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Abstract
Hallucinations are an inescapable consequence
of solving inverse problems with deep neural net-
works. The expressiveness of recent generative
models is the reason why they can yield results
far superior to conventional regularizers; it can
also lead to realistic-looking but incorrect features,
potentially undermining the trust in important as-
pects of the reconstruction. We present a practi-
cal and computationally efficient method to de-
termine, which regions in the solutions of inverse
problems with data-driven priors are prone to hal-
lucinations. By computing the diagonal elements
of the Fisher information matrix of the likelihood
and the data-driven prior separately, we can flag
regions where the information is prior-dominated.
Our diagnostic can directly be compared to the re-
constructed solutions and enables users to decide
if measurements in such regions are robust for
their application. Our method scales linearly with
the number of parameters and is thus applicable in
high-dimensional settings, allowing it to be rolled
out broadly for the large-volume data products of
future wide-field surveys.

1. Introduction
Inverse problems commonly arise in the sciences when-
ever causal factors need to be inferred from observations.
In imaging applications one usually seeks to infer a high-
quality image from corrupted data. Examples include de-
noising, deconvolution, inpainting, super-resolution, and, in
astronomy, deblending problems.

Central to inverse problems is the (assumed) knowledge of
the forward operator f : X → Y , which maps the unknown
parameters x to idealized observations y, which are then
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degraded by a lossy process to yield data D as observed.
Inverse-problem solvers seek to find the minimum x̂ of a
loss function L, typically the negative logarithm of the like-
lihood L(D | f,x) of the data given a model described by
f(x). In most cases, such a direct minimizer has undesirable
properties, e.g. being noisier or less smooth than expected
from a plausible solution. Regularizers are added to the loss
function to promote desired properties such as smoothness
or sparsity in some domain. Increasingly, these regularizers
are replaced by neural networks, trained on high-quality ex-
amples of the distribution of acceptable solutions (Kamilov
et al., 2022; Lanusse et al., 2019). Substantial progress has
been made in the last few year in the field of generative
neural networks that learn the distribution P(x) of valid
solutions (e.g. Kingma & Welling, 2013; Goodfellow et al.,
2014; Song et al., 2020).

We can now optimize the Bayesian log-posterior

L(x) = logL(x) + logP(x), (1)

using a data-driven prior as regularizer. As L is now a
combination of two terms, it is not obvious which aspects
of the posterior minimizer x̂ are actually determined by
data, and which are filled in by the prior. As generative
networks have become more expressive, they have been
found to be prone to hallucinations, i.e. the tendency to
create features that are plausible but do not originate from
D directly (Gottschling et al., 2020). In fact, hallucinations
are the intended mechanism to create realistic solutions
beyond what can directly be inferred from the data (Liu
et al., 2007; Wang et al., 2014; Yu et al., 2018).

However, in many scientific studies it is imperative to know
whether a feature is really present or merely hallucinated.
Most evidently, in medical imaging the reconstruction of
a volumetric model from CT scan data is used to identify
the presence of tumors. Medical professionals would like to
be sure of their diagnosis before recommending an invasive
procedure (Bhadra et al., 2021). In astronomy, we seek to
infer higher-quality measurements from lower-quality data.
Hallucinations can give us the appearance of higher quality
but may inadvertently bias our results towards features often
seen in the training data (Schawinski et al., 2017).

With inverse problems continuing to be under-constrained,
and neural network regularizers producing the so-far
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strongest solvers, hallucinations will stay with us. Here
we ask the question: Can we find out where they happen?

2. Methods
We assume that we have access to differentiable models of
the forward process f , the likelihood L, and the prior P .
First-order minimizers then perform gradient steps in the
opposite direction of ∇xL = ∇x logL + ∇x logP . The
curvature of L, i.e. the Hessian matrix Hij = ∂2L

∂xi∂xj
is

used in second-order methods to determine the step sizes.
In statistics, the negative Hessian is called the Fisher infor-
mation matrix F = −H, so dubbed because it describes the
statistical information about x conveyed by L. Equipped
with F, we can recast our question: Where is F dominated
by the prior, as opposed to the likelihood? As long as the
features of the solution are largely determined by L, there
are by definition no hallucinations.

We now seek to compute the Hessians of logL and logP at
the minimizer of Equation 1 separately, or, if more conve-
nient, the Hessians of L and one of the others, as the Fisher
matrix is linear:

F = FlogL + FlogP . (2)

Unfortunately, calculating the full Hessian matrix is inef-
ficient, with a scaling of O(n2), where n is the dimension
of X . This makes computing H intractable for most prac-
tical applications. A full marginalization to get pixel-level
uncertainties would additionally require a matrix inversion.

