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Abstract

We have created a tool called the Protoplanetary
Disk Operator Network (PPDONet) that quickly
predicts disk-planet interactions in protoplanetary
disks. Our tool uses Deep Operator Networks
(DeepONets), a type of neural network that learns
non-linear operators to accurately represent both
deterministic and stochastic differential equations.
PPDONet maps three key parameters in a disk-
planet system – the Shakura & Sunyaev viscos-
ity α, the disk aspect ratio h0, and the planet-
star mass ratio q – to the steady-state solutions
for disk surface density, radial velocity, and az-
imuthal velocity. We’ve validated the accuracy
of PPDONet’s solutions with an extensive array
of tests. Our tool can calculate the result of a
disk-planet interaction for a given system in un-
der a second using a standard laptop. PPDONet
is publicly accessible for use.

1. Introduction
Planets form in protoplanetary disks surrounding newborn
stars. These disks are made of gas and dust, and can ex-
tend to hundreds of AU. Gradually, under the influence of
gravitational and aerodynamic forces, the material in these
disks starts to clump together, forming larger entities that
ultimately develop into planets. During formation, plan-
ets gravitationally interact with their host disks, generating
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large-scale structures such as gaps, spiral arms, and dust
clumps. This gravitational interplay, which can be modelled
using fluid dynamics, is termed disk-planet interaction (Kley
& Nelson, 2012). Simulating the evolution of protoplanetary
disks and disk-planet interactions is vital for understanding
various aspects of planetary formation, including the accre-
tion and dispersion of disk materials (Tabone et al., 2022),
the interpretation of observed disk structures (Dong et al.,
2015; Dong & Fung, 2017; Liu et al., 2018), the determi-
nation of planetary properties (Fung et al., 2014; Fung &
Dong, 2015; Zhang et al., 2018), and the study of planets’
orbital evolution (Paardekooper et al., 2022).

For decades, numerical methodologies have been estab-
lished to simulate the evolution of disks and disk-planet
interactions (Paardekooper et al., 2022). Nonetheless, these
methods are typically computing-intensive. For instance, a
simulation of a 2D disk with a resolution of 270 (r) by 810
(θ) for 2, 000 orbits necessitates 20 GPU hours (Fung et al.,
2014). Consequently, simulating numerous disk-planet sys-
tems or probing the parameter space of their interactions
can be resource-intensive. Furthermore, given the rapidly
increasing number of observed disks (Benisty et al., 2022;
Bae et al., 2022), replicating all these observations through
simulations is becoming increasingly impractical.

There exist two fundamental reasons underpinning the high
computational cost of extensive disk simulations. Primarily,
every numerical simulation is executed independently. That
is, despite possible similarities in the outcomes of simula-
tions with slightly varied configurations, these outcomes
aren’t reused, leading to a computational cost that increases
linearly with the number of simulations performed. Sec-
ondly, inherent computational complexity arises due to the
nature of these simulations. Achieving accurate outcomes
in studies of disk evolution and disk-planet interactions ne-
cessitates a significant progression through numerical time
increments, whose duration is governed by the Courant–
Friedrichs–Lewy condition. Typically, A disk-planet system
might undergo evolution over thousands of orbits to attain a
steady state, correlating to millions of these time units.

In this study, we apply Machine Learning (ML) to overcome
both issues, allowing us to “learn” from similar simulations
and eliminate the requirement for time-stepping execution.
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We propose a novel tool, built upon DeepONets, capable
of immediately predicting the steady-state disk structure,
encompassing both surface density and velocities, in a disk-
planet system. We train DeepONets (§3) using hydrody-
namic simulations derived from numerical solvers, and test
the networks by reproducing empirical relationships ob-
served in disk-planet interactions (§4).

2. Related Work
Recently, ML techniques have been applied to model disk-
planet systems, although not for the same problem as we
are interested in—to predict the surface density and velocity
fields of a disk-planet system. Auddy & Lin (2020) used
a deep neural network to predict planet mass based on 1D
surface density profiles of gaps. Further expanding on this,
Auddy et al. (2021) employed a convolutional neural net-
work (CNN) to deduce planet mass from the 2D dust density
distribution. Similarly, Zhang et al. (2022) implemented a
comparable neural network to estimate planet mass from
synthetic observations. However, the focus of these tech-
niques is on deducing scalar outputs from disk morphologies
rather than predicting the distribution of physical quantities.

