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Abstract

Topological analysis of the magnetic field in sim-
ulated plasmas allows the study of various physi-
cal phenomena in a wide range of settings. One
such application is magnetic reconnection, a phe-
nomenon related to the dynamics of the magnetic
field topology, which is difficult to detect and
characterize in three dimensions. We propose
a scalable pipeline for topological data analy-
sis and spatiotemporal graph representation of
three-dimensional magnetic vector fields. We
demonstrate our methods on simulations of the
Earth’s magnetosphere produced by Vlasiator, a
supercomputer-scale Vlasov theory-based simu-
lation for near-Earth space. The purpose of this
work is to challenge the machine learning com-
munity to explore graph-based machine learning
approaches to address a largely open scientific
problem with wide-ranging potential impact.

1. Introduction
Magnetic reconnection is a fundamental plasma physical
process characterized by a topological reconfiguration of
the magnetic field and energy conversion from magnetic to
kinetic and thermal energy, leading to plasma heating, par-
ticle acceleration, and mixing of plasmas (Priest & Forbes,
2000; Li et al., 2021). The phenomenon is encountered in
different settings and plays a key role in the eruption of
solar flares and coronal mass ejections (CMEs) in the so-
lar corona (Mei et al., 2012), in the Earth’s magnetosphere
and its interaction with the solar wind (Angelopoulos et al.,
2008; Palmroth et al., 2017; Li et al., 2022), in astrophysical
plasmas (Parker, 1979; Yamada et al., 2010), as well as in
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fusion plasma during major and minor tokamak disruptions
(Taylor, 1986; Yamada, 1999).

Magnetic reconnection is linked to space weather condi-
tions that can potentially damage terrestrial technological
infrastructure, satellites, and manned space missions (Oden-
wald et al., 2006). CMEs cause magnetospheric magnetic
storms (Schwenn et al., 2005), during which the terrestrial
power grids may suffer from Geomagnetically Induced Cur-
rents (GICs) and even fail (Pulkkinen et al., 2005). Solar
flares accelerate particles into relativistic energies, which
propagate to the Earth’s upper atmosphere and affect satel-
lite and radar signals that can be significantly altered or lost
during active space weather conditions (Baker et al., 2004).

The nature of the phenomenon is well-understood in two-
dimensional (2D) settings, and quasi-2D models have been
successful at reproducing many features of reconnection in
the solar corona and the Earth’s magnetosphere (Cassak &
Shay, 2007; Liu et al., 2022). However, magnetic reconnec-
tion is intrinsically a three-dimensional (3D) process. This
becomes especially evident when considering reconnection
in the solar corona, where the magnetic field forms twisted
coronal loops with complex topologies (Lee, 2022). Despite
considerable progress, the additional complexity introduced
in 3D settings continues to pose many open questions regard-
ing the nature of 3D magnetic reconnections in the solar and
the Earth’s magnetospheric environment (Daughton et al.,
2011).

We present a scalable pipeline for topological data analysis
and graph representation of 3D magnetic vector fields. First,
we introduce spatial null graphs, a graph representation that
can be used to characterize the topology of a magnetic field.
In addition, to encode the temporal evolution of the mag-
netic field, we extend this concept with spatiotemporal null
graphs. Finally, we present the spatial and spatiotempo-
ral null graphs produced by the topological analysis of the
magnetic vector field in the Earth’s magnetotail. For this pur-
pose, we use 3D global simulations produced by Vlasiator, a
supercomputer-scale Vlasov theory-based model that incor-
porates the solar wind – magnetosphere – ionosphere system
(Palmroth et al., 2018). The constructed graphs enable the
use of topological information as input for machine learning
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methods such as (spatiotemporal) graph neural networks
(GNNs) (Reinhart, 2018; Ma & Tang, 2021).

2. Magnetic Field Topology
This section introduces some concepts of vector field topol-
ogy. For a general introduction, see (Günther & Baeza Rojo,
2020); for reviews focused on magnetic fields and magnetic
reconnection in particular, see (Longcope, 2005; Parnell
et al., 2010).