But in imaging applications, the off-diagonal terms in the
Hessian are typically small, and often confined to a few
off-diagonal bands. We therefore make the simplification of
computing the Hessian diagonal HD = Diag(H). Doing
so has two advantages: There is an efficient way to compute
only the diagonals of the Hessian, which we describe below;
and the result has the same shape as x, which means that
it has the form of an image that can be compared to the
solution to indicate regions dominated by the prior.

We follow the approach of Hutchinson (1989); Yao et al.
(2020) to calculate the approximated diagonal Hessian. In-
stead of computing the full Hessian, we make use of the
Hessian-vector product (HVP), which can be computed effi-
ciently with automatic differentiation. From the chain rule,
we have the following equation for the HVP,

∂gT z

∂x
=

∂gT

∂x
z− g

∂z

∂x
=

∂gT

∂x
z = H · z (3)

where g = ∇xL, and z is an arbitrary vector independent
of x, hence ∂z/∂x = 0. Equation 3 evidently requires only
O(n) operations, which is critical for higher-dimensional
problems. To compute the diagonal approximation to the

Algorithm 1 Hessian diagonal approximation
function HESSIANDIAG(f,x, ϵ)

g = jax.grad(f )
hvp = jax.jvp(g, x)
H = jnp.zeros(x.shape)
H′ = jnp.zeros(x.shape)
for i = 0 . . . do

z ∼ Rademacher(x.shape)
H = H+ (z⊙ hvp(z))
if ∥H/(i+ 1)−H′/i∥ < ϵ∥H/(i+ 1)∥ then

return H/(i+ 1)

H′ = H

Hessian, we employ the method of Hutchinson (1989):

HD = E (z⊙ (H · z)) , (4)

with z being sampled from a Rademacher distribution. We
show an implementation of the Hessian diagonal approxi-
mation in Algorithm 1, making use gradient and Jacobian-
vector product routines in JAX.

Finally, we produce our hallucination score

∆F = Diag(FlogP)−Diag(FlogL). (5)

Equivalent forms, such as ∆F = 2Diag(FlogP)−Diag(F)
can be chosen as well, e.g. when the Hessian of the log
posterior has already been estimated during the optimization.
The positive regions of ∆F are prior-dominated and are
therefore prone to hallucinations. The user can then decide
how much trust they should place in the reconstruction of
features in these regions. An example from an inpainting
problem in astronomy is shown as the image on the right-
hand side of Figure 1.

3. Experiments
We demonstrate the capability of this method with a toy
model of a galaxy reconstruction using the source deblend-
ing method SCARLET (Melchior et al., 2018), which com-
putes a differentiable likelihood and performs proximal gra-
dient descent to enforce regularization. We replaced these
regularizers by a score-based diffusion model, which di-
rectly learns ∇x logP from training data, and acts as an
informative prior for the galaxy morphology distribution.
We implement all models in JAX (Bradbury et al., 2018)
and equinox (Kidger & Garcia, 2021) with the diffusion
model based on the implementation from Song et al. (2020).

3.1. Data

The diffusion model was trained on data from the Subaru
Hyper-Suprime Cam catalogue (Bosch et al., 2018). We
extracted the existing SCARLET models (each representing
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Figure 1. Overview of our methods to produce a reconstructed galaxy image and the corresponding hallucination score. The input image,
of which half was masked to create an inpainting and denoising problem, is first modeled with SCARLET by gradient descent of the
likelihood ∇x logL and a data-driven prior in the form of a score model ∇x logP . Next, we calculate the diagonalized Hessian matrices
for both logL and logP via Algorithm 1. We then compute the hallucination score according to Equation 5.

a single, isolated galaxy source) for three tracts, yielding
about 600,000 examples. Doing so exploits that these mod-
els have already been deblended and deconvolved and can
therefore act as examples of the true distribution of galaxy
shapes. We trained the diffusion model on a single NVIDIA
A100 for 1, 000, 000 steps with a batch size of 256.

3.2. Quality of the score model

We show a test of the score model and its utility for sup-
pressing image features that are inconsistent with galaxy
shapes. Figure 2 shows an input image with and without
a ring-shaped artifact. The bottom row shows the corre-
sponding prior score. While the original galaxy image has
an overall low amplitude prior score without clear spatial
structure, the artifact is strongly suppressed by the prior
gradients.

While we train a time-dependent score model as in Song
et al. (2020), we evaluate the score at temperature T = 0
during the optimization and for computing the hallucination
score. Longer runtimes of diffusion models would not allow
us to scale the prior evaluations to the data volumes expected
for the Vera C. Rubin Observatory (Ivezić et al., 2019). By
comparing scores from the T = 0 limit with those from full
diffusion, we have confirmed that our data distribution is
simple enough that the former performs sufficiently well for
our purposes. When we targeting larger or better resolved
galaxies, we will need to reinvestigate this approximation.

