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Abstract
The Bright Transient Survey (BTS) relies on vi-
sual inspection (“scanning”) to select sources
for accomplishing its mission of spectroscopi-
cally classifying all bright extragalactic transients
found by the Zwicky Transient Facility (ZTF).
We present BTSbot, a multi-input convolutional
neural network, which provides a bright transient
score to individual ZTF detections using their im-
age data and 14 extracted features. BTSbot elim-
inates the need for scanning by automatically iden-
tifying and requesting follow-up observations of
new bright (m < 18.5mag) transient candidates.
BTSbot outperforms BTS scanners in terms of
completeness (99% vs. 95%) and identification
speed (on average, 7.4 hours quicker).

1. Introduction
Large, wide-field surveys have recently revolutionized time-
domain astronomy by repeatedly imaging the entire night
sky. These surveys produce staggering amounts of data ev-
ery night, an influx that demands the adoption of machine
learning (ML) techniques. ML models have been applied to
a variety of tasks in astronomy including real/bogus classi-
fication (e.g., Bloom et al., 2012; Brink et al., 2013), pho-
tometric transient classification (e.g., Villar et al., 2020),
photometric redshift estimation (e.g., Carrasco Kind &
Brunner, 2013), and many others. For the most part, ML
models in astronomy perform their task using a small num-
ber of extracted numeric features. Limiting these models to
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extracted features ignores potentially valuable information
present in the associated images. A comparatively small
number of convolutional neural networks (CNNs) have been
built that make use of the information embedded in astro-
nomical images, and they have generally had great success
(e.g., Dieleman et al., 2015; Lanusse et al., 2018; Duev et al.,
2019). CNNs are particularly well suited to astronomy be-
cause they can capture properties, like galaxy morphology,
which often remain largely obscured to other image process-
ing techniques. Only a very small subset of these CNNs
are multi-input, meaning they take in images and input of
another type, like extracted features (Carrasco-Davis et al.,
2021). Multi-input CNNs (MI-CNNs) have more and varied
information to draw from compared to analogous single-
input models. Here, we present a new MI-CNN for bright
transient identification.

The Bright Transient Survey (BTS; Fremling et al., 2020;
Perley et al., 2020) aims to classify all extragalactic tran-
sients with m < 18.5mag in g or r band from the public
alert stream of the Zwicky Transient Facility (ZTF; Bellm
et al., 2019). Every night, experts inspect candidate BTS
sources, a process called “scanning,” and select the bright
extragalactic transients1 for spectroscopic observation and
classification. There are typically ∼50 BTS candidates per
night, of which ∼10 are real bright supernovae (SNe), with
the others being mostly dim SNe, active galactic nuclei
(AGN), and cataclysmic variables (CVs). Since its origin,
BTS has maintained near-perfect completeness of relevant
sources and has rapidly and publicly released their classifi-
cations: a monumental service to the community. The BTS
sample enables an enormous amount of science including
some of the largest SN population studies ever conducted.
The MI-CNN introduced here, dubbed BTSbot, is built to
automate scanning for BTS by performing binary classifica-
tion (bright SN / not bright SN) on ZTF alert packets.

2. Model scope, architecture, and training
Our MI-CNN, BTSbot, automates BTS scanning by as-
signing each individual ZTF alert packet a bright transient

1We use “supernova” interchangeably with “extragalactic tran-
sient.” These are not equivalent, but it simplifies the prose.
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Figure 1. Diagram of BTSbot, a multi-input convolutional neural network, showing the layers that the input images and extracted features
pass through before being rejoined and producing the score for bright extragalactic transient binary classification.

score. Alerts from real bright SNe will have high scores,
allowing us to automatically select them from the pool of
BTS candidates for follow-up and classification. Further,
our model identifies sources and requests follow-up before
a human can, helping to maintain the survey’s near-perfect
completeness by obtaining a spectrum before the transient
fades beyond detection.