DeepONets, introduced in Lu et al. (2021), offer a novel
framework that substantially cuts down the computational
expenses of simulating physical systems. Specifically, they
are adept at learning non-linear operators which encapsulate
deterministic and stochastic differential equations. These
networks are equipped to predict solutions to differential
equations characterized by parametric boundary conditions,
initial conditions, or forcing terms. Consequently, Deep-
ONets exhibit enhanced generalization and rapid conver-
gence relative to the quantity of training data, as demon-
strated in Lu et al. (2021).

3. Implementation
3.1. DeepONets

Our study leverages the DeepONet architecture (Lu et al.,
2021), which we summarize briefly. DeepONet employs
a neural network to approximate a mathematical operator,
denoted as G. In the context of disk-planet systems, this
operator G transforms a vector of scalar parameters, p⃗, into
a distribution function, G(p⃗), which can be evaluated at
any given location. Specifically, our networks incorporate
scalar parameters p⃗ such as the Shakura & Sunyaev viscosity
α, disk aspect ratio h0, and the planet-star mass ratio q.
The resulting function G(p⃗) (r, θ) yields the surface density
or velocity at a specific point (r, θ). Consequently, the
DeepONet structure includes two types of inputs: scalar
parameters, p⃗, and coordinates (r, θ), with a single output
that represents surface density, radial velocity, or azimuthal
velocity.

Figure 1. PPDONet architecture used in this work. A fully con-
nected subnetwork, called “branch network”, encodes scalar pa-
rameters, the disk and planet properties, while another subnetwork,
called “trunk network”, encodes the coordinates. We produce the
inputs xi, i = 1, ..., d, d = 50, for the third network (“Z net-
work”) by element-wise multiplication of the outputs from the
two subnetworks. The Z network is a single-hidden-layer network
whose output represents surface density or velocity. The σ in blue
nodes are neurons in layers.

Figure 1 delineates the PPDONet architecture, with scalar
parameters p⃗ being processed by a “branch network” sub-
network, which is fully connected with four hidden layers
each hosting 100 neurons. Simultaneously, the coordinate
inputs are managed by the “trunk network,” another fully-
connected subnetwork with five layers each having 256
neurons. The inputs xi, i = 1, ..., d, d = 50, for the third
network (the “Z network”), shown in Figure 1, are derived
through element-wise multiplication of the outputs of the
branch and trunk networks. The Z network, equipped with
a single hidden layer, generates the final output representing
surface density or velocity. For fitting surface density and
azimuthal velocity, we use the self-scalable Tanh activation
function (Stan) (Gnanasambandam et al., 2022) due to its
fast convergence and minimal error rates. However, in the
case of learning radial velocity, the Tanh activation function
exhibits better performance than Stan.

3.2. Hydrodynamic simulations for training, validating,
and testing neural networks

We generate 768 hydrodynamic simulations of disk-planet
systems using the FARGO3D code (Masset, 2000; Benı́tez-
Llambay & Masset, 2016), varying α, h0, and q within the
parameter space outlined in Table 1. We then partition the
simulations into training, validation and testing datasets. For
more comprehensive details, please refer to Appendix A.
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Table 1. Disk and planet parameter space

PARAMETER MINIMUM MAXIMUM

α 3× 10−4 0.1
h0 0.05 0.1
q 5× 10−5 2× 10−3

3.3. Network training

We employ three distinct neural networks to approximate the
steady-state solution for surface density Σ, radial velocity
vr, and azimuthal velocity vθ. Considering the broad range
spanned by some inputs, we transform them into logarithmic
scales. We then normalize both the scalar parameters and
coordinate inputs. To enhance the learning process, we
introduce two modifications: 1) we convert surface density
to a logarithmic scale, and 2) we remove the background
from the radial and azimuthal velocities. As a result, our
loss function for surface density takes the form of

LΣ =
1

N

N∑

i=1

[
log(Σpred

i )− log(Σtruth
i )