3.3. Hallucination score

We assume we have a usable generative model of galaxy
morphologies, which we now apply to solve an inverse
problem to see where prior and likelihood dominate the
reconstruction, respectively. We take a random sample of
a galaxy observation from the HSC data and model it with
SCARLET2. For simplicity, we remove the right half of the
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Figure 2. Example galaxy sample from the HSC catalog (top left),
with a ring artifact (top right), and the calculated prior score for
both cases (bottom row). The artifact is strongly suppressed in the
prior gradients.

data (array values and weights set to 0), as this will enforce
the prior to generate the entirety of the features on this half
of the reconstructed image. In the second trial, we perform
the same reconstruction on the unaltered image. The top
row of Figure 3 shows the results of trial 1, and the bottom
row shows trial 2. We can see from the reconstruction that
the noise in the image is removed, and that by virtue of the
prior we get a reasonable estimate of the right half of the
galaxy shape as well. The next panels show the Hessian
diagonals HD for logL and logP , both calculated with
Algorithm 1, allowing us to then compute the hallucination
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Figure 3. In the first two panels we show the initial input image for which the right half of the data has been set to 0, and the reconstructed
image. Panels 3 and 4 show the Hessian diagonal for logL and logP , respectively. We note the features of HD(logL) come directly from
the variance weighting in the initial HSC data for the galaxy. In the rightmost, panel we show the hallucination score ∆F from Equation 5.
The red shading indicates regions dominated by the prior, whereas the blue shading shows regions dominated by the likelihood.

score from Equation 5. While the left side of the ∆F shows
that the information comes from the likelihood, the majority
of the right side is dominated by the prior, as expected
due to the absence of valid data. It is noteworthy that the
hallucination score is much weaker in the central region of
the right side than in the outskirts. This is likely attributed
to the training data consisting of primarily relatively small
galaxies, leading to a high confidence in the pixel values
for the outskirts of the galaxy source: they are likely very
close to 0. In the inner region, the score model is much
less confident, so the hallucination score is closer to 0. We
also note that for HD(logP) we evaluate the Jacobian of
the score model, which is in itself only an approximation of
the true prior gradients; any inaccuracies of the score model
will be amplified when computing another derivative.

The bottom row of Figure 3 shows the same results run on
the unaltered galaxy, where we now see that the likelihood
dominates the central region with the highest signal-to-noise
ratio, while the prior starts to dominate in the outskirts.

The calculations for the Hessian diagonals in the example of
Figure 3 took ≈1 ms for the likelihood, which converged af-
ter a single iteration, and ≈260 ms for the prior, which took
on average 80 iterations to converge, resulting in roughly
3 ms per single HVP evaluation. With just-in-time com-
pilation, the JVP of the score network is only a factor 3

slower than the HVP of the simple Gaussian likelihood of
this example. All timing tests were run on an M1 Macbook
Pro, utilizing 4 CPU cores.

4. Conclusion
We presented a practical and computationally efficient
method to determine which regions in the solutions of in-
verse problems with data-driven priors are prone to hal-
lucinations. By computing the diagonal elements of the
Fisher information matrix of the likelihood and the prior
separately, we can flag regions where the information is
prior-dominated. Our diagnostic can directly be compared
to the reconstructed solutions and enables users to make
informed decisions about the trustworthiness of relevant
features in the reconstruction. Our method scales linearly
with the number of parameters and is thus scalable to high-
dimensional settings, allowing it to be rolled out broadly for
the large-volume data products of future wide-field surveys.

The choice of Equation 5 as a hallucination metric has advan-
tages over simpler diagnostics such as directly calculating
the standard deviation of the posterior. Doing so cannot
differentiate the source of the information that determines
the optimized model. Alternatively, merely checking the
gradients of the likelihood and prior will become meaning-
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less once the model is converged because they need to be
either very small or cancel each other. While our method
does not make assumptions about the prior model, comput-
ing gradients of data-driven priors requires a high level of
fidelity of that model. Caution should be taken to ensure that
the prior model is of sufficient accuracy for this purpose.

Software and Data
We have used python (Van Rossum & Drake Jr, 1995)
with the packages JAX (Bradbury et al., 2018), equinox
(Kidger & Garcia, 2021), numpy (Harris et al., 2020), and
matplotlib (Hunter, 2007). Data for this project is taken
from the Subaru Hyper-Suprime Cam Survey (Bosch et al.,
2018).
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