Figure 1 shows how input is fed into BTSbot and how
the information from the extracted features and images is
combined to produce the output. BTSbot contains three
main components: (1) The convolutional branch processes
the science, reference, and difference images as a three-
channel image through a VGG-like architecture (Simonyan
& Zisserman, 2014) followed by flattening. (2) The fully-
connected branch processes the extracted features through
two dense layers. (3) The combined section concatenates
the output of the two branches and passes it through two
more fully-connected layers; the second of which produces
the final output using a softmax activation function. The
output is a unit-interval score where higher scores represent
increased confidence that the source in the input alert packet
is, or will become, a bright extragalactic transient.

The choice of a MI-CNN is motivated by the fact that the
images and the extracted features provide different, valuable
information for performing our task. For example, the fea-
tures distpsnr1 and sgscore1 respectively represent
the angular distance to and the star-galaxy score (Tachibana
& Miller, 2018) of the Pan-STARRS1 (PS1; Kaiser et al.,
2002) cataloged source nearest to this ZTF source. While
the new SNe are not present in PS1, their host galaxies often
are. Thus, alerts from bright SNe tend to have moderate
distpsnr1 and small sgscore1 values, indicating a
galaxy projected nearby to the source. In contrast, AGN
and CVs will typically be cataloged in PS1 and thus have

distpsnr1 very near to zero. The images also provide
important information following a similar heuristic. Bright
SNe tend to be associated with prominent off-center ex-
tended sources (their host galaxies); faint SNe tend to have
less prominent host galaxies because they tend to be far-
ther away; AGN will appear as exactly centered extended
sources; CVs will often appear surrounded by many bright
point sources because they tend to occur near dense star
fields. A MI-CNN is able to pool information from all input
types and consider them together when making a prediction.
Where a single-input CNN might fail due to a lack of dis-
criminating information, a MI-CNN leverages additional
and distinct information when making its prediction. For ex-
ample, a very faint alert that shows next to no features in its
images can be identified as an AGN by a MI-CNN because
AGN often have a large number of previous detections at
their location (represented by ndethist), information a
single-input CNN could not have.

Given the scope and architecture of BTSbot we encounter
a number of challenges. First, we are requiring the model to
learn multiple non-trivial separations. BTSbot must learn
to separate SNe from other sources without using distance
information because it is not known a priori. It must also
learn to identify bright SNe from a single alert irrespective
of the SN’s current phase. Early in its rise or late in its fade,
a bright SN can appear very similar to a near-peak dim SN.
This is related to the second complication, which is that
BTSbot uses no time-series information. Although light
curves contain crucial information for evaluating a source as
a bright SN or not, we make the choice to omit time-series
information, in part, because it would introduce complexity
and, likely, noise. There is no established method for rep-
resenting partial light curves of the wide variety our model
encounters in a way that is fit for input into a neural net-
work. There has been a great deal of work to accomplish
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Figure 2. Stacked bar chart showing the distribution of classifica-
tion outcomes as a function of the input alerts’ PSF magnitude. The
highlighted region to the left is most important because it marks
the alerts which BTS scanners use to trigger spectroscopic obser-
vations. Performance of alerts with m < 18.5mag is excellent
and misclassifications are mostly in the dimmest bin.

this for SNe alone (Villar et al., 2020), but these methods
are not applicable to all the types of sources that our model
encounters. Further, omitting time-series information of-
fers BTSbot an advantage over light curve-based models.
With its alert-based architecture, BTSbot can identify a
bright SN from its very first detection, rather than preferring
multiple detections to begin constraining a light curve. We
expect that a similar model with light curve information
would identify bright SNe as or less quickly than BTSbot
does, potentially hurting BTS’s completeness. Section 4.1
illustrates how prompt and automatic identification of SNe
with BTSbot can aid in uncovering poorly understood SN
physics. To our knowledge, no other CNNs exist that si-
multaneously filter out non-SNe and predict a SN’s future
behavior given a single snapshot in time.

