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Manuel Pérez-Carrasco 2 1 4 Martina Cádiz-Leyton 1

Abstract
We conducted empirical experiments to assess
the transferability of a light curve transformer to
datasets with different cadences and flux distri-
butions using various positional encodings (PEs).
We proposed a new approach to incorporate the
temporal information directly to the output of the
last attention layer. Our results indicated that
using trainable PEs lead to significant improve-
ments in the transformer performances and train-
ing times. Our proposed PE on attention can be
trained faster than the traditional non-trainable PE
transformer while achieving competitive results
when transfered to other datasets.

1. Introduction
The Vera C. Rubin Observatory (LSST; Ivezić et al. 2019)
will produce a vast number of observations every night in
the sky, reaching up to 40 million events per night where
the brightness or location of a source change (Sánchez-Sáez
et al. 2021). The classification of this data is of utmost
importance to astronomers as it allows them to acquire in-
formation about the physical characteristics and properties
of astronomical objects. In recent years, the development
of deep learning models has aided in categorization of light
curves (Charnock & Moss 2017; Muthukrishna et al. 2019;
Donoso-Oliva et al. 2021). However, light curves pose a
considerable challenge as they have different distributions
in each of the bands, are irregularly sampled and have vary-
ing cadences depending on the telescope at which measure-
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ments were taken (Pasquet et al. 2019; Yu et al. 2021). These
peculiarities make it difficult to generate models that are
sufficiently generalizable to all astronomical surveys.

Transformers, a type of deep learning model that use self-
attention, have demonstrated exceptional performance on
light curves (Pimentel et al. 2022; Donoso-Oliva et al. 2022;
Astorga et al. 2023). In these models, temporal information
is conveyed through positional encoding (PE), typically pro-
vided by sine and cosine functions with varying frequencies
(Vaswani et al. 2017). However, the original proposal of
PE was made in the context of text data, assuming uniform
word spacing, which differs from the characteristics of as-
tronomical time series. To tackle this challenge, we have
focused on enhancing the robustness of the PE definition to
effectively generalize to different astronomical surveys.

Currently, there is limited research utilizing positional en-
codings in transformer models to represent temporal in-
formation in light curves. Allam Jr & McEwen (2022),
Donoso-Oliva et al. (2022), and Morvan et al. (2022) em-
ployed non-trainable positional encodings by directly in-
serting timestamps into the predefined function in Vaswani
et al. (2017), achieving encouraging results compared to
traditional deep learning methods. Pimentel et al. (2022)
and Astorga et al. (2023) proposed a new module based
on Fourier decomposition, with M harmonic components
and trainable parameters, to induce temporal information.
Additionally, Pan et al. (2022) utilized the rotary positional
encoding proposed in Su et al. (2021) to explicitly leverage
relative positions in the self-attention formulation. However,
no studies have analyzed the effect of positional encoding
of a transformer model within the light-curve domain.

Motivated by the above, we test different PEs, in a light
curve transformer, and evaluate their performance in the
reconstruction of astronomical time series and the classifi-
cation of variable stars. We use the architecture proposed
in Donoso-Oliva et al. (2022), which is a self-supervised
light curve transformer model. We perform an empirical
comparison and analysis of several PEs on astronomical sur-
veys with different cadences. Additionally, we investigate
the potential of a trainable positional encoding and propose
a new approach to incorporate the temporal information.
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2. Methods
2.1. Baseline light curve transformer model

Consider light curves of L observations, defined by a vector
of fluxes x ∈ RL and times t ∈ RL (MJD; Modified Julian
Date). A standard transformer add up the projections of the
observational and temporal data into a single vector:

s = FFN(x) + PE(t), (1)

where FFN(x) ∈ RL×dx represents a Feed-Forward
Network (FFN)1 , dx is the output size of this network,
and PE(t) ∈ RL×dpe is the temporal information passed
through a positional encoding. To perform the addition oper-
ation, dpe must equal to dx. As proposed by Donoso-Oliva
et al. (2022), the original positional encoding is expressed
as a non-trainable function:

PE(t) 2j = sin (ω2j · t), (2)

PE(t) 2j+1 = cos (ω2j+1 · t), (3)

ωj =
2π

1000
j

dpe

, (4)

where ωj are the angular frequencies, 1000 defines the
lower bound of frequencies, t is the times vector, and
j ∈ [0, ..., dpe − 1] are the dimensions of PE with a maxi-
mum of dpe frequencies. Note that this PE is a slight modi-
fication of the one proposed by Vaswani et al. (2017).

