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Abstract

Gravitational wave (GW) parameter estimation
has conventionally relied on the assumption of
Gaussian and stationary noise. However, noise
from real-world detectors, such as LIGO, Virgo
and KAGRA, often deviates considerably from
these assumptions. In this paper, we use score-
based diffusion models to learn an empirical noise
distribution directly from detector data, which
can then be combined with the forward simula-
tor of the physical model to provide an unbiased
model of the likelihood function. We validate the
method by performing inference on a simulated
gravitational wave event injected in real detector
noise from LIGO, demonstrating its potential for
providing accurate and scalable GW parameter
estimation.

1. Introduction
Gravitational-wave (GW) detectors, like LIGO (Aasi et al.,
2015) Virgo (Acernese et al., 2015) and KAGRA (Aso et al.,
2013), record noisy time series encoding astrophysically-
valuable signals from black hole and neutron star collisions
in far away galaxies (Abbott et al., 2016b; 2017b; 2021b).
Extracting science from these data requires using Bayesian
inference to estimate the source parameters (like black hole
masses and spins) (Veitch et al., 2015; Ashton et al., 2019;
Romero-Shaw et al., 2020; Biwer et al., 2019). As in many
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other areas of astronomy, GW parameter estimation has
traditionally assumed that instrumental noise is Gaussian
and stationary (Abbott et al., 2020). This idealization is
approximately justified for short segments of data by the
central limit theorem, and has the additional advantage of
having a tractable and inexpensive likelihood.

However, in reality, the statistics of noise often deviate sig-
nificantly from a stationary Gaussian: most notably, the
instruments evolve over time, and the data are contaminated
by both transient non-Gaussian excursions (“glitches”) and
the nonlinear evolution of narrow spectral features (“lines”)
(Abbott et al., 2016c;a; Buikema et al., 2020); in principle,
the data are also contaminated by subthreshold astrophysical
signals (Abbott et al., 2021c). Since no generative models
exist for most of these contaminants, they can usually only
be handled by bespoke treatment of the affected data seg-
ments, which can be computationally expensive and can
result in biases. The most prominent example of this was
the first detection of a binary neutron star merger (Abbott
et al., 2017b), which was famously contaminated by a loud
glitch in one of the LIGO detectors.

In this work, we showcase a new inference framework to
carry out GW parameter estimation without assuming sta-
tionary Gaussian noise, and without sacrificing the advan-
tages of deterministic signal models on which standard GW
inference relies. This would make it possible to analyze
signals contaminated by noise artifacts without the need
for special data treatments, and reduce biases in the anal-
ysis of large collections of signals which would otherwise
be sensitive even to small departures from the Gaussian
assumption.

We propose to do this by adapting the method used by Legin
et al. (2023), originally focused on modelling noise in image
data from the Hubble Space Telescope (HST) and the James
Webb Space Telescope (JWST). In a similar spirit, we train
a score-based diffusion model on samples of LIGO noise to
learn the gradient of the log probability density of the noise
distribution with respect to data elements; combined with
the Jacobian of the physical signal model, we use Langevin
sampling to produce draws from the likelihood without
assuming any specific noise properties besides additivity.
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The structure of the paper is as follows. In Section 2 we
summarize the inference method and describe our specific
forward model and data. In Section 3 we present examples
of our setup applied to recover parameters for a simulated
gravitational wave event in real detector noise. We discuss
our results and future work in Section 4.

2. Method
2.1. Score-based models for non-Gaussian likelihoods

In this section, we present a concise overview of the tech-
nique introduced by Legin et al. (2023) to perform inference
using non-Gaussian likelihoods. The setting is that of an
inverse problem with additive noise. With this single as-
sumption, we can model the likelihood, or more precisely
the gradient of the log (aka, score) of the likelihood, by
learning the score of the noise distribution. Given samples
x ∼ Q(x) from the underlying distribution of noise, Q,
the score function, ∇x logQ(x), is learned with a neural
network using denoising score matching (Hyvärinen, 2005;
Vincent, 2011; Song et al., 2020). The trained score model
can then be used to construct the score of the likelihood

∇θ log p(xO | θ) = −∇x logQ(x)∇θM(θ) , (1)

where xO = M(θ) + x is an observed GW signal and
where M(θ) is the physical model, which takes as input the
parameters of interest, θ. During inference, x are residuals
between the observation and the model, whose statistics
should follow the noise if the signal model is accurate.

