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Abstract

We propose Multiscale Flow, a generative Normal-
izing Flow that creates samples and models the
field-level likelihood of two dimensional cosmo-
logical data such as weak lensing, thus enabling
Simulation Based Likelihood Inference. Multi-
scale Flow uses hierarchical decomposition of
cosmological fields via a wavelet basis, and then
models different wavelet components separately
as Normalizing Flows. This decomposition al-
lows us to separate the information from differ-
ent scales and identify distribution shifts in the
data such as unknown scale-dependent system-
atics. The resulting likelihood analysis can not
only identify these types of systematics, but can
also be made optimal, in the sense that the Multi-
scale Flow can learn the full likelihood at the field
without any dimensionality reduction.

1. Introduction
The late-time cosmological fields are highly non-Gaussian
with no tractable likelihood functions. Extracting infor-
mation from these non-Gaussian fields has been mainly
attempted through a limited set of summary statistics (Pee-
bles, 1980; Jain & Van Waerbeke, 2000; Allys et al., 2020;
Fluri et al., 2018). However, these analyses have the same
underlying issues of summary statistics being ad-hoc and
potentially sub-optimal.

Recently, Dai & Seljak (2022) proposed learning the field-
level data likelihood with Normalizing Flows (NFs). This
approach does not require compressing the data into a low-
dimensional summary statistic, and instead tries to extract
all the information in the data from the field level likelihood.
They show that NF likelihood agrees well with analytical so-
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lution on Gaussian Random Fields, and it leads to significant
improvement over the standard power spectrum analysis on
nonlinear matter fields from N-body simulations.

Despite the differences in these LSS analyses methods, they
all face the same challenge of robustness: how do we know
which information is reliable, and which is not, if it is cor-
rupted by effects that are ignored or inaccurately modeled?
How do we detect distribution shifts in the actual data that
were not in the training data? While marginalizing over
the baryon parameters, subgrid models and various system-
atic effects are helpful and necessary, there is no guarantee
that current baryon and systematic models span all potential
realistic scenarios.

One way to mitigate the impact of such modeling uncer-
tainties is by separation of scales, with very small-scale
information likely being contaminated by many astrophysi-
cal nuisance effects and observation systematics, and large-
scale information likely being more robust. This strategy
is widely used in current cosmological survey analyses of
power spectrum or correlation function (Krause et al., 2017;
Doux et al., 2021). In this paper we apply the scale sepa-
ration idea to the field-level likelihood modeling with NFs.
Specifically, we use a set of scale-separated basis functions
to represent the pixelized data, and decompose the data like-
lihood function into the contributions from different scales.
Performing consistency checks between the different scales
enables us to decide what scale to include and what to ex-
clude. Furthermore, our hierarchical analysis also combines
likelihood information from different scales to achieve opti-
mality in the limit of sufficient training data. In this work we
use wavelet basis, which is localized in both real space and
Fourier space, allowing us to easily handle the survey mask
and to separate the signals from different physical scales.
Such decomposition is also known as Multiresolution Anal-
ysis (MRA) in image processing.

2. Multiresolution Analysis with Fast Wavelet
Transform

In this section we briefly introduce Multiresolution Analy-
sis (MRA), which hierarchically decomposes the data into
components at different scales, allowing us to separate the in-
formation from different scales and study them individually.
MRA is usually performed with Fast Wavelet Transform
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(FWT) (Mallat, 1989). We focus on decimated wavelet trans-
form, which preserves the dimensionality of the data and
can be viewed as a special kind of bijective NF transform.

The basic idea of FWT is to recursively apply low-pass
filters (also called scaling functions) and high-pass filters
(also called wavelet functions) to the data. In each iteration,
the data x2n with resolution 2n is decomposed into a low-
resolution approximation x2n−1 , and detail coefficients of
the remaining signal xd2n−1 :

x2n−1 = (ϕ ∗ x2n) ↓ 2 (1)
xd2n−1 = (ψ ∗ x2n) ↓ 2 (2)

where ϕ is the low pass filter (scaling function), ψ is the high
pass filter (wavelet function), ∗ is convolution operation, and
↓ 2 is the operator to downsample the data by a factor of 2:
(x ↓ 2)i,j = x2i,2j . For a 2D map x2n , there are three high
pass filters and the dimension of xd2n−1 is 3× 2n−1 × 2n−1.
The low-resolution data x2n−1 is passed to the next iteration
and treated as input for further decomposition (Figure 1).