The self-attention blocks receive the matrix resulting from
the previous step and can be expressed as:

e
(h)
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(h)
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dk

, (5)
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where W
(h)
q , W

(h)
k , and W

(h)
v ∈ Rdx×dk are trainable

weights matrices corresponding to the query (q), key (k),
and value (v), respectively. The terms e(h)ij , α(h)

ij , and z
(h)
i

represent the similarity between the query and key vectors,
the attention score and the output vector for each obser-
vation, respectively. Here, h ∈ {1, . . . ,H} refers to the
attention heads, and dk is a hyperparameter that specifies
the embedding size of the self-attention head. The output
of a self-attention block considers the information of the

1Following Donoso-Oliva et al. (2022) we use no activation
function for FNN(x).

different heads and is defined as:

zi = Concat
(
z
(1)
i , ..., z

(H)
i

)
Wo, (8)

where Wo ∈ RH·dk×d is a trainable weight matrix, and
d is the dimension of the output z ∈ RL×d. This output
can be used as input to other multi-head attention blocks
to enable the model to capture dependencies at multiple
levels of abstraction. The final representation is obtained
in the last block. This representation is generated by a
decoder FFN that reconstructs the input fluxes x̂ ∈ RL in
a self-supervised objective task, by minimizing the Root
Mean Square Error (RMSE) loss function. The resulting
representation can serve as input for subsequent tasks, such
as classification or regression.

2.2. Positional encodings

2.2.1. TRAINABLE

In order to capture temporal relationships from the light
curves, we replaced the angular frequencies with an embed-
ding layer consisting of dpe trainable parameters. These
parameters were initialized with the predefined frequencies
given in Eq. (4).

2.2.2. FOURIER

We enhance the learnability and flexibility of the positional
representation in Eqs. (2) and (3) by modulating it with a
Multilayer Perceptron (MLP) (Li et al., 2021):

P̂E(t) = (ΦGeLU (PE(t) ·W1 + b1)) ·W2 + b2, (9)

where W1 ∈ Rdpe×dm and W2 ∈ Rdm×dpe are trainable pa-
rameters, b1 ∈ Rdm and b2 ∈ Rdpe are biases, and ΦGeLU is
the activation function. Here, dm is the number of neurons
in the hidden layer. In particular, W2 projects the represen-
tation to the dimension of the input embeddings.

2.2.3. RECURRENT

We followed the approach of Nyborg et al. (2022) and used a
Gated Recurrent Unit (GRU; Cho et al. 2014) to incorporate
temporal dependencies at time steps t expressed with the
baseline positional encoding shown in Eqs. (2) and (3):

o(t) = GRU (PE(t)) , (10)

P̂E(t) = o(t) ·Wp + bp, (11)

where o(t) ∈ RL×dpe is the output of the GRU at each
time step, Wp ∈ Rdpe×dpe is a trainable weight matrix and
bp ∈ Rdpe is the trainable bias.

2.2.4. TUPE-A

We follow the approach employed in Ke et al. (2020) for
natural language processing (NLP) and separate the mixed
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correlations produced between observational and temporal
information in the attention matrix by redefining Eqs. (5)
and (7). To represent the queries and keys of the temporal
information expressed by Eqs. (2) and (3), we introduce
new parameters Uq, Uk ∈ Rdpe×dk , respectively:

e
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ij =

FFN(x)iW
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z
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α
(h)
ij (xjW

(h)
v ). (13)

For efficiency, we share these new parameters across differ-
ent multi-head attention blocks (Ke et al., 2020).

2.2.5. CONCAT

Following the same idea and aiming to minimize the noise
generated in the attention matrix due to mixed correlations
between observational and temporal information, we con-
catenated them in separate orthogonal spaces:

s = [FFN(x) || PE(t)] . (14)

In this case, we utilize the trainable PE described in subsec-
tion 2.2.1.

2.2.6. PE ON ATTENTION (PEA)

To avoid mixing information, we propose incorporating
positional encoding directly into the final representation
obtained from the last multi-head attention block:

ẑ = z + PE(t), (15)

where PE(t) is expressed by the baseline positional encod-
ing shown in Eqs. (2) and (3) as a non-trainable function.
Here, the multi-head attention block takes only the observa-
tional information FFN(x) to compute the attention.

