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Abstract
Time domain astronomy is advancing towards the
analysis of multiple massive datasets in real time,
prompting the development of multi-stream ma-
chine learning models. In this work, we study
Domain Adaptation (DA) for real/bogus classi-
fication of astronomical alerts using four differ-
ent datasets: HiTS, DES, ATLAS, and ZTF. We
study the domain shift between these datasets,
and improve a naive deep learning classifica-
tion model by using a fine tuning approach and
semi-supervised deep DA via Minimax Entropy
(MME). We compare the balanced accuracy of
these models for different source-target scenarios.
We find that both the fine tuning and MME mod-
els improve significantly the base model with as
few as one labeled item per class coming from the
target dataset, but that the MME does not compro-
mise its performance on the source dataset.

1. Introduction
Time-domain survey telescopes are providing astronomers
with vast amounts of data on celestial objects and phenom-
ena. Surveys such as the Asteroid Terrestrial-impact Last
Alert System (ATLAS; Tonry et al., 2018) or the Zwicky
Transient Facility (ZTF; Bellm et al., 2018) emit when
the brightness or location of a source change, producing a
continuous astronomical alert stream. The aggregation, an-
notation, and classification of alerts in a rapid and consistent
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fashion is done by astronomical alert brokers (Narayan et al.,
2018; Nordin et al., 2019; Smith, 2019; Förster et al., 2021;
Möller et al., 2021). An important number of these alerts
are bogus artifacts created by the image reduction pipelines,
hence, the importance of creating real/bogus classification
algorithms which have proven to be extremely useful for
detecting real astrophysical phenomena. During the last
decade, most of these algorithms have been based on Convo-
lutional Neural Networks (Cabrera-Vives et al., 2016; 2017;
Reyes et al., 2018; Duev et al., 2019; Turpin et al., 2020; Yin
et al., 2021; Rabeendran & Denneau, 2021) which need a
significant amount of data to be trained. Domain adaptation
(DA) techniques such as the Minimax Entropy (MME; Saito
et al., 2019) approach are an alternative that help training
such models with fewer amount of data. Furthermore, DA
allows models to perform inference simultaneously for mul-
tiple dataset that may follow different distributions. This is
particularly important when developing multi-stream mod-
els for alert streams from next-generation telescopes such
as the Vera Rubin Observatory as soon they start producing
data. By effectively working across various alert streams and
accounting for domain shifts, these models can leverage la-
beled and unlabeled data from multiple domains, enhancing
their learning capabilities. Moreover, conducting inference
on multiple alert streams using a single model facilitates
performance monitoring across surveys.

In this work, we evaluate the use of fine tuning and MME
for the real/bogus classification of alert stamps and their
availability to transfer knowledge from models trained on
source surveys to different target surveys using few shots
of labeled sources. We start by describing the four datasets
we use (HiTS, DES, ATLAS, and ZTF) in Section 2. In
Section 3, we provide a comprehensive description of our
feature extraction and classification models, as well as the
domain adaptation techniques employed. We outline the
details of our experiments in Section 4, followed by the
presentation of the obtained results in Section 5. Finally, we
draw conclusions based on these findings in Section 6.
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2. Data
We use image stamps from four surveys: the High Cadence
Transient Survey (HiTS; Förster et al., 2016), the Dark
Energy Survey (DES; Goldstein et al., 2015), ATLAS
(Tonry et al., 2018), and ZTF (Dekany et al., 2020). These
four datasets consist of astronomical alerts represented as
3-channel images: 1) a reference image, 2) a science im-
age taken at the time of observation, and 3) a difference
image created by matching the point-spread-function of the
science and reference images and subtracting them. Each
alert within every dataset was assigned a corresponding la-
bel, indicating whether it is deemed ”real” (representing
an astronomical event of interest) or ”bogus” (indicating a
false detection). All images were cropped to 21× 21 pixels
and were normalized to have a mean of 0 and a standard
deviation of 1.

The primary goal of the HiTS survey was to detect su-
pernovae during their earliest hours of explosions. Their
real/bogus dataset consist of a total of 1,437,684 images of
21 × 21 pixels (Cabrera-Vives et al., 2017). Bogus stamps
were directly taken by the Dark Energy Camera (Flaugher
et al., 2015) while real stamps were simulated within their
pipeline. By construction, this dataset contains a total of
718,842 “real” stamps and 718,842 “bogus” stamps.

The DES dataset was obtained from Goldstein et al. 20151

and it contains 51× 51 pixels stamps from 898,963 source
candidates. Of these candidates, 454,092 are simulated su-
pernovae labeled as ”real”, and 444,871 are ”bogus” sources
that came out of the DES pipeline (Abbott et al., 2018).

