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Abstract
The recent release of 220+ million BP/RP spec-
tra in Gaia DR3 presents an opportunity to apply
deep learning models to an unprecedented num-
ber of stellar spectra, at extremely low-resolution.
The BP/RP dataset is so massive that no previ-
ous spectroscopic survey can provide enough stel-
lar labels to cover the BP/RP parameter space.
We present an unsupervised, deep, generative
model for BP/RP spectra: a scatter variational
auto-encoder. We design a non-traditional varia-
tional auto-encoder which is capable of modeling
both (i) BP/RP coefficients and (ii) intrinsic scat-
ter. Our model learns a latent space from which
to generate BP/RP spectra (scatter) directly from
the data itself without requiring any stellar la-
bels. We demonstrate that our model accurately
reproduces BP/RP spectra in regions of parameter
space where supervised learning fails or cannot
be implemented.

1. Introduction
Data-driven models applied to high-resolution spectroscopy
can produce very precise measurements of stellar labels: ef-
fective temperature Teff , surface gravity log g and metallic-
ity [Fe/H]. Seminal work done by Ness et al. (2015) showed
that a data-driven generative model with 2nd-order polyno-
mials in stellar labels, called The Cannon, can produce
stellar label estimates which are as accurate as the physics-
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driven APOGEE pipeline (ASPCAP: Abdurro’uf, 2022).
Recent work done by the LAMOST Survey (R ∼ 103; Yan
et al., 2022) has demonstrated that medium-resolution spec-
troscopy can provide stellar label estimates which rival their
high-resolution counterparts (Wang et al., 2022).

Data-driven approaches are particularly crucial for the 220+
million flux-calibrated, low-resolution spectra (R ∼ 100)
in the recent Gaia Data Release 3 (GDR3, Gaia Collabora-
tion, 2022). These spectra are a combination of measure-
ments from the Blue Photometer (BP) and Red Photometer
(RP) Gaia instruments which span 330-1050 nm. Spectro-
scopic stellar label estimates have thus far largely been lim-
ited to high-resolution ground-based surveys. For instance,
APOGEE is heavily biased towards giant stars, dispropor-
tionately targets stars in the Galactic disk, and only contains
∼ 105 spectroscopic observations. The Gaia XP spectra
do not suffer from these shortcomings; Gaia has excellent
spatial coverage, targets stellar populations beyond giants,
and contains more stars than APOGEE by 3 orders of mag-
nitude. The evident shortcoming of the Gaia XP spectra is
the low spectral resolution.

XP spectra analyses have only recently begun to be un-
dertaken; uncovering carbon-enhanced metal-poor (CEMP)
stars (Lucey et al., 2022) and revealing the metal-poor Galac-
tic center (Rix et al., 2022). To date, the only generative
model for XP spectra is that of Zhang et al. (2023); a super-
vised deep learning model. Although Zhang et al. (2023)
did present a stellar labels catalog for all 220 million stars
in the XP dataset, a large fraction of them are unreliable.
Specifically, their LAMOST training catalog (which only
cross-matches ∼ 1% of the XP spectra) does not contain
enough stellar labels for white/M dwarfs, B stars, high-
extinction supergiants, etc. and as such their supervised
model performs poorly when applied to these stellar popula-
tions. To date, no unsupervised generative models exist. An
unsupervised model has the potential to fill the ‘stellar labels
gap’ of Zhang et al. (2023). By combining supervised and
unsupervised approaches, it will be possible to develop a
data-driven, generative model which accurately predicts the
entire XP dataset. To that end, we present the first unsuper-
vised, generative model for XP spectra; a scatter variational
auto-encoder.
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2. Methods
2.1. Data

We use the XP coefficient spectra (XPCs) in this work. Here,
we outline the important characteristics of the XPCs (see De
Angeli et al. (2022); Montegriffo et al. (2022) for details).
Gaia XP spectra deviate from traditional spectra in the sense
that they are typically reported in Hermite polynomial space.
Specifically, the BP and RP spectra are transformed from
discrete wavelength-space into continuous coefficient-space:
110 coefficients which weight a set of Hermite polynomi-
als (55 blue and 55 red coefficients). One can transform
an XPCs into fluxes, and vice-versa, without loss of infor-
mation. Indeed, Zhang et al. (2023) train their generative
model in XP wavelength-space.