In this work we consider Haar wavelet (Haar, 1910), the
simplest and the most spatially localized wavelet function.
The scaling function and wavelet function of Haar wavelet
can be represented by 2× 2 kernels in real space:

ϕ =
1

4

[
1 1
1 1

]
, ψ1 =

1

2

[
1 1
−1 −1

]
, (3)

ψ2 =
1

2

[
1 −1
1 −1

]
, ψ3 =

[
1 −1
−1 1

]
. (4)

With MRA, the log likelihood of a map x2n with resolution
2n can be rewritten into an auto-regressive form as

log p(x2n |y) = log p(x2n−1 , xd2n−1 |y)
= log p((x2n−1 |y) + log p(xd2n−1 |x2n−1 , y)

= log p(x2n−2 |y) + log p(xd2n−2 |x2n−2 , y)

+ log p(xd2n−1 |x2n−1 , y)

= · · ·
= log p(x2k |y) +

∑n
m=k log p(x

d
2m |x2m , y),(5)

where 2k is the scale where we stops the decomposition. In
practice, we can choose k such that it corresponds to the
scale that either has extracted all the information from the
data, or is large enough not to be affected by unknown small
scale systematic effects.

3. Multiscale Flow
3.1. Normalizing Flows

Flow-based models provide a powerful framework for den-
sity estimation (Dinh et al., 2017; Papamakarios et al.,
2017) and sampling (Kingma & Dhariwal, 2018). These

models map the data x to latent variables z through a se-
quence of invertible transformations f = f1 ◦ f2 ◦ ... ◦ fn,
such that z = f(x) and z is mapped to a base distribu-
tion π(z) = N (0, I). The probability density of data x
can be evaluated using the change of variables formula:
p(x) = π(f(x))

∣∣∣det(∂f(x)
∂x

)∣∣∣. To sample from p(x), one
first samples latent variable z from π(z), and then transform
variable z to x through x = f−1(z).

In cosmological analysis we are interested in the likelihood
function p(x|y), which can be estimated using conditional
Normalizing Flows (NFs). In conditional NFs the flow
transformation is dependent on the conditional parameters
y, i.e., f = fy. We discuss below how we parametrize the
conditional flow fy .

3.2. Multiscale Flow

With the likelihood decomposition Equation 5, our task now
is to build NFs to model different likelihood terms sepa-
rately. For simplicity we will drop the subscript 2m in this
section. The model described here is similar to Wavelet
Flow (Yu et al., 2020), even though they are developed in-
dependently. Following Glow (Kingma & Dhariwal, 2018),
our flow transformation f(x|y) consists of multiple block
flows, where each block consists of an actnorm, an invert-
ible 1× 1 convolution, and an affine coupling layer.
Actnorm: The actnorm layer applies an affine transforma-
tion per channel, similar to batch normalization (Ioffe &
Szegedy, 2015), but its scale and bias parameters are initial-
ized such that the output has zero mean and unit variance
per channel given an initial minibatch of data, and then these
parameters are treated as regular trainable parameters.
Invertible 1× 1 convolution: The invertible 1× 1 convo-
lution is a learnable C × C matrix (where C is the number
of channels) that linearly mixes different channels.
Affine coupling: The affine coupling layer firstly splits the
data xd to xd1 and xd2 based on the channels, and then
applies pixelwise affine transformation to xd2, with scale
and bias given by xd1:

(log s, t) = CNN(xd1, x, y) (6)
zd2 = exp(log s) · xd2 + t, (7)

where log s and t are scale and bias coefficient maps with
the same dimensionality as xd2, and CNN is a learned func-
tion parametrized by a convolutional neural network. The
dependence of conditional parameter y is modeled by in-
troducing gating into CNN, i.e., each channel of CNN is
scaled by a value between 0 and 1 which is determined by
parameter y. The gating allows the conditional variable y
to determine the relative weights between different features
(channels). The output of the affine coupling layer is the
concatenation of xd1 and zd2. In this paper we consider 2D
maps, so at each scale xd contains 3 channels. We set the
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Figure 1. Illustration of Multiscale Flow model. The input map x2n with resolution 2n is iteratively processed with a set of low pass
filters (ϕ), high pass filters (ψ1, ψ2, ψ3) and downsampling (↓ 2), resulting in a series of detailed maps xd2n−1 , x

d
2n−2 , · · · , xd2k and an

approximation map x2k . These maps are then transformed by several NF blocks to Gaussian latent maps zd2n−1 , z
d
2n−2 , · · · , zd2k , z2k ,

where each NF block is composed of an actnorm layer, an invertible 1× 1 convolution, and an affine coupling layer (Equation 6, 7), as
shown on the top left of this figure. The NF transformation is conditioned on conditional variable y and approximation maps, which are
represented by dashed arrows in the illustration. The log likelihood of the input map x2n can be calculated with Equation 5.

first channel to be xd1, and the other two channels to be xd2.

