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Abstract
We present a natural extension to E(n)-
equivariant graph neural networks that uses mul-
tiple equivariant vectors per node. We formulate
the extension and show that it improves perfor-
mance across different physical systems bench-
mark tasks, with minimal differences in runtime
or number of parameters. The proposed multi-
channel EGNN outperforms the standard single-
channel EGNN on N-body charged particle dy-
namics, molecular property predictions, and pre-
dicting the trajectories of solar system bodies.
Given the additional benefits and minimal addi-
tional cost of multi-channel EGNN, we suggest
that this extension may be of practical use to re-
searchers working in machine learning for astro-
physics and cosmology.

1. Introduction
Designing neural network architectures that correctly ac-
count for the symmetry of physical laws is an important
requirement for applications of artificial intelligence in sci-
ence. In particular, for dynamical systems in astrophysics,
the relevant properties transform invariantly or equivari-
antly under Euclidean transformations. This is also the case
when modelling particles or atomistic systems, for which
machine learning simulators are already widely used.

There now exist a wide variety of equivariant neural net-
work architectures leveraging a diverse set of mathemat-
ical formulations, among which we highlight two impor-
tant classes. First, some architectures apply spherical har-
monics mappings to incorporate directional information
in an equivariant way (Thomas et al., 2018; Fuchs et al.,
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2020). These architectures have the advantage of being
highly expressive but are also computationally expensive
and challenging to implement. Second, we highlight mod-
els that fall under the equivariant multilayer perceptron
(E-MLP) paradigm (Finzi et al., 2021). The idea behind
this paradigm is to simply generalize standard multilayer
perceptrons by composing equivariant linear layers with
appropriate non-linear functions. These architectures are
much simpler to work with and more computationally ef-
ficient than those using spherical harmonics, but in prin-
ciple, require lifting input quantities to high-order tensors
to achieve high expressivity (Finkelshtein et al., 2022).
Prior works, however, show that one can achieve satisfac-
tory modelling performance without requiring higher-order
representations. One such example is the Vector Neurons
(Deng et al., 2021) model, which can be seen as an equiv-
ariant multilayer perceptron with order-1 vector features.
This architecture also leverages the fact that the number of
vector channels (neurons) in each layer can be arbitrary to
increase expressivity.

The E(n)-equivariant Graph Neural Network (EGNN)
model by Satorras et al. (2021) is an example of a model
that does not clearly fit into one of the categories above.
Nevertheless, EGNN has become widely applied mainly
due to efficiency and simple model design. EGNN uses the
message-passing framework, which captures the inductive
bias that sparse interactions between entities should lead
to better generalization. EGNN also has the advantage of
separating equivariant features into a separate channel that
only follows equivariant operations. The work of (Brand-
stetter et al., 2022) extends EGNN by using ideas inspired
by spherical-harmonics-type architectures. Their Steer-
able E(n)-Equivariant Graph Neural Network (SEGNN)
achieves better performance across some benchmarks but
suffers from similar conceptual shortcomings in addition
to increased computational complexity.

In this paper, we explore the direction of generalizing
EGNN by drawing from E-MLP-type architectures. EGNN
only updates a single vector for each node in the graph over
each layer. A natural way to increase the expressivity of
this model is to make the number of vector channels arbi-
trary. In our experiments, we show that this change alone
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(a) Full solar system (b) Close-up of the inner solar system (c) Close-up on 4 moons of Saturn

Figure 1: Visualization of the Solar Systems dynamics dataset. Solid circles represent initial positions of celestial bodies
and traces their training trajectories.

leads to an important increase in performance for some
physical modelling tasks. This multi-channel extension
also retains the simplicity and computational efficiency of
the original architecture and makes intuitive physical sense:
the network may use the different channels to store addi-
tional physical quantities relevant to the prediction task.

We note that GMN (Huang et al., 2022) proposes to use
multiple channels as part of a generalized EGNN-like
model. However, since this is one contribution amongst
several others in GMN, the advantage of using multiple
channels is not clear. Here we show that we can obtain
significant benefits only with the additional channels. In
this short paper, we highlight that simply adding multiple
channels to EGNN can lead to a significant performance
increase compared to much more expensive methods such
as SEGNN. We believe this result should be of use to prac-
titioners looking to preserve the advantages of EGNN.