]2
, (1)

while the loss functions for velocities are expressed as

Lvr =
1

N

N∑

i=1

[
vr

pred
i − vr

truth
i

]2
(2)

and

Lvθ =
1

N

N∑

i=1

[
vθ

pred
i − vθ

truth
i

]2
. (3)

The indices i go through all the grid points in all the simula-
tions in a training batch 1. We treat FARGO3D outputs as
the “ground truth,” denoted by the superscript truth, while
the superscript pred indicates neural network predictions.
The hyperparameters employed in our networks and train-
ing routines can be found in Table 2 (Appendix B).

4. Tests
We present a series of tests. In §4.1, we compare the 2D
maps of predicted surface density and velocity with the
actual data generated by FARGO3D. Subsequently, in §4.2,
we investigate the effectiveness of our model on a collection
of disks by recreating the gap depth relationship documented
in earlier research. More tests are in Appendix C.1, C.2, and
C.3.

4.1. 2D maps of surface density and velocities

Figure 2 illustrates a typical case (α = 5.2 × 10−4, h0 =
0.053, and q = 1.6× 10−3) emphasizing the gaps. The left
column displays the FARGO3D generated ground truth, the
middle column presents the PPDONet predictions, and the
two right columns highlight the differences or ratios between
them. To simplify the comparison in the perturbed radial
and azimuthal velocity, we deduct their initial values from
the corresponding panels. We compute the ratio between
the predicted and actual surface density to emphasize the
gap region. For velocities, which can possess both positive
and negative values, we exhibit the absolute errors.

A visual inspection of the comparison between the model
predictions and actual data (panels a, c, e vs b, d, f ) reveals
negligible discrepancies in the location and contrast of both
the density waves and gaps, despite the sharp morphology
of these perturbations compared to the background.

4.2. Empirical dependence of the gap depth on disk and
planet properties

Gap Depth (Σgap), the average surface density inside a gap,
depends on α, h0, and q. Fung et al. (2014) simulated 21
disk-planet systems and established an empirical correlation
for planet masses less than five Jupiter masses:

Σgap/Σ0 = 0.14
( q

0.001

)−2.16 ( α

0.01

)1.41
(

h0

0.05

)6.61

.

(4)
Using PPDONet, we generate 500 disks on a laptop within
a ten-minute span and determine the gap depth for these
disks. Adopting the same methodology as Fung et al.
(2014), we average the surface density within the annu-
lus |r− rp| < 2max(RH, h), excluding the area |ϕ−ϕp| <
2max(RH, h)/rp. We fit the data with a power-law similar
to Fung et al. (2014)

Σgap/Σ0 = 0.13± 0.02
( q

0.001

)−2.50±0.01

×
( α

0.01

)1.421±0.007
(

h0

0.05

)7.26±0.03

.(5)

and measure the standard errors of the estimate, namely stan-
dard deviation of the error terms, using IBM SPSS Statistics.
We get an adjusted R2 equaling 0.995, indicating an excel-
lent fit. Figure 3 illustrates the data, the prediction from
Equation (4), and our fit. Due to the construction of the
horizontal axis, we represent the prediction of Equation (4)
with dots rather than a curve. Although our fit’s power-law
indices vary slightly from Fung et al. (2014)’s, both show
the same trend: more massive planets create deeper gaps in

1To compare with FARGO3D, the grid points for surface
density are cell-centered, while velocities are face-centered (see
Benı́tez-Llambay & Masset, 2016, §2.3)
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Figure 2. Two-dimensional comparisons of predicted surface density and velocity distribution in polar coordinates (radius r and azimuth
θ). (α, h0, q) =

(
5.2× 10−4, 0.053, 1.6× 10−3

)
. Left (a, c, and e): Ground truth generated from FARGO3D simulations. Middle (b,

d, and f): Neural network predictions. For the two left columns, we subtract the initial value from the two velocities to highlight the
perturbations. Two right columns: Differences or ratios. Surface density differences are measured by the ratio Σpred/Σtruth, so that the
gap region is highlighted. Velocity differences are shown in absolute errors.