In this work the large-scale term log p(x2k |y) is modeled
by q flow blocks, and each other term log p(xd2m |x2m , y) is
modeled with p flow blocks, where p and q are hyperparam-
eters in the model. See Figure 1 for an Illustration of the
Multiscale Flow model. All of these NFs can be trained
independently in parallel to speed up the training process.
The details of the training can be found in the Appendix.

4. Results
4.1. Cosmological constraints from weak lensing maps

We apply Multiscale Flow to 3.5 × 3.5deg2 mock weak
lensing convergence maps (Ribli et al., 2019) for field-
level inference. We decompose the 5122 resolution map to
four scales, with likelihood decomposition log p(x512|y) =
log p(x64|y) + log p(xd64|x64, y) + log p(xd128|x128, y) +
log p(xd256|x256, y). The constraining power of Multiscale
Flow of different galaxy shape noise level is shown in Table
1. We list the figure of merit of maps with different reso-
lutions, and compare them with summary statistics power
spectrum, peak count, scattering transform (Cheng et al.,
2020), and statistics learned by CNNs (Ribli et al., 2019).
Multiscale Flow achieves the best performance among all

methods, outperforming power spectrum by factors of 3,
5 and 9 on galaxy densities ng = 10, 30, 100arcmin−2,
respectively. Multiscale Flow also achieves 2 - 3 higher
constraining power when compared to peak counts, CNN,
and scattering transform. This is mainly because Multiscale
Flow models the field-level likelihood function and tries to
learn all the information in the data, while power spectrum,
peak count, and scattering transform compress the data and
only learn partial information. CNN is a powerful data com-
pressor and has been shown to achieve optimal compression
on Gaussian random fields and log-normal fields with suf-
ficient training data (Makinen et al., 2021). However, in
the regime where training data is expensive to generate and
insufficient, there is evidence that generative models (Mul-
tiscale flow) perform better and is less prone to overfitting
compared to discriminative models (CNN) (Ng & Jordan,
2001). We plan to study this topic to better understand their
difference in our future work.

4.2. Impact of baryons

Next we apply Multiscale Flow to mock weak lensing maps
with baryonic physics included (Lu et al., 2022). Similar to
the previous experiment, these maps also have a resolution
of 5122, and we adopt the same likelihood decomposition.
For these maps we have 4 additional baryon parameters
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Table 1. Comparison of the constraining power between different methods. The figure of merit is measured by the reciprocal of the 1σ
confidence area on the (Ωm, σ8) plane, using a 3.5× 3.5 deg2 convergence map.

Method ng = 10arcmin−2 ng = 30arcmin−2 ng = 100arcmin−2

Multiscale Flow p(x512|y) 149 375 957
Multiscale Flow p(x256|y) 143 353 858
Multiscale Flow p(x128|y) 108 281 706
Multiscale Flow p(x64|y) 72 175 391

power spectrum 30 (30) 52 (51) 81 (79)
peak count (40) (85) (137)

CNN (44) (121) (292)
scattering transform s0 + s1 + s2 (≲ 50) (≲ 140) (≲ 329)

1. Unless specified with Multiscale Flow, the analysis of other approaches are performed on maps with resolution 5122.
2. The numbers in parenthesis are estimated using maps with 1 arcmin smoothing. We expect this smoothing to have little effect on constraining power estimation, because

the small-scale modes are dominated by shape noise. This is also explicitly verified in the case of power spectrum, where we present FoM with and without smoothing.
3. The FoM of scattering transform is estimated using Fisher matrix, which is an upper limit of the true FoM according to the Cramér-Rao inequality. It has been shown that

Fisher forecast could potentially overestimate the parameter constraints, due to the non-Gaussian distribution of the statistics (Park et al., 2022).

Table 2. Similar to Table 1, but on a different dataset with baryon physics included. Here we show the constraining power after
marginalizing over baryonic effects.

Method ng = 10arcmin−2 ng = 20arcmin−2 ng = 50arcmin−2 ng = 100arcmin−2

Multiscale Flow p(x512|y) 149 220 362 521
Multiscale Flow p(x256|y) 147 213 341 494
Multiscale Flow p(x128|y) 112 166 269 398
Multiscale Flow p(x64|y) 75 113 183 259

power spectrum 34(33) 48(48) 68(65) 84 (78)
Lu et al. (2022) measures the Figure of merit of CNN on a much larger map (1500deg2), so it’s hard to perform a direct comparison. However, Lu et al. (2022) shows that CNN

improves about 60% compared to the power spectrum, while our approach leads to a 3 − 5 times improvement compared to the power spectrum.