The magnetic field on a location with spatial coordinates
x⃗ = (x, y, z) ∈ R3 can be represented as a vector field
B⃗(x⃗) = (Bx(x⃗), By(x⃗), Bz(x⃗)). According to Gauss’s
law for magnetism, the field has zero divergence everywhere

∇ · B⃗ =

(
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z

)
≡ 0. (1)

From a topological perspective, magnetic nulls, points
where the magnetic field vanishes ∥B⃗(x⃗0)∥2 = 0, are of
special interest. At such points, the structure of the local
field can be characterized by forming a first-order Taylor
approximation around x⃗0:

B⃗(x⃗) = J(x⃗0)(x⃗− x⃗0) + o(∥x⃗− x⃗0∥2),

where J = ∇B⃗ is the Jacobian of the magnetic field. The
topology of the field is characterized by the magnetic skele-
ton, which comprises of the magnetic nulls, separatrix sur-
faces delineating distinct magnetic domains, and separator
curves formed on the intersections of separatrix surfaces
(Bungey et al., 1996; Longcope & Klapper, 2002; Longcope,
2005; Parnell et al., 2010).

To extract the magnetic skeleton of a field, we use the Visu-
alization Toolkit (VTK) (Schroeder et al., 2006) – an open
source software package for scientific data analysis and vi-
sualization. The VTK vector field topology filter (Bujack
et al., 2021) is a later extension to the package that adds
the functionality for computing the main elements of the
topological skeletons of 2D and 3D vector fields.

2.1. Magnetic nulls

Magnetic nulls can be classified into different types that
characterize their topology, according to the eigenvalues of
the Jacobian matrix J of the vector field (Lau & Finn, 1990;
Günther & Baeza Rojo, 2020).

Given the three eigenvalues of the Jacobian, (λ1, λ2, λ3) ∈
C3, it follows from Eq. (1) that their sum is equal to zero:
λ1 + λ2 + λ3 = 0, and, therefore, two of the eigenval-
ues must have the same sign while the third one is of the
opposite sign1. Moreover, while the eigenvalues can be

1We do not consider degenerate nulls where one or more of

Type A Type B Type As Type Bs

Figure 1. Classification of magnetic nulls – Type A: real eigenval-
ues with signs (-,-,+); Type B: real eigenvalues with signs (+,+,-);
Type As: two complex and one real eigenvalues with signs of real
parts (-,-,+); Type Bs: two complex and one real eigenvalues with
signs of real parts (+,+,-). Figure from (Franssila, 2023).

complex-valued, the eigenvalues with non-zero imaginary
parts always come in pairs of complex conjugates, so that
their real parts are the same, and the third eigenvalue is a
real number of the opposite sign.

Due to the above constraints, each null can be classified
in terms of its polarity; if the two same-sign eigenvalues
are negative, the null is classified as a negative null, other-
wise it is a positive null (Parnell et al., 2010). Furthermore,
magnetic nulls with complex eigenvalues exhibit a spiraling
topology (Longcope, 2005). Figure 1 illustrates the resulting
classification into four types, where types A and B represent
(non-spiraling) topologies of negative and positive magnetic
nulls, while types As and Bs encode spiraling topologies of
negative and positive magnetic nulls, respectively.

2.2. Separatrices and separators

The eigenvectors of the Jacobian can be used to define the
so-called separatrices that are associated with the magnetic
nulls (Longcope, 2005; Günther & Baeza Rojo, 2020). Each
non-degenerate null has one 2D separatrix or fan surface and
two one-dimensional virtual separatrices or spines (Long-
cope, 2005). The fan surface is defined by the infinitely
many magnetic field lines within the plane spanned by the
two eigenvectors corresponding to the same-sign eigenval-
ues. The two spine field lines end in the magnetic null point,
entering along the directions parallel and antiparallel to the
third eigenvector, normal to the fan plane (Longcope, 2005).

In physical simulations, magnetic nulls connect via separa-
tor curves (or reconnection lines) formed by the intersection
of the fan surfaces of two connected nulls (Palmroth et al.,
2006). However, the process of integrating the separatri-
ces to find their intersection can be computationally very
expensive, which is why separators are usually approxi-
mated (Haynes & Parnell, 2010).