2. Method
Following the formulation of EGNN, we assume that the
model operates on graphs embedded in n-dimensional Eu-
clidean space (typically n = 3). To each node is associated
coordinates xi ∈ Rn and node features hi ∈ Rdh . Edge
features ai,j ∈ Rde can also be considered. The original
EGNN layer is defined by the following equations:

xij = xi − xj (1)

mij = ϕe

(
hi,hj , ||xij ||2,aij

)
(2)

xt+1
i = xt

i + C
∑

j∈N (i)

xt
ijϕx(mij) (3)

ht+1
i = ϕh(h

t
i,

∑
j∈N (i)

mij) (4)

where ϕe : Rdh+dh+1+de → Rd, ϕx : Rd → R and
ϕh : Rdh+d → Rdh are multilayer perceptrons (MLPs)

and N (i) is the neighborhood of node i.

We define the Multi-Channel E(n)-Equivariant Graph
Neural Network (MC-EGNN) by replacing xi with the ma-
trix Xi ∈ R3×m, where m is the number of vector chan-
nels. Using this, we modify the above equations as follows:

Xij = Xi −Xj (5)

mij = ϕe

(
hi,hj , ||Xij ||2c ,aij

)
(6)

Xt+1
i = Xt

i + C
∑

j∈N (i)

Xt
ijΦx(mij) (7)

for MLPs ϕe : Rdh+dh+m+de → Rd and Φx :
Rd → Rm×m′

, where m′ is the output channel dimension.
||Xij ||c denotes the channel-wise Euclidean norm. Equa-
tion 4 stays the same. We set m = 1 for the first and last
layer to use a single vector for each node’s inputs and out-
puts. The modification to EGNN does not affect the equiv-
ariance properties of the architecture since the Euclidean
and permutation groups do not act over the channels di-
mension.

3. Experiments
3.1. Solar System Predictions

3.1.1. DATASET

To investigate the necessity of different number of vector
channels, we perform experiments on prediction of dynam-
ics on an N-body system based on the solar system. We
look at a dataset of 30 years of real observations of the 31
highest-mass bodies in the solar system (including the sun,
8 planets, and 22 moons) curated by Lemos et al. (2022)
and sourced originally from NASA Horizons 1. We set up
the task of simultaneously predicting the positions of each
of the bodies 60 Earth-days into the future, given each of

1https://ssd.jpl.nasa.gov/horizons/
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their positions, velocities, and log-masses.

We constructed a train/validation/test split using three sub-
sequent years of data, with one year of data for each par-
tition. We provide a visualization of sample training set
trajectories at Figure 1. We trained our models on a fully
connected graph of the solar system bodies using a mean
squared error loss normalized by the true distance between
the initial and final positions of each bodies. This is done
to account for the broad ranges in velocities in the system.

Figure 2: Predictions of the position of Venus for differ-
ent numbers of vectors channels. The cross indicates the
ground truth position.

3.1.2. RESULTS

Most of the predictions made in this task involve moons
orbiting planets while also orbiting the sun, and so we
hypothesized that 3 vectors would be needed to approxi-
mate their dynamics efficiently: to keep track of the co-
ordinates, the angular momentum around the sun, and the
angular momentum around the planet. Note that velocity
is already considered since we use a variant of the multi-
channel EGNN described in Appendix A.

We first conducted a hyperparameter search using a one
vector-channel EGNN to maximize its performance on the
validation set, and then used those hyperparameters when
testing the EGNN models with 2, 3, and 5 vector channels.

Our results, shown in Table 1, validate our hypothesis.
While using 2 vector channels improves over using 1, it
takes 3 vector channels for the model to achieve its highest
performance. Note that the difference in performance be-
tween using 3 and 5 channels is not statistically significant,
it is therefore not crucial to tune this parameter to an exact
value. Figure 2, shows clearly that original single channel
EGNN model is not able to provide an accurate estimate of
the future and is widely off the trajectory.

Table 1: Performance on the solar system prediction task
using differing number of vector channels. Performance
is shown averaged across all 31 solar system bodies, and
normalized by true distance.

# of Vectors Normalized MSE

1 0.109 ± 0.051
2 0.082 ± 0.047
3 0.024 ± 0.007
5 0.030 ± 0.008

3.2. Charged Particles System

We also compare againt other models using a widely used
benchmark. In the Charged Particles N-body experiment
(Kipf et al., 2018), the task is to predict the positions of
charged particles several timesteps into the future, given
their charges, positions, and velocities.