ATLAS is a sky survey system that aims at finding dangerous
near-Earth asteroids. We use 61×61 pixels stamps coming
from 3,678 candidate sources. This dataset was visually
labeled and is composed of 500 persistent burn trails, 500
cosmic rays, 500 spike artifacts, 500 noise fluctuations, 500
sources labeled as asteroids, and 678 candidates labeled as
asteroid streaks. The ”real” dataset was created by joining
the labeled asteroids and asteroid streaks, while the ”bogus”
class was created by combining the burn trails, cosmic rays,
spikes, and noise.

We gathered ZTF stamps following the procedure described
by Carrasco-Davis et al. 2021. The raw dataset consists
of 63 × 63 pixels stamps for a total of 36,262 source can-
didates, but 467 images were of a smaller resolution and
were discarded. This dataset originally had 9,996 images la-
beled as active galactic nuclei, 1,079 labeled as supernovae,
9,938 labeled as variable stars, 9,899 labeled as asteroids
and 5,350 labeled as bogus. All the non bogus labels were
combined into the single “real” label. Some images con-
tained bad pixels, that were replaced by the median of the

1https://portal.nersc.gov/project/dessn/
autoscan/

image where they were found.

3. Model
Our baseline classification model was taken from Ganin et al.
2016 and consists of a feature extractor component and a
predictor component. The feature extractor component is
composed of two 2-dimensional convolutional layers, each
followed by a max-pooling layer. Batch normalization and
ReLU activation functions are applied to both convolutional
layers. The predictor component consists of three linear
layers, each using batch normalization and ReLU activation
functions, with the exception of the last layer which employs
a Softmax function. As a benchmark, this model was trained
with each dataset separately using a binary cross entropy
loss function.

The MME model, similar to the baseline model, comprises
a feature extractor and a predictor component. The feature
extractor component shares the same architecture as the
base model. The predictor component includes a L2 nor-
malization layer, succeeded by a linear layer scaled by a
temperature hyperparameter, and a Softmax activation func-
tion. Each class is represented in the feature space as an
estimated vector prototype. This model is trained using two
datasets: a fully labeled source dataset and a partially la-
beled target dataset. It is worth mentioning that while MME
allows for unsupervised learning using the target dataset,
our work focuses on the semi-supervised approach. Dur-
ing training, the model parameters are optimized using a
two-term loss function:

L = H(ys, ŷs) + λH(ŷu), (1)

where H(ys, ŷs) represents the cross-entropy loss between
the true (ys) and predicted (ŷs) labels for the labeled (su-
pervised) dataset, and H(ŷu) denotes the entropy of the
predicted labels for the unlabeled (unsupervised) dataset.
The weight λ controls the balance between the two terms
in the loss function. A gradient reversal layer (Ganin et al.,
2016) is inserted between the feature extractor and predic-
tor components of the model. This layer flips the sign of
the gradient value during backpropagation, but only the un-
labeled data passes through this layer. Consequently, the
entropy term is minimized for the unlabeled target examples,
encouraging the model to learn discriminative features that
cluster around the estimated prototypes, while its maximiza-
tion encourages feature representations that are invariant to
domain shifts. This mechanism helps the model effectively
adapt to the target dataset, leveraging information from both
the labeled and unlabeled data sources.

4. Experiments
Three sets of experiments were defined: a baseline train-
ing, a fine tuning training and a domain adaptation train-
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Source / Target HiTS DES ATLAS ZTF

HiTS 0.983 ± 0.004 0.811 ± 0.026 0.626 ± 0.019 0.548 ± 0.015
DES 0.945 ± 0.011 0.955 ± 0.003 0.703 ± 0.006 0.606 ± 0.011

ATLAS 0.777 ± 0.031 0.697 ± 0.058 0.967 ± 0.008 0.502 ± 0.036
ZTF 0.765 ± 0.023 0.752 ± 0.022 0.633 ± 0.019 0.945 ± 0.007

Table 1. Baseline results. Each row/column corresponds to the mean and standard deviation of the balanced accuracy for that source/target
experiment, calculated across 10 different random splits.

ing. A single round of these experiments use the same
training/validation/testing set partitioning. To compare the
models performance, the balanced accuracy metric (average
recall) was used. In order to avoid the overuse of target
labels, 10 labeled items per class were used for validation
for the fine-tuning and MME experiments. To address im-
balanced data, oversampling was applied to prevent bias
towards the overrepresented class.