3. Experiments
3.1. Data description

For the pretraining stage, we utilized the unlabeled MA-
CHO light curves dataset (Alcock et al., 2000) and excluded
curves exhibiting noisy behavior2. The dataset comprised a
total of 1, 529, 386 light curves in the R-band, with a median
cadence of 1.00 days (refer to Appendix A for the cadence
distribution). Subsequently, we evaluated the performance

2We defined noise as points in the light curve with
|Kurtosis| > 10, |Skewness| > 1, and a flux error > 0.1.

of the pretrained transformers on the classification task us-
ing a subset of 500 objects per class from the MACHO
labeled survey (Full hereafter, Cutri et al., 2003). To iso-
late the effect of cadence at this task, we simulated three
datasets from the MACHO labeled subset by modifying
the cadence of the light curves. Specifically, we removed
observations from the light curves at rates of 3/4, 1/2, and
1/4, respectively. At a rate of 3/4, we removed the last
observation out of four, while at a rate of 1/4, the last three
observations were removed. To account for external factors,
such as changes in the band distribution, we also tested
the pretrained transformers on OGLE-III (Udalski, 2004),
which contains 358, 288 I-band light curves, and ATLAS
(Heinze et al., 2018), which contains 422, 630 orange-band
light curves. Specifically, we used a subsample of 500 ob-
jects per class from each labeled data subsets to consider
the scenario where we have few labeled data. The flux dis-
tribution, cadence distribution and classes of each labeled
subset can be found in Appendix A.

3.2. Training details

We ran the experiments on a Nvidia RTX A5000 GPU, em-
ploying two multi-head attention blocks with H = 4 heads
and dk = 64 neurons. The model dimensions were set at
d = dx = dpe = 256 and dl = 64, with the exception of
Concat PE, which employed dx = dpe = 128. Light curve
windows with a maximum length of L = 200 were consid-
ered. For light curves that exceeded this length, subsequent
time windows were sampled, beginning from a random po-
sition. For light curves with fewer than L observations, zero
values were padded at the end. Each generated window
was subtracted from its observational and temporal mean,
creating flux and time vectors with zero mean.

For the pretraining stage, we followed the strategy used
in Devlin et al. (2018), masking a percentage of the obser-
vations in the light curves. Specifically, we selected 50%
of the observations in each light curve for evaluating the
reconstruction of the flux x in the loss function. Within this
percentage, we masked 30% of the observations, replaced
10% with random values, and left the remaining 10% of
observations visible. We used early stopping with patience
of 40 epochs on the validation loss. The Adam optimizer
(Kingma & Ba, 2014) was used with a learning rate of 10−5

and a batch size of 2, 000.

For the classification task, we used two hidden layers of 256
Long Short-Term Memory (LSTM; Hochreiter & Schmidhu-
ber 1997) units followed by a MLP with a softmax activation
function. The dimension of this output layer depends on
the number of classes to be classified. We also divided the
training and validation sets into 3 folds with an 80/20 ratio,
respectively. We used early stopping with a patience of 20
epochs on the validation loss and the Adam optimizer with

3



Positional Encodings for Light Curve Transformers

Table 1. Performance of different positional encodings in the pretraining stage and classification task.

PE TYPE
MACHO UNLAB. MACHO LAB. OGLE ATLAS

FULL 3/4 1/2 1/4

RMSE TIME (EPOCHS) F1 (%) F1 (%) F1 (%) F1 (%) F1 (%) F1 (%)

BASELINE .170 6D 14H (523) 71.6 ± 1.9 69.2 ± 1.9 66.2 ± 1.9 63.3 ± 1.5 71.3 ± 1.1 65.8 ± 1.4

TRAINABLE .169 2D 13H (202) 72.9 ± 2.1 72.3 ± 1.0 71.0 ± 1.0 69.0 ± 0.5 74.9 ± 1.4 65.4 ± 1.8
FOURIER .170 1D 20H (142) 73.0 ± 1.1 70.2 ± 1.9 67.8 ± 0.9 62.9 ± 2.0 72.0 ± 0.8 69.6 ± 0.1
RECURRENT .197 0D 16H (048) 67.1 ± 1.8 63.5 ± 2.5 59.7 ± 1.9 54.6 ± 1.3 70.7 ± 1.1 68.3 ± 0.9
TUPE-A .219 0D 17H (084) 67.3 ± 1.6 66.1 ± 1.4 64.9 ± 1.0 60.8 ± 0.9 71.0 ± 1.0 67.5 ± 0.9
CONCAT .170 3D 01H (237) 73.4 ± 1.1 73.1 ± 1.7 70.9 ± 1.7 69.0 ± 1.8 74.5 ± 1.3 68.1 ± 0.6
PEA .199 0D 17H (058) 69.7 ± 0.9 68.9 ± 1.8 68.0 ± 1.0 65.5 ± 2.5 76.3 ± 1.2 66.9 ± 1.0

a learning rate of 10−4 and a batch size of 512.