(Aricò et al., 2020). In Table 2 we compare the constraining
power of Multiscale Flow and power spectrum on (Ωm, σ8)
plane, after marginalizing over the baryon parameters. With
the presence of baryon physics, Multiscale Flow has 4− 6
times higher constraining power on cosmological parame-
ters when compared to power spectrum. Note that because
these maps are generated with different ray-tracing pipelines
compared to Ribli et al. (2019), we cannot directly compare
the results between Table 1 and Table 2.

4.3. Identifying distribution shifts with scale-dependent
posterior analysis

Identifying distribution shifts from unknown effects that are
present in the data, but not in the training simulations, is
one of the great challenges of modern Machine Learning.
Here we propose to use consistency of information as a func-
tion of scale to identify such shifts. As a simple example,
we train the Multiscale Flow with dark-matter-only con-
vergence maps (Ribli et al., 2019), and apply the model to
convergence maps with baryon physics included (Lu et al.,
2022). We show the posterior distributions from different
scales in the left panel of Figure 2. The baryon physics
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Figure 2. Scale-dependent posterior analysis of a baryon-corrected
convergence map using Multiscale Flow trained on dark-matter-
only maps (left panel), and Multiscale Flow trained on BCM maps
(right panel, no distribution shift).

modifies the matter distribution on small scales and bias the
posterior constraints from small scales. In this case naively
combining all of the scales leads to a posterior constraint
that is 2σ biased (dark green contour). The inconsistency of
posterior between different scales suggests a presence of an
unknown systematics (baryon physics) that is not modeled
in the training data. If we remove the small scale informa-
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tion (because we believe the large scales are less likely to
be affected by systematics), we can recover an unbiased
constraint of cosmological parameters (orange contour).

As a comparison, in the middle panel of Figure 2 we show
the posteriors from Multiscale Flow trained using maps with
baryon physics. There is no distribution shift in this case
and the information from the different scales is consistent.

5. Discussion
In this paper our main focus is optimal and robust field-
level likelihood analysis (also see Appendix for sample
generation). We expect many applications of Multiscale
Flow, such as 21cm and other intensity maps, weak lensing
maps, projected galaxy clustering, X-ray and thermal SZ
maps etc. Multiscale Flow can also be used to model 3D
galaxy field or 1D spectrum data like Lyman alpha forest.
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A. Training of Multiscale Flow
Following (Dai & Seljak, 2022), we adopt a two-stage training strategy in this work: we first train the NF with the generative
loss, which minimizes the negative log-likelihood and is the standard loss function of NF:

Lg = − 1

N

N∑
i=1

log p(xi|yi). (8)

The generative loss is suitable for sampling and density estimation, but may lead to biased or overconfident posterior as is
shown in Figure 7 of (Dai & Seljak, 2022). To solve this issue they propose further optimizing the posteriors by training
the model with the discriminative loss, Ld = − 1

N

∑N
i=1 log p(yi|xi) = − 1

N

∑N
i=1 [log p(xi|yi) + log p(yi)− log p(xi)],

where the evidence p(x) is estimated using Importance Sampling (IS): log p(x) ≈ log 1
M

∑M
yj∼q(y|x)

p(x|yj)p(yj)
q(yj |x) , and

q(y|x) is chosen to be a Gaussian distribution with learned mean and fixed covariance matrix. However, we find that IS
becomes inefficient when the number of parameters y gets large and when the posterior becomes non-Gaussian. Furthermore,
training on posteriors may not always solve the overconfidence problem (Hermans et al., 2021).

In this work, we propose adding another loss term that forces the posteriors to be well calibrated. Our proposed loss term is
based on the notion that properly calibrated Bayesian posteriors have to result in correct frequency of events. If the prior is
flat the posterior is entirely determined by the likelihood. We thus enforce that the average likelihood over the training data
equals the likelihood averaged over the posterior. The loss is defined as

L̃d =
1

N

N∑
i=1

log p(xi|yi)−
∫
p(y|xi) log p(xi|y)dy

≈ 1

N

N∑
i=1

log p(xi|yi)−
1

M

M∑
yj∼p(y|xi)

log p(xi|yj). (9)

After the generative training we add this loss to the generative loss with a hyperparameter λ, L = 1
1+wλLg +

wλ
1+wλ L̃d,

where w = dx

dy
is a prefactor to balance the dimension difference between the data and the parameter space, and we divide

the loss by 1 + wλ to normalize the weights. In Figure 3 we show the percentage of outliers in our posterior analysis with
different λ values. For very small λ the posterior is too narrow (underestimated errors) and the loss is dominated by the first
loss term (generative loss). For λ > 0.1 the posterior is well calibrated due to the second term L̃d. In this paper we use large
λ to calibrate the posterior (shown in Table 3).