To generate samples from this likelihood, we employ sam-
pling techniques based on Langevin dynamics which ex-
plicitly make use of the score function to sample from the
underlying distribution. Specifically, we use a Metropolis-
adjusted Langevin algorithm (MALA) to sample the target
distribution. Following Legin et al. (2023), we refer to the
setup as Score-based LIkelihood Characterization (SLIC).

2.2. Forward model

For our physical model M(θ), we use the differentiable ver-
sion of the IMRPHENOMD waveform model (Khan et al.,
2016) implemented in the RIPPLE package (Edwards et al.,
2023). The ability to automatically differentiate the wave-
form is crucial to compute the required Jacobian. For a
binary system with masses m1/2 and dimensionless spins
χ1/2, this waveform model is parameterized in terms of
the chirp mass, M = (m1m2)

3/5/(m1 +m2)
1/5, the sym-

metric mass ratio, η = m1m2/(m1 + m2), and the spin
magnitudes; the spins are assumed to be aligned with the
orbital angular momentum of the binary. We sample in M
and η, as well as in the source luminosity distance, dL (a
scaling factor for the signal amplitude), the coalescence
(signal arrival) time, tc, and a fiducial coalescence phase, ϕc.

For simplicity, below we assume χ1 = χ2 = 0 and a sky
location given by right ascension α = 1.95 rad, declination
δ = −1.27 rad and polarization angle ψ = 0.82 rad, consis-
tent with the first ever GW detection, GW150914 (Abbott
et al., 2016b;d).

2.3. Data

We train the score-based network on 11 h of actual LIGO
data around GW150914 (GPS time 1126259462.423 s) ob-
tained from the Gravitational Wave Open Science Center
(Abbott et al., 2021a; Abbot et al., 2023). We split these
data into 4 s segments for training, taking care to discard
the one segment containing the true signal. Following stan-
dard LIGO-Virgo practice, we use data sampled at 4096 Hz;
we apply no filters besides those pre-applied to the public
data, but we begin the likelihood integration at 20 Hz. We
train the network in the Fourier domain, after applying a
Tukey window with shape parameter αT = 0.1 to each 4 s
segment. For this demonstration, we only make use of the
LIGO-Hanford instrument.

To test our inference framework, we add a simulated signal
into noise data occurring after the end of our training set
(GPS time 1126310000 seconds). The simulated signal had
parameters consistent with GW150914 (M = 29M⊙, η =
0.2495, χ1 = χ2 = 0, dL = 400Mpc) and was placed at
the center of a 4 s segment of noise, mimicking the standard
setup for a real analysis.

3. Results
We demonstrate the potential of SLIC for GW astronomy
in two ways: (1) by showing it can generate realistic syn-
thetic noise, and (2) that it can be used to recover source
parameters from a simulated signal in real LIGO data.

For (1), we sample 1024 noise realizations from SLIC and
compare their Fourier amplitudes to the noise power spec-
tral density (PSD) estimated from actual LIGO data using
Welch’s method. Figure 1 shows that the PSD estimated
from both the model samples and Welch’s method are in
close agreement.1 In particular, the model can reproduce
key features of LIGO noise, like narrow spectral lines in the
PSD, which are highly localized features that are difficult
to learn in general. In addition to reproducing an overall
power spectrum, the SLIC model can also encapsulate phase
correlations encoding non-Gaussian features, like glitches.
Figure 1 demonstrates the model’s ability to capture intri-
cate details in the noise distribution and gives us confidence
that the model can generate realistic noise samples for our
analysis.