3.3. Results

Table 1 provides the evaluation of a transformer pretrained
from scratch using different positional encodings on both
simulated and real datasets. We pretrained each transformer
on the unlabeled MACHO data and evaluated the reconstruc-
tion of the observational information in terms of RMSE and
training time. We then used the generated representation for
training the classification layers on each labeled dataset and
evaluated its performance in terms of F1-score. Our baseline
is the fixed positional encoding described in subsection 2.1.

During pretraining, the Trainable PE demonstrated a slight
improvement in terms of the reconstruction RMSE and a
significant reduction in training time when compared to the
baseline. The Fourier and Concat PE matched the perfor-
mance of the baseline while needing less computational
resources. The Fourier PE showed the best performance in
terms of both training time and reconstruction performance.
Recurrent, Tupe-A, and PEA did not outperform the Base-
line in RMSE terms, but converged in less than a day of
training. Learning curves are shown in Appendix B.

Since we are analyzing which PE can generate a better
representation during the pretraining stage, we keep the
transformer, including the PE, fixed when training for the
classification task. We start by evaluating the performance
of the transformers on the MACHO labeled datasets consid-
ering the effect of the change in cadence. The Trainable PE
outperformed the Baseline for all cadences. In particular,
the degradation of results for sparser light curves is less
severe with the Trainable PE than with the non-trainable
one. Similarly, Fourier PE performs better than the baseline
on three out of four datasets. However, the degradation
of results, as evaluated on the 1/2 and 1/4 cadences, was
similar to the baseline and worse than the Trainable PE. The
Recurrent and Tupe-A PE show worse classification perfor-
mance than the baseline. The Concat PE outperformed the

Baseline and achieved three of the four best performances in
terms of F1-score. Its degradation was minimal for sparser
light curves, and close to the Trainable PE. Finally, PEA
outperformed the baseline for cadences of 1/2 and 1/4, but
did worse for the full and 3/4 cadences.

Upon adding changes in the fluxes distributions using OGLE
and ATLAS, we observe that the baseline exhibits inferior
overall F1-score performance. The trainable PE model out-
performs the baseline in OGLE and demonstrated a similar
performance as the baseline for ATLAS. The Fourier PE
model showed superior performance in both astronomical
surveys with respect to the baseline. However, it did not
outperform the Trainable PE model in OGLE. In particular,
the Fourier PE model obtained the best F1-score in ATLAS.
Similarly, the Recurrent and Tupe-A PE models outper-
formed the baseline model in ATLAS and while exhibiting
a similar performance in OGLE. Finally, the Concat PE
and PEA models outperformed the baseline in both OGLE
and ATLAS, with the latter obtaining the highest F1-score
among all the PE on OGLE.

The separation of temporal and observational information
into orthogonal spaces (Concat PE) results in better clas-
sification performance on all datasets, yielding the best
average F1-score overall. Recall that both the Trainable
and Concat PE use the same trainable PE: the first add the
PE to a vectorized representation of the fluxes, while the
second concatenates these vector. Both of these PEs show a
small degradation in results for the MACHO datasets with
different cadences, implying that they allow for a better
representation of temporal information.

In terms of training time, all the trainable PEs and the pro-
posed PEA exhibit reduced pretraining time compared to
the baseline. Out of the three models that take less than one
day to train (Recurrent, Tupe-A, and PEA), the best classifi-
cation results for the different MACHO cadence datasets are
achieved by our proposed PEA. At the same time, PEA out-
performs the Recurrent and Tupe-A PEs when transfered to
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OGLE, while the three of them achieve similar classification
results on the ATLAS dataset (less than 1.6 sigma). This
is of particular importance when training large light curve
models with massive datasets for next generation surveys
such as the LSST.

4. Conclusion
In this work, we have evaluated the transferring potential of
a light curve transformer to datasets with different cadences
and flux distributions. Our results have demonstrated that
using a trainable positional encoding offers advantages over
a non-trainable PE baseline, in terms of both model perfor-
mance and computational efficiency. Additionally, we have
highlighted the benefits of separating observational and tem-
poral information within the attention matrix and proposed
a new approach for incorporating temporal information di-
rectly into the output of the last attention layer. At the same
time, our proposed method trains faster than the baseline
while achieving competitive classification performances.
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Ivezić, Ž., Kahn, S. M., Tyson, J. A., Abel, B., Acosta, E.,
Allsman, R., Alonso, D., AlSayyad, Y., Anderson, S. F.,
Andrew, J., et al. Lsst: from science drivers to reference
design and anticipated data products. The Astrophysical
Journal, 873(2):111, 2019.

