to compute the posterior
distribution. These often imply simplistic priors, and simpli-
fying assumptions about the model’s parametrization, which
can introduce biases in the inference.

A notable source of bias is the mass sheet degeneracy (Falco
et al., 1985). In this paper, we do not consider explicitly
the mass sheet degeneracy. However, we chose the noise
distributions so that the uncertainty on H0 could reach 8%
frequently, which is the error budget estimated by (Birrer &
Treu, 2021) when accounting for the mass sheet degeneracy.
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6. Conclusion
In this work, we used an NRE to infer H0 from the time
delays, the relative Fermat potentials, and the source and
deflector redshifts of strong lensing systems. This work
bridges the gap to completely amortize the inference of H0

from time delay cosmography, bringing down the inference
time by a factor of more than 1000 from at least 20 minutes
with POLYCHORD to about 1 second per lens. Moreover,
combining measurements from a population of 3,000 lenses
suggests that our estimator is unbiased.

We assumed that the parameters describing the deflector
could be estimated with a precision similar to that of BNNs
published in the literature (Park et al., 2021). To improve
this work, more complex simulations incorporating envi-
ronmental effects, such as the mass sheet degeneracy, as
well as more inputs to break it, like velocity dispersion
measurenments, could be used to train the NRE.

We expect the NRE to fully leverage the upcoming large
datasets of strong lensing observations to reach the 1%
precision needed to solve the Hubble tension. Its implicit
marginalization over nuisance parameters can take into ac-
count as many possible biases as can be simulated, while
guaranteeing the accuracy of the inference.
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A. Neural network variable dimensions
Figure 3 and Table 3 illustrate our Set Transformer archi-
tecture. The first self-attention block computes multi-head
attention between the time delay - relative Fermat potential
pairs belonging to the same lensing system. The second self-
attention block repeats the operation with the output of the
first one. After, the features are aggregated by computing
multi-head attention between a learnable seed vector and
them. At each step, we use 6 attention heads of dimension
64. The H0 value, zd and zs are concatenated to the result,
which is then fed sequentially to 3 linear layers, each of 768
neurons. There is a ELU activation functions before and
after the second layer. The whole neural network counts
2,224,514 parameters.
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Figure 3. Architecture of the discriminator. The green squares
represent the multihead attention blocks (MAB), and the blue
rectangles, the linear layers. ELU activation functions are used
after the first and the second linear layers. At inference, a softmax
is added after the last layer.

At inference time, we apply a softmax function the final
output to retrieve the class probabilities. We then insert the
probability of the class with label y = 1 in Equation (8) to
estimate the distribution ratio. The latter is equivalent to
the posterior density at the input H0 because the prior is
uniform.
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Table 3. Input sizes for each operation in the deep set ratio estimator.

Operation Input sizes

First multihead attention block example set size × 2
Second multihead attention block example set size × 384
Third multihead attention block features : example set size × 384

learnable seed vector : example set size × 1 × 384
Concatenating H0 and the redshifts 384
First linear layer 387
Second linear layer 768
Third linear layer 768
Ratio estimation (see Equation (8)) 2

B. Examples of individual posteriors
In Figure 4, we compare the NRE results on 6 representative
test examples with those of nested sampling performed with
the package POLYCHORD (Handley et al., 2015a;b). Each
plot is associated to a different lensing system and a different
H0 value. The nested sampling and the NRE posteriors are
respectively indicated by the blue dashed line and the red
solid line. The NRE shows a good agreement with the nested
sampling posteriors. Moreover, each NRE posterior is a
factor of about 1000 faster to obtain, taking only ∼1 sec on
an NVidia V100 GPU, whereas sampling with POLYCHORD
requires a minimum of 20 minutes per posterior.
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Figure 4. Six H0 inferences on examples from the test set. The first row show results for three different quads, and the last row, for three
different doubles. The true H0 value is also different on each plot. The blue dashed line indicates the true posterior distribution (computed
with nested sampling and the true likelihood), the grey dotted line represents the true value, and the red solid line is the NRE posterior
distribution. The difference between the two distributions is noticeable, but they still agree well with each other.
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