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Abstract

We introduce a diffusion-generative model to de-
scribe the distribution of galaxies in our Universe
directly as a collection of points in 3-D space,
without resorting to binning or voxelization. The
custom diffusion model, which employs graph
neural networks as the backbone score function,
can be used as an emulator that accurately repro-
duces essential summary statistics of the galaxy
distribution and enables cosmological parameter
estimation using gradient-based inference tech-
niques. This approach allows for a comprehensive
analysis of cosmological data by circumventing
limitations inherent to summary statistics-based
as well as likelihood-free methods.

1. Introduction

Cosmological data analysis is a multidisciplinary field that
involves nuanced interplay between theory and data. Analy-
sis of late-time observables of structure formation is espe-
cially challenging due to the high dimensionality of typical
data and complexity of the underlying data-generating pro-
cess, which aims to model, amongst others, the nonlinear
collapse of structures, baryonic processes, and the galaxy-
halo connection. An example of such an observable is
galaxy clustering — the 3D distribution of galaxies in the
Universe — which is a powerful probe of cosmology and
galaxy formation. The galaxy clustering signal is typically
quantified by summary statistics like the two-point corre-
lation function (2PCF), which measures the probability of
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finding a pair of galaxies as a function of their separation.
While routinely used in cosmological analyses, the 2PCF is
not a complete (sufficient) summary of the galaxy cluster-
ing signal, and higher-order statistics are required to fully
capture the information content of the clustering signal.

Machine learning methods have demonstrated the potential
to significantly impact how cosmological data is analyzed,
and galaxy clustering is no exception (Makinen et al., 2022;
Hahn et al., 2023). More concretely, the ability of neural
networks to beat the curse of dimensionality allows for
extraction of information about the underlying cosmology
without having to manually construct summary statistics to
describe the galaxy clustering field.

For galaxy clustering observations, arguably the holy grail is
to obtain a reliable estimator of the likelihood of an observed
galaxy configuration x given some parametric description
0 of the data, p(x | 0) — a generative model. Access to the
conditional likelihood can be use to sample different field
configurations, x ~ p(z | ), for use in various downstream
tasks or as a surrogate model (emulation). Additionally,
one can use the likelihood to perform parameter inference
and hypothesis testing with a method of ones choosing. In
the context of Bayesian inference, commonly employed
in cosmology, the conditional likelihood can be used in
conjunction with a prior p(é) in order to obtain a estimate
of the parameter posterior density, p(6 | ) = p(z | 9) -
p(0)/p(x).

Unfortunately, computing the conditional likelihood is ex-
tremely challenging for most observationally interesting
scenarios. This is because it requires marginalizing over an
essentially infinite-measure space of latent configurations z,
in the case of galaxy clustering one characterizing possible
initial conditions and their evolution trajectories towards re-
alizing a given observation x —p(z | 0) = [ dzp(z, z | 0).
For a collection of galaxies or dark matter halos, construct-
ing a generative model involves modeling the joint probabil-
ity distribution of the properties (positions, velocities, etc.)

of a large number of galaxies, p ({a:l}fvjl“) — a formidable
task.

Machine learning has revolutionized the field of generative
modeling, heralding methods that are able to learn complex
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Figure 1. Depiction of the point cloud diffusion model, showing samples from the diffusion process at different time steps. During training,
noise is added to a data sample z, that the graph neural network score model learns to denoise. To generate samples, we generate noise

from a Gaussian distribution and denoise it iteratively.

data distributions such as those of natural images and human-
generated text. Within the sciences, generative modeling
has demonstrated potential across domains, showing impres-
sive performance in modeling the distribution of atomistic
systems, proteins and biomolecules, and particle jets, to
name a few. Much of this success has been enabled through
the use of diffusion models (Ho et al., 2020; Song et al.,
2020) — a class of generative models that learn to denoise a
corrupted version of the data by estimating gradients of the
data distribution (score functions).

Within cosmology, generative modeling has recently been
applied in the context of matter density fields (Dai & Seljak,
2022), weak lensing mass maps (Remy et al., 2022), galaxy
images (Lanusse et al., 2021; Smith et al., 2022), and strong
lensing observations (Adam et al., 2022; Legin et al., 2023).
In all cases, the common data modality of 2-D pixelized
images is used. While the image representation is appropri-
ate in many cases, the distribution of galaxies is, arguably,
ideally represented as a point cloud — a set of points in 3-D
space, with additional attributes (e.g., velocities, as well
as other galaxy properties) attached to them. Pixelization
or voxelization necessarily introduces information loss and
hyperparameter choices, precluding a full in-situ analysis of
the data.