1Exact agreement is not expected given the differences in data
(11 h of training data vs 1 h outside training window), and estima-
tion techniques (mean over independent 4s segments vs Welch).
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Figure 1. One-sided noise power spectral density (PSD) of LIGO
noise as estimated from 1024 samples of synthetic 4s-long seg-
ments of noise generated by our score-based model trained on
11 h of LIGO noise (SLIC, blue), compared to a mean Welch
estimate measured empirically from 1 h of real LIGO Hanford
noise recorded after the data used in training and not overlapping
with it (Welch, dashed gray). The blue band represents the 68%
symmetric confidence interval around the median (solid blue line).
SLIC is able to capture key features of the spectral properties of
LIGO noise, resolving lines more finely than the Welch estimate
thanks to its exposure to greater amounts of data (11 h vs 1 h).

Next (2), knowing SLIC can faithfully generate noise sam-
ples, we check that the SLIC likelihood can infer source
parameters without bias. To this end, we inject simulated
signals with known parameters into real LIGO noise not
seen in training, and estimate the parameters using both our
model and a standard Gaussian likelihood assuming a Welch
PSD as in Fig. 1. Figure 2 shows the resulting posterior dis-
tributions for the five varied parameters under both methods.
As shown, the SLIC posterior is capable of recovering the
true injected values with high credibility. For this example,
we have chosen a segment of real data without significant
glitches, such that the Gaussian likelihood also recovers the
true parameters.

4. Discussion
In this work, we trained a score-based diffusion model to
learn the likelihood of real GW detector data. We coupled
that to a deterministic forward model for the signal in order
to carry out inference without the standard idealization of
stationary Gaussian noise. The model is trained on actual
noise samples and does not assume any knowledge specific
to the GW detectors, which makes this a powerful tool for
the analysis of current and future detectors, such as Cos-
mic Explorer (Abbott et al., 2017a) and Einstein Telescope
(Punturo et al., 2010).

We are working on a number of improvements before ap-

plying our framework to real signals contaminated by in-
strumental glitches, such as GW170817. First, we need to
expand the length of data the model can generate: currently,
our model can only be used to analyze 4 s segments of
data, suitable for binary black holes like GW150914 but not
for binary neutron stars like GW170817, which typically
require 128 s of data. Training a model for a longer seg-
ment requires more data, modifications in the architecture
of the model such as dilating the convolution window, and
longer training. Additionally, we currently only analyze
data from a single detector at a time, rather than coherently
modeling data from a network of detectors in our inference
step. Coherent analysis will significantly improve parameter
estimation because true signals appear coherently across
detectors, while noise (even non-Gaussian) does not. Ex-
tending our pipeline to coherently analyze multi-detector
data by training score models for different instruments is a
straightforward extension of our setup that we are actively
developing.

Currently, we are using MALA as our sampler. This could
limit efficiency when we tackle the full problem compact-
binary inference problem, which generally requires sam-
pling over 15 dimensions with a nontrivial posterior struc-
ture. Integrating the likelihood as learned by our score-
based model with more powerful sampling algorithms such
as FLOWMC (Wong et al., 2023a) promises significant im-
provements in performance. Methods like FLOWMC can
explore complex, high-dimensional spaces much more effi-
ciently than MALA (e.g., Wong et al., 2023b). By combin-
ing the SLIC likelihood with an advanced sampler, we could
achieve fast, accurate parameter estimation for real gravita-
tional wave events even in the presence of non-Gaussianities
and nonstationarity in the data.

In conclusion, we have demonstrated a method for learn-
ing the likelihood function for gravitational wave parameter
estimation using score-based diffusion models that will al-
low us to analyze real data with fewer or no idealizations.
While promising, this framework currently relies on simple
samplers that limit its applicability to simplified problems
in lower dimensions. Integrating advanced sampling tech-
niques would be a major step towards applying this method
for real gravitational wave inference in high-dimensional,
multi-modal parameter spaces. With further development,
machine learning models and sampling algorithms will en-
able fast, scalable and unbiased Bayesian inference for fu-
ture gravitational wave observations.
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Figure 2. Posterior distribution of the five recovered parameters of a simulated signal using SLIC (orange) and the standard Gaussian
likelihood (blue). The contours are the 10%, 39.35% and 90% interval. The true values are marked by the black lines. The posterior
distribution using SLIC has a smaller variance compared to the Gaussian likelihood.
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