The baseline model was trained independently for each sep-
arate source dataset. We then used these models to evaluate
their performances on all four datasets. The fine tuning
training, consists of taking a baseline model and further
training it using a smaller labeled set from the other three
target datasets that were not trained on. We perform fine
tuning using 1, 5, 10, 20 and 40 labeled items per class.
We evaluate the performance of the fine-tuned models in
both the source and target datasets in order to evaluate their
domain adaptation capacities.

For DA via MME, we used the full labeled source training
set, a small number of labeled items per class sampled from
the target dataset, and an unlabeled dataset comprising the
remaining target objects. The feature extractor weights are
initialized with those of the corresponding baseline model
following the approach of (Saito et al., 2019). Different
instances of MME are run for each source-target scenario,
varying the amount of target labeled data (1, 5, 10, 20, and
40 items per class, the same as the fine-tuning experiment).
To assess the domain adaptation capabilities of MME, we
evaluate its performance on both the source and target data.
The optimal value for the hyperparameter λ in Eq. 1 is de-
termined by training MME with multiple values (0.01, 0.02,
0.03, 0.05, 0.1, 0.5, and 10) and selecting the one yielding
the highest balanced accuracy on the target validation set.
All aforementioned experiment instances were repeated in
a 10-fold manner, with each iteration employing a distinct
random data partitioning.

5. Results
We start by evaluating the transferring learning capability
of the baseline models when trained on each dataset sepa-
rately by calculating their performances when applied on
stamps from all surveys. Table 1 shows the balanced accu-

racy for these experiments. All models achieve an accuracy
over 94% over the source dataset. Our results are consis-
tent with the literature for DES (∼96%, Acero-Cuellar
et al., 2022) and ATLAS (∼95.2%, Rabeendran & Den-
neau, 2021) while for the other datasets we achieve a slightly
lower accuracy than the state-of-the-art (∼99.5% for HiTS,
Cabrera-Vives et al. 2017; ∼98% for ZTF, Duev et al. 2019).
We attribute this decrease in performance to the capacity of
our model, yet we deem it of lesser significance in light of
the primary focus of this paper, which is the evaluation of
domain adaptation techniques. We notice that the greater
transferring capacity of models is achieved by DES→HiTS
(DES as source, HiTS as target) and HiTS→DES, which
is to be expected given that both datasets were obtained
using the Dark Energy Camera and both aimed at searching
for supernovae. The rest of the experiments show worse
performances, posing the need of transfering these models
to the target datasets.

We compare the capacity of transferring the learned repre-
sentations to other datasets by using fine tuning and MME
in Figure 1 in terms of the number of labeled target ob-
jects presented to the model (shots). Each plot represents a
source/target scenario. We show the accuracy of fine tuning
and MME in terms of the shots on the source data (left plot
of each panel) and on the target data (right plot of each
panel). As noticed previously when discussing Table 1,
when transferring DES→HiTS, fine tuning and MME are
able to achieve competitive performances with few shots
both for source and target stamps. In the target data, both
fine tuning, and MME are able to surpass the baseline after
only one or five shots of labeled objects from the target. Fine
tuning and MME achieve comparable results on the target
for most experiments, the exception being ATLAS→ZTF,
ZTF→HiTS, and ZTF→ATLAS where fine tuning outper-
forms MME. However, it is worth noting that fine-tuning
the model on the target data consistently leads to a dete-
rioration in performance for the source dataset, regardless
of the number of shots employed. This is of particular im-
portance when aiming at developing generalist models for
multi-stream classification.
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Figure 1. Balanced accuracy for different source/target scenarios for HiTS, DES, ATLAS, and ZTF. Each pair of plots represent one
source→target experiment. The left plot shows the performance of fine tuning (blue) and MME (orange) on the source dataset as the
number of shots increase, while the right plot shows their performance on the target dataset. The baseline result from Table 1 are shown as
a horizontal red line.
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6. Conclusions
We evaluate the transferability of convolutional neural net-
works (CNN) trained to classify image stamps of astronom-
ical alerts on a source dataset to target data coming from
various surveys. Using real/bogus stamps coming from
HiTS, DES, ATLAS, and ZTF, we show that even though
the CNN models are able to achieve over ∼94% balanced
accuracy on the source dataset, they struggle to achieve com-
petitive performances on stamps coming from surveys with
a slightly different distribution. To address this, we examine
two transfer learning techniques for the task: fine-tuning
and domain adaptation via Minimax Entropy (MME). We
show that both methods exhibit rapid learning capabilities
from the target data with only a few labeled shots. How-
ever, MME maintains a high level of accuracy on the source
domain, whereas fine tuning leads to a degradation of re-
sults on such domain. This is of special importance when
considering the training of generalist models capable of per-
forming inference in a multi-stream scenario, especially in
the context of the first-light of upcoming instruments like
the Vera C. Rubin Observatory.
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