10−3 10−2 10−1

0.13
(

q
0.001
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0.01

)1.421 ( h0

0.05

)7.26

10−3

10−2

10−1

Σ
ga

p
/Σ

0

Data

Eq. (9) (Fung et al. 2014)

Eq. (5) (This work)

Figure 3. The Empirical relationship of the gap depth Σgap as a
function of α, h0, and q. We plot the measured gap depth from
PPDONet-simulated disks (green) and the best-fitting relationship
(black). We compare them with the relationship from Fung et al.
(2014) (red).

disks with lower viscosity and aspect ratio. We highlight
that with hundreds of disk models, we can not only derive

a fitting function but also ascertain the uncertainties in the
fitted parameters, a challenging feat with only tens of disk
models produced by numerical solvers.

5. SUMMARY
We introduce PPDONet, a machine learning tool, which
employs Deep Operator Networks (DeepONets; Lu et al.
2021) to accurately predict the steady-state solutions of disk-
planet interactions in parameterized protoplanetary disks.
PPDONet’s training utilizes 448 disk models derived from
FARGO3D simulations. This trained tool maps three scalar
parameters – Shakura & Sunyaev viscosity α, disk aspect
ratio h0, and planet-star mass ratio q – to the steady-state
solutions of disk surface density, radial velocity, and az-
imuthal velocity. As of now, PPDONet stands as the sole
public tool capable of solving this forward problem. It
predicts the structures of 500 disk-planet systems within
mere minutes on a standard laptop, drastically outpacing
traditional numerical simulations.

To evaluate the performance of PPDONet, we compare the
2D maps of predicted surface density and velocity with those
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produced by FARGO3D (§4.1). The two are consistent with
each other with little visible difference. We use PPDONet
to generate a sample of disk-planet interaction containing
500 disks and revisit the empirical relationship between gap
depth and α, h0, and q (§4.2). We also reproduce more
empirical relationships in appendix sections C.2 and C.3.
Overall, we recover previously found correlations. In ad-
dition, thanks to the one to two orders of magnitude larger
samples that PPDONet is able to quickly produce compared
with those previously produced using conventional numeri-
cal solvers, we are able to constrain the uncertainties in the
fitting parameters, a nearly impossible task in the past due
to small sample sizes.
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A. Hydrodynamic Simulations
We focus on large-scale structures, such as gaps and spiral arms, induced by a single planet on a fixed circular orbit in
gaseous disks. The disk’s initial profiles are described by the equations:

Σ = Σ0 (r/rp)
−1/2

, (6a)

vr = −3

2
αh0

2

√
GM⊙ (1 + q)

r
, (6b)

vθ =

√
1− 3

2
h0

2

√
GM⊙ (1 + q)

r
, (6c)

where Σ is the surface density, vr is the radial velocity, vθ is the azimuthal velocity, α is the Shakura & Sunyaev viscosity,
and h0 is the disk aspect ratio. Both α and h0 are kept constant throughout the disk. The models are developed for a fixed
initial radial surface density profile and a radially constant disk aspect ratio. The planet is at r = rp with mass mp = qM⊙.
The initial surface density at rp is Σ0 = 1. This setup ensures our model corresponds to planet-free steady-state accretion
disks (Fung et al., 2014). The boundary conditions are fixed and determined by initial values, which ensure a constant mass
inflow (Fung et al., 2014).

The outcomes of disk-planet interaction in our simulations are determined by three parameters: α, h0, and q. Massive
planets open deep gaps, while large viscosity and aspect ratio hinder the opening of deep gaps. With q > 2 × 10−3, or
α < 3 × 10−4, a disk may develop vortices or other asymmetric and time-varying structures (Fung et al., 2014). In this
work, we only focus on disks capable of reaching a steady state with parameters bounded by Table 1.