2.1. Training

Solving this complex classification task requires a signif-
icant training set. Having run since 2018, BTS has now
amassed the largest set of public SNe classifications ever.
The size of this labeled data set enables the construction of
BTSbot. Bright SNe classified by BTS populate the posi-
tive class, while AGN, CVs, and dim SNe rejected by BTS
constitute the negative class. In total, we have 561,000 alerts
(∼44% of which belong to the positive class) from 14,348
sources (∼33% of which belong to the positive class). This
difference in class distribution between alerts and sources
stems from some sources having many more alerts than oth-
ers: AGN can have thousands, bright SNe typically have

dozens, and dim SNe can have as little as a few. Training
on every alert would result in some types of sources being
over-represented. To remedy this we define a hyperparam-
eter called Nmax, the maximum number of alerts included
per source. We find Nmax = 60 to be optimal; it balances
between thinning extra alerts from sources like AGN and
maximizing the training set size. We also weight contribu-
tions to the loss function by the relative size of each class to
mitigate the effects of class imbalance.

BTSbot is trained with mostly standard hyperparameters.
We adopt the Adam optimizer (Kingma & Ba, 2014) and
the binary cross-entropy loss function. We perform a num-
ber of Bayesian hyperparameter searches with the Weights
and Biases platform (Biewald, 2020) to optimize our choice
of batch size, Adam parameters, Nmax, which extracted
features to include, and more. We also employ data augmen-
tation to the image cutouts like random rotations of 0◦, 90◦,
180◦, and 270◦ and random horizontal and vertical flipping.
These help prevent overfitting and ensure that BTSbot is
invariant to these transformations.

We employ a standard 81/9/10% train/validation/test split.
We also prevent sources from having alerts in multiple splits.
This prevents different splits from containing extremely
similar data, which would introduce bias.

3. Model performance
The trained model is run on the full validation split (i.e. no
Nmax thinning) to create unbiased performance diagnostics.

Figure 2 illustrates classification outcomes as a function of
PSF magnitude. The highlight marks m < 18.5mag, the
BTS magnitude threshold. The alerts within the highlight
are especially important to classify correctly because they
influence whether or not a spectrum of the source is to be
collected. In that region, misclassifications are very limited
and mostly in the dimmest bin. For m > 18.5mag, there
are more misclassifications and many more alerts overall.

Ultimately, alert-based metrics are not perfectly represen-
tative of the model’s real-world performance; source-based
classification is more relevant. The chosen metrics must
consider that the model has multiple chances to correctly
(or incorrectly) classify a source. To this end, we define a
“policy” that maps the real-time history of a source’s scores
to a source-based classification. For simplicity, we put aside
policy optimization for now and only consider one naive pol-
icy with the impression that we could improve performance
with a more sophisticated choice of policy.

Our naive policy is named gt1; it classifies a source as
a bright SN once it has one alert with score ≥ 0.5. The
left panel of Figure 3 shows the purity and completeness
of the sample produced when following this policy. We
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Figure 3. BTSbot performance when classifying sources as bright supernovae given at least one alert with high score. Left panel:
completeness (navy) and purity (orange) as a function of peak magnitude and respective averages (dashed lines). BTSbot produces a
sample that is 99.1% complete and 90.7% pure overall. The bright limit is noisy due to the small number of sources in those bins. Right
panel: distribution of delay between BTSbot and BTS scanner identification times with median at -0.31 days, indicating that, on average,
BTSbot identifies sources about 7 hours quicker than BTS scanners.