We use the variant created by (Satorras et al., 2021), which
consists of 3,000 training samples, each consisting of a sys-
tem of 5 particles with their charges and 3d coordinates
and velocities given, and we train our network on a loss of
the mean squared error of the particle’s position after 1000
timesteps. We also use the velocity version of the multi-
channel EGNN in this experiment. For this experiment, we
use the implementation and hyperparameters of the EGNN
used by (Satorras et al., 2021). The only modification we
make is to incorporate multiple vector channels. Specific
architecture details and hyperparameters are listed in Ap-
pendix C.1.

Table 2: Test set MSE for the N-body experiment. Our
results are averaged over 5 random seeds.

Method MSE

SE(3)-Tr (Fuchs et al., 2020) 0.0244
TFN (Thomas et al., 2018) 0.0155
NMP (Gilmer et al., 2017) 0.107
Radial Field (Köhler et al., 2019) 0.0104
CN-GNN (Kaba et al., 2022) 0.0043 ± 0.0001
FA-GNN (Puny et al., 2022) 0.0057 ± 0.0002
SEGNN (Brandstetter et al., 2022) 0.0043 ± 0.0002

EGNN (Satorras et al., 2021) 0.0070 ± 0.0005
MC-EGNN-2 0.0041± 0.0006
MC-EGNN-5 0.0043 ± 0.0003
MC-EGNN-10 0.0044 ± 0.0005
MC-EGNN-25 0.0048 ± 0.0005

The results, shown in Table 2, demonstrate that using
just 1 more vector channel (MC-EGNN-2) yields greatly
improves performance over the single-vector EGNN and
matches the performance of more sophisticated models
such as SEGNN (Brandstetter et al., 2022). This is at a
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negligible added cost: Table 4 (Appendix B.1) shows that
for a small number of vector channels, the forward time and
the model’s number of parameters are largely unaffected.

3.3. QM9 – Molecular Property Prediction

Lastly, we applied the EGNN the task of predicting chem-
ical properties of small molecules. The QM9 dataset con-
sists of 100,000 training samples of molecules, each de-
scribed by the atom type and positions of their constituent
atoms (Ramakrishnan et al., 2014). We use the same train-
ing setup as EGNN which facilitates comparison. The hy-
perparameters are detailed in Appendix C.2.

We predict 12 chemical properties using the multi-channel
EGNN. In theory, the properties are entirely determined by
the atom types and positions. Unlike in the N-body exper-
iment or the solar system experiment, the predicted prop-
erties are coordinate-invariant. The output is therefore ob-
tained by pooling the invariant node embeddings. The vec-
tor channels are only used in the intermediate layers, but as
we report hereafter, they still contribute to increased perfor-
mance on all targets compared to the standard EGNN. The
results, shown in Table 3, demonstrate that performance is
also comparable to SEGNN when using 8 vector channels.

4. Conclusion
We show here that adding multiple channels to the EGNN
model leads to performance improvements in prediction
tasks on physical systems, sometimes matching more com-
plicated architectures. This is achieved without a signifi-
cant increase in the forward runtime of the model because
only a small number of vector channels are needed to ob-
tain improvements.

This generalization could also be useful for tasks where the
number of input vectors attached to each node or to predict
is arbitrary (for example, when quantities such as angular
velocity, spin, or polarization are included). Translation-
ally invariant predictions can also be produced simply by
removing the residual connection in the positions update
equation.

We plan to investigate further whether there is a particu-
lar semantic meaning to the different vectors computed by
the multi-channel model that makes it helpful. One possi-
ble downside we noticed with the multi-channel model was
that training could be less stable when more vector chan-
nels were used. In practice, we found that gradient clip-
ping could be used to help address this issue, but this was
not used in our experiments. Analyzing the learned vectors
could lead to better architecture design and hyperparameter
selection.

We further plan to apply this model to larger datasets, such

as predictions on dark matter halos, where we may have
many more interactions than in any of the experiments
tested in this paper. We believe that the relative compu-
tational efficiency of the method proposed here may al-
low it to prove useful in applications that were previously
unattainable for E(n) equivariant neural networks.
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A. Velocity Variant
For problems in which we are provided with node veloci-
ties, a similar reformulation of the model to (Satorras et al.,
2021) is used. This is done simply by replacing Equation 7
with the following:

V t+1
(i) = v0

(i)ϕv(h
t
(i)) + C

∑
j ̸=i

X(ij)Φx(m(ij)) (8)

Xt+1
(i) = Xt

(i) + V t+1
(i) (9)

Where ϕv ∈ Rd → Rm′
is an MLP that weighs the impact

of the initial velocity vector on the position update.