In this paper, we develop a diffusion-generative model with
the goal of describing the statistical properties of the dis-
tribution of galaxies in our Universe. We focus here on
modeling dark matter halos, leaving a more detailed ex-
ploration including effects of the galaxy-halo connection
and observational effects to future work. We show that our
custom diffusion model, which uses either graph neural net-
works as a backbone, faithfully reproduces crucial summary
properties of the galaxy field. Furthermore, we show how
our model can be used for likelihood-based inference using
differentiable optimization techniques.

2. Methodology

We describe, in turn, the diffusion model framework em-
ployed, the score neural network, and the likelihood evalua-
tion and parameter inference procedures.

2.1. Diffusion generative modeling

Diffusion models admit several closely related formulations.
In one common framing, a neural network é,, (2, t) learns
to iteratively “de-noise” a corrupted version z; of the data
xo from a timestep ¢ € [0, T'] by predicting either the added
noise € or the original data point directly. New samples can
then be generated by sampling Gaussian random noise zp
and iteratively de-noising it from ¢ = 7 to ¢ = 0. A comple-
mentary framing relies on having a neural network 5, (2, t)
estimate the timestep-dependent gradient of the data distri-
bution — the so-called score function, V, log p(z:).

The two formulations are closely related. Considering
Gaussian noise addition with variance o as the corruption
process, p(z;) = N (z¢;0,02), the score can be analyti-
cally expressed as V., log p(z;) = (vg — 2¢) /07 = —€/0y.
Score- and noise-prediction are hence equivalent up to a
timestep-dependent scaling. The intuition behind the rela-
tive negative sign is that, since the noise e corrupts the data
point, moving in its “opposite” direction will maximize the
local (in time t) probability of moving towards the original
data point. Here, we refer to the noise- and score-prediction
networks interchangeably.

Diffusion models are commonly trained directly using (a
Monte-Carlo expectation of) score- or noise-matching ob-
jectives, e.g. [ dtEeopon <||e — (=, t)ug). While
extremely effective for e.g. high-quality image generation,
such loss functions do not aim to directly maximize the data
log-likelihood log p(x). Since one of our desiderata is to
be able to perform accurate conditional likelihood estima-
tion for parameter estimation purposes, we instead use a
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Figure 2. Summary statistics of the samples generated by the diffusion model compared to those of the N-body simulations for two
cosmological parameter values from the test set, representing a low (blue) and a high (brown) clustering scenario. For each cosmology, all
summary statistics are computed for the same emulated point cloud. From left to right, we show the halo mass function, the k-nearest

neighbours statistics, and the mean pairwise velocity.

modified objective which maximizes a lower bound on the
log-likelihood.

Considering complementary perspectives on diffusion, Vah-
dat et al. (2021); Song et al. (2021); Kingma et al.
(2023) described how time-weighted sums of the traditional
score-matching objective can be used as variational lower
bound estimators of the likelihood, and hence as a proxy
for maximume-likelihood training. We give a high-level
overview of the formalism here; see Luo (2022); Kingma
et al. (2023) for further details. We use the efficient and nu-
merically stable implementation from Kingma et al. (2023),
which frames the diffusion process as a hierarchical varia-
tional autoencoder (VAE) with a specific (Gaussian) func-
tional form for the transition probability between latent
variable hierarchies. Much like in a classical VAE (Kingma
& Welling, 2013), the evidence lower bound (ELBO) ob-
jective can be used as a variational lower bound on the
log-likelihood log p(x),

ELBO(2) = — Eq(op ) [Dxw (q (27 | @) [P (27))] +

Prior matching

(D
Lais ()
——

Forward-reverse consistency

Eq(z, 12y logp (x| 20,)] +

Reconstruction

where z7 are the latent random variables at the last nois-
ing step, 2, are the latent variables in the first nois-
ing step, and ¢(z: | x) are the (assumed Gaussian)
variational posteriors on the noise addition. The diffu-
sion loss Lqir(x) ensures consistency between the for-
ward (noising) and reverse (de-noising) steps, Lqit(z) =
T
=2t By [Dxu (g (ze-1 | 26, 2) [P (-1 | 20))]-
It can be shown (Kingma et al., 2023) that the diffu-

sion loss considerably simplifies and can be comput-
ing through the Monte-Carlo expectation as Lgif(z) =

MR o0 im0,y |W(E) € — & (21, 8)||5| Where N
is the number of timesteps and w(¢) is a specific weighting
term that depends on the (learned, monotonic) noise sched-
ule. This can be seen as a weighted form of the traditional
de-noising (equivalently, score-matching) objective. The
noise-corruption (forward) model is z; ~ N (ayz, 041); 0y
and oy = /1 — 02, corresponding to a variance-preserving
noise model. For brevity, we omit the expression for
the weighting term w(¢) and the implementation of the
learned noise schedule here, referring instead to Luo (2022);
Kingma et al. (2023) for details.