Before feeding coefficient XP spectra into our model, we
perform the following data pre-processing: First, coeffi-
cients and errors are normalized by the mean flux in the
Gaia G-band, removing the brightness dependence of XP
coefficients. Second, we normalize the G-band flux normal-
ized coefficients such that each coefficient has zero mean
and unit variance. An XP spectrum is accompanied by a
covariance matrix. In this work, we discard off-diagonal
terms of the covariance matrix, treating coefficient errors as
independent.

2.2. Scatter variational auto-encoder

We present a novel implementation of a variational auto-
encoder (VAE), which we term a scatter variational auto-
encoder (sVAE). Before describing our sVAE architecture,
we briefly review the concept of a (V)AE.

An AE, which need not be variational, can be thought of as
a non-linear generalization of Principal Component Anal-
ysis. An auto-encoder begins with an encoder which com-
presses input data, in our case a stellar spectrum, to a low-
dimensional latent representation. A decoder then attempts
to reconstruct the stellar spectrum from the latent represen-
tation. Ideally, this will allow the latent representation to
learn key features which are shared across a set of stellar
spectra. The variational nature of a VAE is added to an AE
by upgrading the latent space from a collection of discrete
points to a latent distribution Z . The most popular VAE
methodology is that of Kingma & Welling (2013), who en-
code input data onto an independent multivariate Gaussian
distribution. The latent space can therefore be entirely char-
acterized by a latent mean vectorµµµ and (log) variance vector
logσσσ2, with dimension (of the latent space) nZ .

We present the high-level architecture of our VAE in Figure
1. Our sVAE differs from a traditional VAE since, in addi-
tion to a decoder (purple) which estimates stellar spectra,
we introduce a second ‘decoder’ which estimates intrinsic
scatter on a star-by-star basis (green). Importantly, both

the XP reconstruction and XP scatter estimate are generated
from the same latent space (black). After discarding the en-
coder (orange) post-training, new XP coefficients (scatter)
can be generated given an arbitrary latent space vector zzz
(teal).

The input of our encoder is a (flux-normalized) XPCs. The
XP coefficients are fed through three intermediate layers,
composed of 80, 50 and 30 neurons, respectively. All inter-
mediate layers are activated by the gaussian error linear unit
(GELU). The latent parameters are then given by a linear
transformation of the final intermediate layer. In this work,
we have fixed the latent space to 6 dimensions, meaning the
encoder produces 12 outputs (6 means and variances). Our
decoder is the mirror image of our encoder, and takes as
input a vector drawn from the latent distribution. We then
reconstruct an XP spectrum, by feeding the latent vector
through three intermediate layers analogous to the encoder,
except in reverse order. Finally, a reconstruction of the 110
XP coefficients is produced with a linear transform. The
scatter estimator has the exact same architecture as the de-
coder (while enforcing positivity). We emphasize that the
weights and biases of the scatter estimator are entirely dis-
connected from the decoder. The scatter estimator does not
produce an estimate of intrinsic scatter in the traditional
sense; variance of the entire XP dataset assuming zero mea-
surement error. Rather, the intrinsic scatter is ‘intrinsic’ to
an individual star, because the scatter estimator produces
different outputs on a star-by-star, or latent vector-by-latent
vector basis. As such, it is more accurate to think of the
intrinsic scatter as an error term which includes traditional
intrinsic scatter, systematics, outliers, etc.