B. Additional Results
B.1. Comparison of forward time and parameters

We show hereafter a comparison of the forward time of the
model as well as the number of parameters for different
values of number of vectors.

Table 4: Comparison of the forward time (for a batch of
100 samples) and number of parameters of EGNN models
with different numbers of vector channels used for the N-
body experiment.

# of Vectors Forward Time (s) # of Parameters

1 (EGNN) 0.003118 134020
2 0.003229 135244
5 0.003135 142012
10 0.003405 163612
25 0.004188 305812

B.2. Open Catalyst Project – IS2RE

The Open Catalyst (OC20) Dataset is a large-scale dataset
designed for applying machine learning to the task of cat-
alyst discovery, of particular interest to the materials sci-
ence community (Chanussot et al., 2021). The dataset con-
tains over 1.2 million simulated molecular relaxations in-
volving different adsorbates and catalytic surfaces. One
challenge associated with the dataset is the Initial Struc-
ture to Relaxed Energy (IS2RE) task, wherein a neural net-
work is trained to predict the relaxation energy of a sys-
tem described by the initial positions and atom types of a
molecule, a catalytic surface, and a bulk crystal substrate
below the surface.

We conducted experiments using the Open MatSci ML
Toolkit (Miret et al., 2022), which provides an interface
into OC20 tasks while abstracting away implementation
complexities. The toolkit also contains an implementation
of EGNN, which we modified to include our multi-channel

extension. We used a training set of ∼500K training sam-
ples and ∼25K validation samples and trained on the mean
absolute error (MAE) of the relaxed energy for a maximum
of 100 epochs, with early stopping.

Table 5: In-Distribution Validation set MAE for the IS2RE
task. EGNN variants was run across 5 random seeds, but
due to instabilities in training, seeds where training failed
were discarded. MegNet and Gala results are taken from
(Miret et al., 2022)

Model Validation MAE (eV)

MegNet (Chen et al., 2019) 0.233
Gala (Spellings, 2021) 0.240

EGNN 0.239 ± 0.003
MC-EGNN-2 0.262 ± 0.017
MC-EGNN-5 0.239 ± 0.006
MC-EGNN-10 0.253 ± 0.019

We report a negative result on the IS2RE task as shown in
Table 5. We do not observe any clear benefit with using
multiple vectors, with different resulting performances be-
ing mostly determined by the random seed used.

C. Experimental details
C.1. N-Body System

We used the same architecture and hyperparameters as
EGNN (Satorras et al., 2021) in their N-Body system ex-
periment. We used 4 EGNN layers. Each layer used 64
channel, 2 layer MLPs for the node, edge, and coordinate
update functions, with a Swish function nonlinearity. We
trained on 3000 training samples for 10,000 epochs with a
batch size of 100, using the Adam optimizer with a learning
rate of 5× 10−4.

C.2. QM9

We used the same architecture and hyperparameters as
EGNN (Satorras et al., 2021) in their QM9 experiments.
Training was performed using the Adam optimizer with
learning rate 5× 10−4 for all targets except the gap, homo
and lumo. We used a cosine learning rate scheduler. Batch
size was set at 96 and number of epochs to 1000 with early
stopping. We used 8 vector channels and 128 channels for
node features and messages. The number of layers was set
at 7.

C.3. Solar System

We again used the same architecture as EGNN. We con-
ducted a hyperparameter search using a baseline 1-vector
EGNN, looking at layers between 3 to 6, and number of
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features between [64, 128, 256, 512]. We then used a 5-
layer EGNN with 128-channels for node features and mes-
sages, the Adam optimizer with a learning rate of 1× 10−4

for all experiments with different numbers of vectors. We
trained for 1000 epochs with early stopping.

C.4. Open Catalyst Project

We used the same EGNN implementation, hyperparame-
ters, and optimization procedure as (Miret et al., 2022).
We used a 3-layer EGNN with 2-layer MLPs for the node,
edge, and coordinate update functions, that used 48, 16,
and 64 channels respectively. Node features were first em-
bedded using a 3-layer, 64-channel MLP, and a 3-layer,
128-channel MLP was used to predict relaxed energy us-
ing the EGNN’s pooled node embeddings. Training was
performed over a maximum of 100 epochs with a with early
stopping, with a batch size of 8. The Adam optimizer was
used with a learning rate of 1e-5, a gamma of 0.5, and a
cosine annealing learning rate scheduler.
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