observe that gt1 yields a sample with 99.1% completeness
and 90.7% purity overall. BTS scanners produce a sample
that is roughly 95% in both completeness and purity (Perley
et al., 2020). In tests with other more conservative policies
like gt3 (defined analogously to gt1), we observe that pu-
rity is increased at the cost of completeness. We favor gt1
because it maximizes completeness, BTS’s highest prior-
ity. The right panel of Figure 3 compares the time between
when BTSbot and the BTS scanners identified some source.
Here, negative numbers represent that BTSbot identified
the bright SN before the scanners and positive numbers rep-
resent the opposite. The median is -0.31 days, indicating
that BTSbot expedites the identification of bright SNe by,
on average, 7.44 hours. Expediting identification by several
hours will frequently mean observing the source an entire
night earlier, thus yielding an improvement of ∼24 hours
in practice. With gt1, BTSbot outperforms human scan-
ners in completeness and speed, while making only a small
compromise with slightly lower purity.

4. Real-time, real-world usage
BTSbot has been integrated into Fritz, the first-party ZTF
alert-broker and a SkyPortal instance (Coughlin et al., 2023),
and is currently posting scores to all new ZTF alert packets.
Alert packets are created and augmented with a bright tran-
sient scores just minutes after the observations are taken
with ZTF. During the night, a tool we call autoscan
checks for new BTS candidates every half hour and im-
mediately saves those that pass gt1. autoscan will soon
also simultaneously request follow-up for passing sources.
With this, we can monitor the model’s real-time, real-world
performance and note any frequent misclassifications. We
have been awarded a large observing program for the 2023B

semester with the SEDMv2 spectrograph on the Kitt Peak
2.1 m telescope. With this time, we will build a spectro-
scopic sample that represents the model’s unbiased perfor-
mance. The resulting performance metrics will be invalu-
able when considering adaptations of this MI-CNN, e.g., to
specific SN sub-types or exotic transients like kilonovae.

4.1. SN 2023ixf & Rapid follow-up with BTSbot

We take SN 2023ixf, the recent Type-II supernova in M101,
as an example illustrative of the additional discovery poten-
tial of an alert-based model like BTSbot. SN 2023ixf was
reported to TNS by Koichi Itagaki at 14:42 PDT on May
19th (Itagaki, 2023). The earliest published spectrum was
collected by Daniel Perley less than an hour later with the
SPRAT spectrograph (Perley et al., 2023). About 14 hours
before the first TNS report, SN 2023ixf was detected by ZTF,
and, just minutes later, this alert packet was assigned a bright
transient score of 0.840 by BTSbot. If it was in-place at
the time, autoscan would have identified this new source
passing gt1 at about 01:00 PDT and requested a spectrum
from one of the numerous robotic spectrographs associated
with ZTF and BTS, e.g., SEDM. At this point, there is about
half of the night remaining at SEDM’s location, plenty of
time for a spectrum to be collected. Even if the spectrum
is collected at the end of the night (∼05:00 PDT), this rep-
resents a ∼10 hour speed-up over the otherwise earliest
spectrum. In this example, BTSbot and autoscan probe
the early, rapidly-evolving explosion physics mostly un-
available to traditional triggering methods. This would not
be possible with light curve-based models, which typically
require using the source’s evolution over multiple days to
identify it as a transient. This extremely rapid follow-up is
enabled by the alert-based architecture of BTSbot.
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Software and Data
Code relating to BTSbot and autoscan are made public
at https://github.com/nabeelre/BTSbot. In
their development, we use Astropy (Astropy Collaboration
et al., 2013; 2018), cron (Reznick, 1993), Keras (Chollet
et al., 2015), Matplotlib (Hunter, 2007), NumPy (Harris
et al., 2020), pandas (pandas development team, 2020; Wes
McKinney, 2010), penquins (Duev et al., 2021), scikit-learn
(Pedregosa et al., 2011), and Tensorflow (Abadi et al., 2015).
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I., Sánchez-Sáez, P., Cabrera-Vives, G., Eyheramendy,
S., Catelan, M., Arredondo, J., Castillo-Navarrete, E.,
Rodrı́guez-Mancini, D., Ruz-Mieres, D., Moya, A.,
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