In the second line of Eq. 9 we replaced the integral with Monte Carlo estimates, which requires samples from the posterior
p(y|xi). We obtain the posterior samples by running a Hamiltonian Monte Carlo (HMC) sampler (Duane et al., 1987)
before the discriminative training. In this paper we generate M = 5− 10 HMC samples for each data with 200 HMC steps.
These samples are saved, and then updated with 5 - 20 HMC steps every epoch of training. An advantage of this method is
that instead of evaluating the evidence term log p(x) = log

∫
p(x|y)p(y)dy, we now evaluate

∫
log p(x|y)p(y|x)dy. The

estimation of the former usually comes with large variance, while the latter can be estimated with only a few HMC samples.

B. Multiscale Flow Hyperparameters
We use p = 12 block flows to model the large-scale term log p(x64|y), and q = 4 block flows to model each of the three
small-scale terms. The CNN in Equation 6 is chosen to be a convolutional residual neural network with 2 residual blocks
and 64 hidden channels in the residual blocks.

C. Empirical coverage probability of posteriors
On weak lensing maps with baryon physics, we apply Multiscale Flow to test data with fiducial parameters, and in Table 3
we report the percentage of test data with true cosmological parameters fall in 68% and 95% confidence regions. In most
cases the percentages are larger than the 68% and 95% expectation, suggesting that our posterior constraint is conservative.
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Figure 3. Percentage of test data that fall outside 95% confidence region for different λ values. A perfectly calibrated posterior has 5%
outliers. The shaded region shows the uncertainty due to finite number of test data. This measurement is made on weak lensing maps with
642 resolution and ng = 30arcmin−2 galaxy density.

Table 3. Empirical coverage probability of posteriors after marginalizing over baryon parameters. We report the percentage of test data
that falls within 68% confidence region and 95% confidence regions. A perfectly calibrated posterior should have 68% and 95% test data
that falls in these two regions, respectively.

Method ng = 10arcmin−2 ng = 20arcmin−2 ng = 50arcmin−2 ng = 100arcmin−2

Multiscale Flow p(x512|y) 72.8%, 96.8% 74.4%, 95.2% 73.6%, 97.6% 66.4%, 97.6%
Multiscale Flow p(x256|y) 70.4%, 96.0% 76.8%, 95.2% 74.4%, 97.6% 68.8%, 96.8%
Multiscale Flow p(x128|y) 76.0%, 96.0% 74.4%, 97.6% 76.0%, 97.6% 73.6%, 96.8%
Multiscale Flow p(x64|y) 80.8%, 95.2% 70.4%, 94.4% 72.0%, 95.2% 74.4%, 95.2%

D. Multiscale Flow Posteriors
The posterior distribution of different scales on 20 test maps with galaxy number density ng = 30arcmin−2 is shown in
Figure 4. The posterior constraints of all scales are consistent with the true cosmological parameters, which are shown with
black stars.

The posterior distributions of Multiscale Flow and power spectrum on baryon maps with ng = 20arcmin−2 are shown in
Figure 5. Unfortunately, due to the small area of the lensing map, all these methods cannot constrain baryon parameters
very well (see also Figure 5 of (Lu et al., 2022) for CNN constraints), and the posterior is dominated by the prior bounds,
especially in the cases of high shape noise.
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Figure 4. Multiscale Flow posterior comparison of different scales on 20 test data with galaxy number density ng = 30arcmin−2.

E. Sample generation and super-resolution
We show an example of sample generation with Multiscale Flow in Figure 6. The process can also be viewed as iterative
super-resolution of the low-resolution samples. In Figure 7 we show that Multiscale Flow samples and test data agree well
in terms of power spectrum and pixel probability distribution function. This demonstrates that Multiscale Flow samples can
be used in lieu of expensive N-body simulations and ray tracing as a fast generator of mock data.
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Figure 5. Comparison of posterior distributions between different scales of Multiscale Flow and power spectrum on a 3.5 × 3.5deg2

convergence map with ng = 20arcmin−2.
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Figure 6. Illustration of Multiscale Flow sample generation (the reverse of Figure 1). The sample of the lowest resolution is firstly
generated, and then small-scale information are gradually added. This process can also be viewed as super-resolution.
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Figure 7. Comparison of power spectrum (left) and pixel probability distribution function (right) between simulations and Multiscale
Flow samples at fiducial cosmology.
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