2.2. The score model

The score function is a crucial part of the diffusion and
model must be chosen sensitive to the data modality and
generating process. In our case, we model the distribution
of galaxies and their properties as a point cloud i.e., a col-

lection of coordinates (positions), optionally with attached

attributes (e.g., velocities), p ({FZ, [vi, . . ]}f\iﬁ“

). Some re-
quirements for a score model in our case are (/) permutation
equivariance, (2) the ability to process points of arbitrary car-
dinality, and (3) the capacity to effectively model the joint
correlation structure of galaxy/halo properties. Variants of
the closely related transformer and graph neural networks
(GNN5s) families satisfy these requirements; here, we show
an application using a GNN score model, described below.

We use a variant of the graph convolutional network from
Battaglia et al. (2018). A local k-nearest neighbors graph
with £ = 20 is constructed, using the Euclidean distance
between coordinates as the distance metric. After linearly
projecting the input features z; into an embedding space of
64 dimensions, 4 message-passing rounds are performed,
constructing/updating the edge attributes at each round by
passing a concatenation of the sender and receiver node
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attributes, edge attributes, as well as global parameters (a
combination of timestep embedding and conditioning pa-
rameters {€,,,os}) through an MLP. For each node, the
neighboring edge attributes are aggregated, concatenated
with the node attributes and globals, and passed through an-
other MLP to update the node features. See Appendix A for
more details on the graph neural network implementation.

2.3. Generation, likelihood evaluation, and inference

Generation: We can generate new samples from a learned
diffusion model by (/) sampling an initial random noise
configuration zr ~ N(0,1), and (2) running the reverse
diffusion process by sampling z; ~ p(z¢—1 | 2¢, ) until we
arrive at zg = x.

Likelihood evaluation: The diffusion model is trained
using a stochastic estimate of the variational maximum-
likelihood objective, Eq. (1). The same expression can be
used to obtain an estimator of the conditional likelihood
p(z | 6), ensuring that the ELBO is evaluated a sufficient
number of times to obtain a good estimate of the expectation
value.

Posterior inference: Given a data sample z, we can
use stochastic variational inference (SVI) (Jordan et al.,
1999; Blei et al., 2017) to efficiently obtain the approx-
imate posterior. The variational ansatz on the posterior
distribution of the cosmological parameters is taken to
be a multivariate Normal distribution ¢, » = N(u, X).
The mean and covariance are obtained by minimizing
the reverse KL-divergence between the true and varia-
tional posterior distributions, Dxr, (¢, || (@ | x)). This
is again obtained using the tractable evidence lower bound,
ELBO = E,, ;) [logp(z,0) — log g, x(0)], as the opti-
mization objective. In practice, SVI is implemented using
the NUMPYRO (Phan et al., 2019) package.

3. Experiments and discussion

Dataset and training: We use 2000 N-body simula-
tion boxes from the latin hypercube of the Quijote suite
(Villaescusa-Navarro et al., 2020) at redshift zero, split
90/10 into training and validation sets. Dark matter halo
coordinates are represented as a point cloud, choosing the
heaviest 5000 halos by halo mass. The cosmological param-
eters 0 = {{,,,, 0g} are used as a conditioning context to
the score model. The pipeline is trained using the variational
maximum-likelihood objective in Eq. 1. 500, 000 iterations
of the AdamW (Loshchilov & Hutter, 2019; Kingma & Ba,
2015) optimizer with peak learning rate 3 x 10~ and 1000
linear warmup steps are run. We show results for models
trained on either (/) halo positions only, for a one-to-one
comparison with two-point correlations on parameter infer-
ence, or (2) halo positions, velocities and masses.
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Figure 3. Results of posterior parameter inference using the trained
likelihood estimator from the diffusion model, compared with pos-
teriors obtained using the 2PCF. True parameter values are indi-
cated by dashed lines. The diffusion-backed likelihood achieves
tighter constraints on the two parameters by using more of the
information encoded in the forward model.

Summary statistics validation: We verify the quality of
the trained generative model, including the dependence on
cosmological parameters, by comparing the summary statis-
tics obtained from the generated point clouds with those
from a held out validation set, for two extreme values of the
cosmological parameters. Figure 2 shows the corresponding
halo mass function, the cumulative distribution of k-nearest
neighbors (k-NNs) and the mean pairwise velocity as a func-
tion of pair separation, v12, which shows that the correlation
between positions and velocities is correctly modelled. The
expected correspondence with held out simulations are seen,
over a wide range of scales, and the cosmology dependence
is faithfully modeled.