In order to approximate the separators, we choose to follow
the 2D null lines: curves along which two of the magnetic
field components are zero, while the third can vary. Zeiler

the eigenvalues is exactly zero. Such points are physically unsta-
ble (Priest & Titov, 1996) and can be handled as special cases of
one or more of the four types we introduce here.
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Figure 2. Left: Detected proper and 2D null points. Right: The resulting spatial graph at the same time-step of the simulation. The spatial
edges represent different types of separators in blue (As ↔ Bs), red (A ↔ B), green (A ↔ Bs, B ↔ As), pink (A ↔ As, B ↔ Bs) and
yellow (A ↔ A, B ↔ B, As ↔ As, Bs ↔ Bs).

et al. (2002) found that with a small guide-field, 3D recon-
nection is well-approximated by a 2D system. Specifically
in the magnetotail environment, we ignore the East-West
component of the magnetic field, By , since it tends to exhibit
the least variation as the guide-field component, and we re-
quire that the other two components are zero, Bx = Bz = 0.
We call such points 2D nulls and use the term proper null to
refer to points where ∥B⃗∥2 = 0, which are clearly a subset
of the 2D nulls. We provide a modification of the existing
VTK vector field topology filter to detect such 2D nulls.

3. Graph Representations
Originally introduced by Longcope & Klapper (2002), null
graphs are graph representations that characterize the topol-
ogy of a magnetic field by encoding the connectivity be-
tween proper nulls (vertices) via separators (edges).

We extend their definition to construct a graph representation
that can be useful for different machine learning tasks and
downstream applications, such as spatiotemporal GNNs
(Reinhart, 2018). We propose two computationally efficient
heuristics to trace the connectivity between proper nulls
both spatially and temporally.

3.1. Spatial Null Graphs

After modifying the VTK vector field topology filter to
detect the 2D magnetic nulls where Bx = Bz = 0 (sec. 2.2),
we construct the 2D null lines by connecting the 2D nulls to
each other based on spatial proximity.

In practice, the 2D null lines can be traced by initializing
at most two paths from each proper null based on a cut-off
value on the maximum Euclidean distance from the proper
null. Each of the paths is then iteratively expanded by
finding – within the same cut-off distance – the nearest 2D
null that is not already included in any of the already traced
paths. Paths terminating without reaching a proper null are
considered a dead end and are discarded, while paths ending

at a proper null become edges in the null graph. The type
of each proper null (A / B / As / Bs) is encoded as a node
feature in the graph.

3.2. Spatiotemporal Null Graphs

Consider a bipartite graph G = (Vi,Vi+1, E), where the
vertex sets Vi and Vi+1 are defined by proper nulls detected
at times ti and ti+1, respectively. The set of edges E repre-
sents a (partial) matching between the magnetic nulls with
the interpretation that vertices v ∈ Vi and v′ ∈ Vi+1 are
connected by an edge e = (v, v′) ∈ E if they correspond
to the same proper null. The problem can be cast as an
unbalanced assignment problem defined by the following
maximization problem

max
E∈M

∑
(v,v′)∈E

1/w(v, v′),

where the set of allowed matchings M is defined by re-
quiring that each vertex appears in at most one edge, and
the weight w(v, v′) = ∥x⃗(v) − x⃗(v′)∥2 is defined by the
Euclidean distance between the respective coordinates of
the proper nulls v and v′. Additional constraints including
(i) a maximum distance constraint wmax, or (ii) matching
only the same type nulls, can be incorporated by letting
w(v, v′) = −1, for any edge that does not satisfy them. We
apply both constraints to get an initial matching, and, for
some of the unmatched magnetic nulls, we need to run a
subsequent matching without constraint (ii) to account for
type switches.