2.3. Training

After data pre-processing (see Section 2.1), we train our
model on 500,000 XPCs for 100 epochs. Here, we select
a subset of test Gaia XP stars which we cross-match with
APOGEE to obtain stellar labels (∼ 5× 105 spectra). We
implement stochastic gradient descent (SGD) with momen-
tum, with a batch size of 1024 and learning rate decay with
an initial learning rate of 0.1. During training we aim to
minimize the loss function

L = χ̃2(xxx, x̂xx,σσσ2
x, σ̂σσ

2
s) +DKL(µµµ, logσσσ

2). (1)

χ̃2 is the reconstruction loss between an input XP spectrum
xxx and a reconstructed spectrum x̂xx (from the decoder), whilst
incorporating observational uncertainties σσσ2

x and intrinsic
scatter σ̂σσ2

s (from the scatter estimator). In Eq. (1), the χ̃2

term is given by

χ̃2(xxx, x̂xx,σσσ2
x, σ̂σσ

2
s) = χ2(xxx, x̂xx,σσσ2

x, σ̂σσ
2
s) + P (σσσ2

x, σ̂σσ
2
s). (2)

2



Generating XP spectra with unsupervised learning

Figure 1. sVAE archictecture with an example spectrum. An observed XP spectrum is compressed by the encoder into the latent space.
The latent space then generates an XP spectrum reconstruction and a scatter estimate. We compare our sVAE reconstruction to a Cannon
model, which overestimates scatter in comparison to the sVAE. We do not explicitly display XP observational uncertainties as inputs
since they are not propagated through the network, only factoring into our loss function (see Section 2.3). Note that the XP coefficient
amplitudes are on a symmetric-log scale, and that error bars correspond to scatter and observational uncertainties added in quadrature.

The first term in Eq. (2) is the traditional (reduced) χ2,
given by

χ2(xxx, x̂xx,σσσ2
x, σ̂σσ

2
s) =

1

2N

N∑
i=1

(xi − x̂i)
2

σ2
x,i + σ̂2

s,i

, (3)

and the penalty term P is given by

P (σσσ2
x, σ̂σσ

2
s) =

1

2N

N∑
i=1

log
(
σ2
x,i + σ̂2

s,i

)
, (4)

where we are summing over the N = 110 XP coefficients.
The reconstruction loss (Eq. (2)) can therefore be thought
of as a modification to chi-square which incorporates an
error term by effectively penalizing large scatter and/or
uncertainties. The second term in Eq. (1) is the latent-
space structure loss, for which we select the KL divergence
(Kullback & Leibler, 1951), and is given by

DKL(µµµ, logσσσ
2) =

1

2nZ

nZ∑
i=1

µ2
i + e(log σ2

i ) −
(
1 + log σ2

i

)
,

(5)

where µµµ (logσσσ2) are the latent means (variances) and we
are summing over latent space dimensions nZ . In the above
form, DKL is not particularly intuitive. For the purposes of
latent space structure loss, it can be thought as a distance
for probability distributions. DKL = 0 if two distributions

are identical and DKL > 0 otherwise. Hence, assuming a
multivariate normal latent distribution, the KL divergence is
a measure of the Gaussianity of the sVAE latent space.

3. Results
We now present the results of our trained sVAE in com-
parison to a Cannon model. Reconstruction errors for our
trained sVAE (normalized by observational uncertainty and
intrinsic scatter added in quadrature) are presented in Fig-
ure 2. The Cannon model reconstructs an XP spectrum
from stellar labels. We train the Cannon model on the same
APOGEE/XP cross-match used for sVAE training in Section
2.3. Our unsupervised sVAE has three key advantages over
existing supervised generative models:

1. Star-by-star intrinsic scatter estimation (and overall
model flexibility) yields better XP reconstructions over
all stellar parameter space.

2. Our trained sVAE accurately reconstructs stellar spec-
tra in regions of stellar parameter space where super-
vised learning failed with (bad) stellar labels.

3. Our model covers far more of the XP parameter space
than supervised learning.

First, in Figure 2, normalized errors for the sVAE clearly
truncate at ∼ 5σ, whereas the Cannon errors can extend
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Figure 2. Normalized errors for the 3rd BP and RP coefficients, as functions of APOGEE stellar labels. sVAE errors (top) are compared to
Cannon model errors (middle). sVAE star-by-star scatter (bottom) is compared to Cannon population scatter (grey). We highlight the
improvement in performance with our sVAE for both cool stars (green) and low surface gravity stars (yellow). Purple lines indicate the
mode normalized error as a function of stellar label.