To collect data for training neural networks, choose the best ML models, and test their performance on unseen parameters,
we generate 768 FARGO3D (Masset, 2000; Benı́tez-Llambay & Masset, 2016) hydrodynamic simulations with r × θ =
381 × 1143 resolution. We sample α, h0, and q from Sobol sequences (Sobol’, 1967), quasi-random low-discrepancy
sequences effective in generating inputs for machine learning tasks (Wu et al., 2023). We divide the 768 FARGO3D
simulations into three groups with 448, 64, and 256 cases for training, validation, and testing, respectively. In training, we
compare neural network predictions with simulations to formalize loss functions. In testing, we measure errors on unseen
simulations to assess the generalization of our neural networks. All simulations are run for 0.314τν to reach (quasi) steady
state, where τν is the disk viscous timescale

τν ≈ r2p
ν

=
1

αcsh
=

1

αh0
2 . (7)

B. Hyperparameters of PPDONet
The hyperparameters used in our networks and training processes are listed in Table 2.

B.1. Training Dataset Size and Test Error

The predictive accuracy of the network is contingent on the sizes of the training datasets (Lu et al., 2021, Figure 4), and can
be problem dependent. To investigate the data size dependency in our problem, we train twelve networks, each targeting
surface density, radial velocity, and azimuthal velocity, using training datasets of sizes 64, 128, 256, and 448, respectively.
The networks are then tested on a dataset comprising 256 unseen FARGO3D simulations (see § 3.2).

As the number of FARGO3D simulations in the training data increases, the test errors initially decrease before eventually
plateauing due to factors such as limited network capacity (Figure 4). To provide a clearer visualization of the comparison,
we plot the two-dimensional difference between the FARGO3D simulations and the network predictions in Figure 5. The
representative case and difference calculation methodology employed in this figure correspond to those used in Figure 2.

C. Tests
C.1. 1D surface density profile

Gaps are one of the most important disk structures whose profiles are closely related to and can be used to constrain the
properties of gap-opening planets (Kanagawa et al., 2016). We carry out quantitative comparisons between PPDONet
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Table 2. Machine learning hyperparameters

HYPER-PARAMETER DEFAULT VALUE

TRAINING DATA SIZE 448
VALIDATION DATA SIZE 64
TESTING DATA SIZE 256
BATCH SIZE 32
NUM. STEPS FOR EACH BATCH 3
INITIALIZATION GLOROT NORMALA

LEARNING RATE 0.0005
LEARNING RATE DECAY RATE 0.9
LEARNING RATE TRANSITION STEPS 2000
OPTIMIZER ADAMB

TOTAL NUMBER OF ITERATIONS 105

BRANCH NETWORK LAYER SIZE 100, 100, 100, 100, 50
TRUNK NETWORK LAYER SIZE 256, 256, 256, 256, 256, 50
Z NETWORK LAYER SIZE 100, 1
A GLOROT & BENGIO (2010)
B KINGMA & BA (2014)

64 128 256 448

Training data size

3× 10−5

6× 10−5

1× 10−4

3× 10−4

E
rr

or

Surface density

training

test

64 128 256 448

Training data size

5× 10−7

8× 10−7

1× 10−6

6× 10−7

Radial velocity

training

test

64 128 256 448

Training data size

10−7

6× 10−8

2× 10−7

3× 10−7

Azimuthal velocity

training

test

Figure 4. Comparison of test errors for neural networks trained using training dataset with different sizes. The three columns represent
networks trained for surface density (left), radial velocity (middle), and azimuthal velocity (right), respectively. We calculate the losses
using the method described in §3.3.

predictions and the ground truth by analyzing the azimuthally averaged 1D surface density radial profile of gaps. To measure
1D profiles, we mask regions contaminated by the planet and azimuthally average the surface density. One representative
example (α = 5.2× 10−4, h0 = 0.053, and q = 1.6× 10−3) is shown in Figure 6. The gap profiles from FARGO3D and
PPDONet prediction overlap with no noticeable difference, and the ratio between the two deviates from unity by ∼1%,
indicating an excellent agreement.