All vertices in Vi that remain unmatched are considered to
have disappeared after step ti. Likewise, all vertices in Vi+1

that remain unmatched are considered to have appeared
before step ti+1. According to Murphy et al. (2015), proper
nulls can either appear by entering the simulation domain
across a boundary, or as a result of a bifurcation, in which
case they appear in pairs of opposite polarity. These two
cases can be distinguished based on the coordinates and
types of the unmatched vertices in Vi+1.
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4. Results and discussion
The supercomputer-generated simulations from Vlasiator
provide large-scale, high-fidelity data – some of which is
openly available (Palmroth, 2023). To give an idea of the
scale of available data, the example of the published Vlasia-
tor dataset provides 170 time-steps × 1,723,328 grid points
at each time-step, i.e., the time series consists of a total
of ∼ 293 million grid points. Working with such scales
requires efficient and scalable methods, and the spatiotem-
poral graph representation of the data can allow for less
resource-intensive machine learning approaches.

The magnetotail simulations used to produce the results pre-
sented here, consist of a grid with resolution 50×127×108
in the x (tailward–Earthward), y (East–West), and z (North–
South) directions of the magnetic field, respectively. A
step of one unit in any direction of the grid corresponds to
1000 km, and the time series used to generate the spatiotem-
poral null graphs has 1 s cadence (Franssila, 2023).

First, the modified VTK topology filter is used to detect 2D
and proper nulls, and to classify the latter in types (sec. 2.1).
The 2D nulls are detected using By as the guide-field com-
ponent (sec. 2.2). The results obtained from the first stage
of the process are illustrated on the left side of Figure 2.

The result of the spatial tracing method (sec. 3.1), is pre-
sented on the right of Figure 2. The 3D null points are
colored according to their type. Different types of spatial
connectivity are also color-encoded, using different colors
of spatial edges depending on the type of the connection.

Figure 3 shows an example of a spatiotemporal graph, where
for each time-step ti for i ∈ {0, 1, 2}, a 2D projection (X-Y
plane) of the spatial graph is presented. The temporal edges
trace the temporal evolution of each proper null across all
time-steps. The colors of the temporal edges represent the
type of the proper null traced over time, with the exception
of the pink temporal edges which denote a type switch
scenario (e.g., t0 → t1: B → Bs). Finally, the green circle
at t2 is used to mark a pair of proper nulls of opposite
polarity that appear together before t2 due to a bifurcation.

We have presented a scalable data analysis pipeline for the
detection and spatiotemporal tracing of proper magnetic
nulls. These methods allow us to characterize the topology
a 3D magnetic field using graph representations. The re-
sulting spatiotemporal null graphs can be useful in various
downstream learning tasks, especially in GNN applications
(Reinhart, 2018; Zhou et al., 2020; Wu et al., 2020).

In the process of formulating 3D magnetic reconnection de-
tection as a machine learning task, two potential limitations
arise. If we formulate the problem as a supervised learning
task, there is a severe difficulty in reliably labeling a suffi-
cient amount of training data, as 3D magnetic reconnection

Figure 3. Spatiotemporal null graph. At each time-step a 2D pro-
jection (X-Y plane) of the corresponding spatial graph is illustrated.
The proper nulls are colored based on their type, and the color of
each temporal edge represents the type of the traced proper null,
with the exception of the pink edge which denotes a type switch.
The green circle at t2 marks a pair of proper nulls of opposite
polarity that appear together after a bifurcation.

remains difficult to detect and characterize. Similarly, if we
were to formulate the problem as an unsupervised learning
task, questions arise regarding the interpretability of results
and the model performance evaluation.

Currently, we are working on a GNN approach that aims to
circumvent these issues by formulating the learning task as a
plasmoid2 formation forecast, as their generation is linked to
reconnecting plasmas (Samtaney et al., 2009). The location
of a plasmoid can be characterized using the magnetic skele-
ton (Birn et al., 1997), which allows us to use spatiotemporal
null graphs to learn when and where a plasmoid is formed.
Next, in order to detect the magnetic reconnection, we can
examine the reconnection rate and energy conversion rate
at the possible reconnection sites located in close proxim-
ity to the newly-formed plasmoid. This work can then be
extended to facilitate the study of magnetized plasmas in
different settings, which is linked to a variety of open ques-
tions that can be interesting to both the astrophysics and
machine learning research communities.
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2Outflows of plasma driven by the magnetic tension force of
newly reconnected field lines (Liu et al., 2013).
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