beyond 10σ. Although we only present the 3rd XP coeffi-
cients in Figure 2, the average, normalized errors for our
trained sVAE across all XPCs in the APOGEE cross-match
are only 2% (9%) larger than the Cannon model, for the
first 10 BP (RP) coefficients. This is more impressive if
we compare individual XP scatter to Cannon population
scatter in the bottom row of Figure 2. The sVAE achieves
the same accuracy as the Cannon model, with respect to
normalized errors, while simultaneously having far smaller
intrinsic scatter estimates (by up to 2 order of magnitude).
The Cannon model overestimates intrinsic scatter, and by
extension reduces normalized errors. In contrast, the lower
(individual) scatter estimates of the sVAE allow an over-
all increase in reconstruction accuracy. In summary, our
generically better XP reconstructions, relative to the Can-
non model, can be attributed to (i) inclusion of individual
scatter estimation and (ii) the flexibility of the generative
function which relates the latent space to XPCs.

Second, the lack of reliance on stellar labels in our unsuper-
vised approach is a significant advantage over supervised
learning at the extrema of stellar parameter space. In Figure
2, we observe that our model is less susceptible to large
errors at both the cool end of Teff (green) and the low g tail
(yellow). In contrast, Cannon model errors blow up because
supervised learning fails when bad stellar label estimates
are used. Our sVAE avoids this shortcoming by swapping
out stellar labels for a latent space as its generator.

Third, our unsupervised approach greatly increases ‘cov-
erage’ of the XP parameter space, relative to supervised
learning. The XP spectra contain rare stellar populations

which are not well characterized by the current stellar la-
bel catalogs available for supervised learning. To illustrate
this, we project both the entire XP/APOGEE cross-matched
catalog and 106 XP spectra (outside of the cross-match)
into the sVAE latent space. This is visualized across two
latent space dimensions in Figure 3. We observe that the
XP/APOGEE cross-match covers significantly less latent
space volume than the 106 XP spectra without APOGEE la-
bels. We compute the relative latent space volume difference
by numerical integration and find ∆V/Vsup ≈ 30%, mean-
ing the 106 unlabeled spectra cover 30% more latent space
than the APOGEE cross-match. Extrapolating this to the en-
tire 220 million XP spectra, our sVAE improves latent space
coverage by approximately a factor of 220× ∆V

100Vsup
≈ 65.

We emphasize that this increase in latent space coverage
is a crude approximation of the ‘breadth’ gained by our
unsupervised approach. First, latent space coverage does
not necessarily correspond to better stellar parameter space
coverage (although it certainly can). Second, the sVAE is
degenerate in the sense that the same model can learn differ-
ent embeddings of the data, due to latent space symmetries.
Therefore, the 65x factor we quote above is only qualitative.
It serves to motivate the use of our sVAE: better latent space
coverage, by roughly an order of magnitude, is a proxy for
better information coverage over the XP dataset.

4. Conclusion & Future Work
We developed a novel deep, generative model: a scatter
variational auto-encoder, and applied it to the Gaia XP
spectra. We showed that our sVAE outperforms supervised
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Figure 3. Latent space projection for the APOGEE/XP cross-
matched catalog (orange) and 106 unlabeled XP spectra (blue).

learning (Cannon) in many respects. Most importantly, our
unsupervised approach has the potential to close the stellar
labels gap. Firstly, for XP spectra with stellar labels from
previous spectroscopic surveys, our sVAE produces better
reconstructions than supervised learning if stellar labels
are poorly estimated. Second, our unsupervised model can
cover the entire XP parameter space, whereas supervised
learning is limited to only a small subset, because we swap
out stellar labels for latent variables.

The evident shortcoming of trading stellar labels for latent
labels is the inability to perform stellar label inference with
our unsupervised model. Nevertheless, inference can be
performed in the latent space to identify relative differences
between stellar populations. Our sVAE, combined with
existing supervised models (e.g. Zhang et al., 2023), will
eventually yield an accurate, semi-supervised generative
model for the entire Gaia XP data. Our approach is also
promising for both outlier detection and identification of rare
stellar populations. For example, we expect our approach
will provide additional insights into the CEMP star catalog
of Lucey et al. (2022) and aim to pursue this in future work.
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