Ke, G., He, D., and Liu, T.-Y. Rethinking positional
encoding in language pre-training. arXiv preprint
arXiv:2006.15595, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Li, Y., Si, S., Li, G., Hsieh, C.-J., and Bengio, S. Learnable
fourier features for multi-dimensional spatial positional
encoding. Advances in Neural Information Processing
Systems, 34:15816–15829, 2021.

Morvan, M., Nikolaou, N., Yip, K. H., and Waldmann, I.
Don’t pay attention to the noise: Learning self-supervised
representations of light curves with a denoising time se-
ries transformer. arXiv preprint arXiv:2207.02777, 2022.

Muthukrishna, D., Narayan, G., Mandel, K. S., Biswas,
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A. Dataset description.
In this section, we provide essential information to analyze the flux, cadence, and class distributions of various astronomical
surveys employed in this study. Figure 1 illustrates the flux distribution across the different datasets. It shows the similarity in
flux distributions among the various sets of labeled MACHO (full, 3/4, 1/2, and 1/4) and the disparities in flux distributions
between the OGLE, ATLAS, and labeled MACHO datasets. Figures 2 and 3 display the cadence distributions for the
unlabeled dataset and the labeled datasets, respectively. Key statistical measures are provided to understand the sampling
frequency of observations within the light curves. The unlabeled MACHO dataset, which served as the pretraining data for
the transformers, exhibits a median of 1.00 and a mean of 2.96 with a standard deviation of 17.19. These values indicate the
time gap between successive observations and the temporal separation between groups of observations in the light curves.
In particular, the unlabeled MACHO dataset demonstrates a smaller time gap compared to the labeled MACHO dataset,
while also exhibiting a higher standard deviation, implying greater temporal separation between groups of observations. The
labeled MACHO-derived datasets (3/4, 1/2, and 1/4) exhibit an increase in both the median and standard deviation as light

Figure 1. Flux distribution of the different data subsets.

Figure 2. Unlabeled MACHO cadence distribution.
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Figure 3. Cadence distribution of the different data subsets.

curve observations are reduced. Additionally, they show distinctions compared to both the labeled and unlabeled MACHO
datasets. Regarding OGLE, its cadence displays similarities with that of the unlabeled MACHO dataset. However, ATLAS
exhibits more pronounced time gaps between groups of observations. The mean is influenced by the standard deviation,
while the median indicates that the observations are taken at short time intervals.

Table 2 displays the classes used for each of the datasets. MACHO labeled has six classes, OGLE has ten classes, and
ATLAS has four classes. The modified cadence datasets maintain the same number of classes as the MACHO labeled
dataset.

Table 2. Labels from each of the datasets used in the classification task.

TAG MACHO LAB. OGLE ATLAS

EC ECLIPSING BINARY ECLIPSING BINARY -
ED - DETACHED BINARY DETACHED BINARY
ESD - SEMI-DETACHED BINARY -
MIRA - MIRA MIRA
OSARG - SMALL-AMPLITUDE RED GIANT -

RRAB RR LYRAE TYPE AB RR LYRA TYPE AB

PULSE
RRC RR LYRAE TYPE C RR LYRAE TYPE C
DSCT - DELTA SCUTI

CEP 0 CEPHEID TYPE I CEPHEIDCEP 1 CEPHEID TYPE II

SRV - SEMI-REGULAR VARIABLE -
LPV LONG PERIOD VARIABLE - -
CB - - CLOSE BINARIES
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B. Pretraining learning curves.
In this section, we present the learning curves on the validation set for the proposed PEA and the positional encodings
that achieved superior RMSE during pretraining. Figure 4 illustrates the pretraining of transformers using the same
hyperparameters. The y-axis represents the mean value of RMSE with a 4-step window, and the x-axis represents the number
of epochs displayed on a logarithmic scale. It is evident that trainable positional encodings such as Trainable, Fourier, and
Concat PE achieved comparable RMSE to the baseline with significantly fewer epochs in pretraining (38.6%, 27.2%, and
45.3% of baseline epochs, respectively). In contrast, the PEA method initially obtained a higher RMSE than the baseline,
but it achieved an average RMSE of 0.204 earlier than the baseline by utilizing only 57.7% of the epochs.

Figure 4. Validation loss in pretraining stage.
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