C.2. Empirical dependence of the gap width on disk and planet properties

Gap width (∆gap) relates to disk and planet properties and is an observable frequently used to constrain planet masses
in observations (Kanagawa et al., 2016; Zhang et al., 2018). We measure the gap width in our sample and examine the
empirical relationship in Kanagawa et al. (2016). We adopt a similar method in measuring ∆gap as Kanagawa et al. (2016),
i.e., the radial separation between the inner and outer gap edges, with the edges identified at 0.5 Σ0. We fit the data by a
power law:

∆gap/Rp = 0.47± 0.04
( q

0.001

)0.442±0.003

×
( α

0.01

)−0.201±0.002
(

h0

0.05

)−0.94±0.02

. (8)
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0.5

1

1.5

2

2.5

0.5

1

1.5

2

0
0.5

1

1.5

2

0 0 0

0.63

1.00

1.58

-0.20 c s 

0

0.20 c s 

-0.10 c s 

0

0.10 c s 

training dataset size=64 128 256 448

𝜃

Figure 5. Comparison of prediction errors for neural networks trained with different dataset sizes. The four columns represent networks
trained on dataset sizes of 64 (leftmost column), 128, 256, and 488 (rightmost column) samples, respectively. The representative case and
difference calculation methodology correspond to those utilized in Figure 2.

In comparison, Equation (4) in Kanagawa et al. (2016) gives

∆gap/Rp = 0.39
( q

0.001

)0.5 ( α

0.01

)−0.25
(

h0

0.05

)−0.75

. (9)

The two are shown in Figure 7, a reproduction of Figure 3 in Kanagawa et al. (2016), with 19× more data points (500 in our
case vs 26 in Kanagawa et al. (2016)). Again, the more than one order of magnitude bigger sample size enables us to obtain
uncertainties in the fitted parameters.

C.3. Empirical dependence of the azimuthal velocity perturbation on disk and planet properties

We also examine the azimuthally averaged normalized perturbed rotational velocity vθ(r, θ): δvθ(r) ≡
⟨(vθ(r, θ)− vθ,0(r, θ)) /vθ,0(r, θ)⟩, where vθ,0(r, θ) is the initial value. We then define the difference between the maximum
and minimum δvθ(r) within a radius range of r ∈ (0.5rp, 1.5rp) as ∆δvθ ≡ max [δvθ(r)]−min [δvθ(r)]

2 Yun et al. (see
2019, Figure 1d). The measurements are conducted on two datasets each containing 500 disks in different parameter spaces.
First, we generate disks from PPDONet with the same range of α as Yun et al. (2019): 3 × 10−4 < α < 3 × 10−3. We
measure the perturbed velocity amplitudes in our sample (green dots) following Yun et al. (2019) and obtain the best fit
(black line):

∆δvθ = h0
(0.010± 0.001)K1.09±0.03

1 + (0.048± 0.003)K0.82±0.02
, (10)

2The ∆δvθ in our work is defined as δV in Yun et al. (2019).
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Figure 6. Gap profile comparison for one example case with α = 5.2× 10−4, h0 = 0.053, and q = 1.6× 10−3. Blue: Ground truth
from FARGO3D. Red: PPDONet prediction. Bottom panel: The ratio between the two.
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Eq. (12) (Kanagawa et al. 2016)

Eq. (8) (This work)

Figure 7. Empirical relationships for the gap width ∆gap against α, h0, and q. We plot the gap width measured from predicted disks
(green), our best-fitting relationship (black), and the relationship from previous work (Kanagawa et al., 2016) (red).

where K ≡ q2h0
−5α−1. This is similar to the one obtained by (red dots) Yun et al. (2019)

∆δvθ = h0
0.007K1.38

1 + 0.06K1.03
. (11)

The data and the two fits are shown in Figure 8. Next, we generate disks from PPDONet with larger α, 3× 10−3 < α < 0.1,
and measure ∆δvθ (grey dots). We find neither relationship is suitable for accurately characterizing disks with high viscosity.
This is as expected, because when α ≳ 0.01 viscous damping of density waves strongly affects the evolution of waves and
their profiles (Miranda & Rafikov, 2020).
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Figure 8. The empirical relationship of amplitudes of perturbed rotational velocity ∆δvθ against the dimensionless parameter K ≡
q2h0

−5α−1. The green and grey dots are the measurements from PPDONet-predicted disks with 3 × 10−4 < α < 3 × 10−3 and
3× 10−3 < α < 0.1, respectively. The black line is the relationship of this work, fitted from the green dots, and the red sample points
are evaluated with the relationship from Yun et al. (2019).
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