Posterior inference: Figure 3 shows posterior distributions
on {€,,,, 05} obtained using variational inference for two
held out halo sample using the likelihood estimated with
the trained diffusion model (brown) and the 2PCF (green),
using the diffusion model trained on halo positions only. The
2PCF posterior was obtained by training a normalizing flow
to reproduce the posterior distribution of the cosmological
parameters given the measured two point functions. As
expected, the diffusion-backed likelihood achieves tighter
constraints on the two parameters by using more of the
information encoded in the forward model. However, we
do not find that the posterior estimates obtained with the
current model are well-calibrated for (2,,,, and inference
can be significantly biased in some cases. An example of
this scenario is shown in Figure 3 (right); further details
are provided in Appendix B. It takes approximately 300
seconds to obtain a posterior on a Nvidia A100 GPU.

4. Conclusions and prospects

We have introduced a diffusion-generative model that cap-
tures the complex, non-Gaussian statistics of the galaxy
clustering field along with the underlying cosmology depen-
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dence. The model can be efficiently used for fast emulation
of N-body simulations via sampling, = ~ p(x | 8), as well
as posterior parameter estimation via variational inference
or MCMC methods.

To enhance the simulation efficiency of the model and im-
prove the calibration of the recovered posteriors, several
properties of the data-generating process, which are learned
implicitly, can be explicitly incorporated into the score
model and optimization objective: the effect of periodic
boundary conditions in the simulation box, and Euclidean
(E(3)) symmetry to translations, rotations, and reflections.
Since we have a fixed, limited number of simulations these
improvements, e.g. the use of symmetry-preserving neural
networks (Satorras et al., 2022; Batzner et al., 2022), have
the potential to significantly enhance training data-efficiency
and the fidelity of our generative model . Finally, scaling
our model to observations will require the ability to process
sets of a much larger cardinality than considered here. This
could be achived, for example, using graph neural networks
with hybrid local-global adjacency matrices, and/or using
latent diffusion — performing diffusion in an encoded latent
space, decoding back to physical space, with the latent rep-
resentation preserving the desired symmetry properties (e.g.,
permutation equivariance).

Lastly, the model presented in this work was trained on
the dark matter halo distribution generated by /N-body sim-
ulations. An application to upcoming galaxy clustering
datasets, such as DESI, would require building a forward
model for the survey that includes: (/) a model of the galaxy-
halo connection, (2) observational effects, such as redshift
space distortions and the Alcock-Paczynski effect, (3) sur-
vey systematics, such as survey masks and fibre collitions.
An example of such a forward model has been presented in
SimBIG (Hahn et al., 2023). A diffusion model for galaxy
clustering trained on such a forward model could provide
strong constraints on the standard ACDM cosmological
model, as well as a means to test the robustness of its con-
straints through the analysis of posterior samples and likeli-
hood estimates.
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A. Details on the score model

The graph neural network employed here is composed of four graph-convolution layers h!*! e!*1 = GCL[h', e, g'] where
hY are the embeddings of the halo properties being modelled (either positions, or positions, velocities and masses), the edge
features €' are learned vectors of dimension 64, and g is the joint embedding of the diffusion time and the cosmological
parameters. Layer normalizations is applied after each graph layer.

Each graph-convolution layer is defined as

el = ¢c(hl,h) el;), hi*' =h!+ ¢,(h

§ :el+1

i#]

where the edge- and node-update neural networks ¢, and ¢, are both multilayer perceptrons composed of four hidden layers
of dimension 64 and GELU activations.

@

B. Details on posterior inference

In Figure 4, we compare the mean and variance of the inferred posteriors to the true values for 100 test set simulations. In
green, we show the inference resulting from the [V-body simulations, showing that the estimation of €2, is overconfident,
whereas the predicted uncertainties on og are better calibrated. In brown, we also show the inference results on samples
generated with the diffusion model. In this case, the (2, uncertainties are better calibrated. This demonstrates that there
is still a significant difference between the statistical properties of the generated and true samples when it comes to the
conditional dependence on €2,,,. See section 4 for suggestions on how to improve the calibration of the recovered posteriors.
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Figure 4. Comparison of the true parameters of the test set simulations to those inferred by the diffusion model, taken as the mean and
standard deviation of the inferred posterior distribution. We show the difference between inferring the cosmological parameters from the
true N-body simulations (/N-body) and the generated diffusion samples (Generated).



