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Abstract
Large-scale numerical simulations (≳ 500Mpc)
of cosmic reionization are required to match the
large survey volume of the upcoming Square Kilo-
metre Array (SKA). We present a multi-fidelity
emulation technique for generating large-scale
lightcone images of cosmic reionization. We first
train generative adversarial networks (GAN) on
small-scale simulations and transfer that knowl-
edge to large-scale simulations with hundreds of
training images. Our method achieves high accu-
racy in generating lightcone images, as measured
by various statistics with mostly percentage errors.
This approach saves computational resources by
90% compared to conventional training methods.
Our technique enables efficient and accurate emu-
lation of large-scale images of the Universe.

1. Introduction
In preparation for the upcoming era of 21 cm cosmology,
many models have been developed to extract information
from observations. These models range from the semi-
numerical simulation, e.g. 21CMFAST (Mesinger et al.,
2011; Murray et al., 2020) to hydrodynamical radiation
transfer simulation, e.g. THESAN(Kannan et al., 2021),
with varying levels of accuracy and computational cost. In
addition, different approaches have been applied to infer
cosmological and astrophysical parameters, including the
Markov Chain Monte Carlo (MCMC) code, e.g. 21CMMC
(Greig & Mesinger, 2017) to the machine learning boosted
simulation-based inference (e.g. Alsing et al., 2019; Zhao
et al., 2022). However, parameter inference typically re-
quires many forward simulations. Given the large field of
view of the next-generation telescopes, large-scale simula-
tions are required to fully exploit the information contained
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in the observations. However, these large-scale simulations
are computationally expensive, which has inspired the de-
velopment of emulators as an alternative.

Building emulators typically requires numerous training
samples. For large-scale simulations, the cost of obtaining
these training samples can be prohibitive in and of itself. To
address this issue, the concept of multi-fidelity emulation
(Kennedy & O’Hagan, 2000; Ho et al., 2021) has been
proposed. This approach first uses low-cost (low-fidelity)
simulations to create an emulator. The emulator is then
calibrated with a small number of high-cost (high-fidelity)
simulations, reducing the computational cost while still
maintaining the output quality.

Here we choose GAN (Goodfellow et al., 2014; List &
Lewis, 2020; Andrianomena et al., 2022) as our emulation
model. GAN emulation has previously demonstrated the
ability to produce high-quality samples. However, GAN
training is known to suffer very often from mode collapse,
especially with a dataset smaller than ∼ 1000 images. In the
context of 21 cm lightcone emulation, this would typically
require ≳ 1000 expensive simulations which are sometimes
impossibly costly. In this paper, we propose the few-shot
transfer learning (e.g. Ojha et al., 2021) to train a faithful
large-scale 21 cm lightcone image emulator with a limited
number of simulations. Few-shot transfer learning allows
us to learn a new task with a limited number of samples,
which serves as the ‘calibrating’ procedure in multi-fidelity
emulation. This multi-fidelity emulation allows us to signif-
icantly reduce the number of simulations required to train
an accurate lightcone image emulator.

2. Methodology
Our approach involves a two-step process. First, we train our
GAN with 120000 small-scale (size of (2, 64, 512)) images.
In the second step, we train our large-scale GAN on 320
large-scale (size of (2, 256, 512)) images while preserving
the diversity of GAN results. We will explain our approach
in detail in the following.

StyleGAN 2: The GAN architecture used in this work is
StyleGAN 2 (Karras et al., 2020). Our generator G consists
of two parts: First, a mapping network f takes the astro-
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Figure 1. An illustration of the cross-domain correspondence (CDC). ① We first generate a set of samples with both small-scale GAN and
large-scale GAN. ② We then calculate the similarity between each image pair generated by the same GAN. ③ Finally, we normalize the
similarity vector of each GAN with softmax, then compute the KL-divergence as the CDC. The samples shown here are results from our
large-scale GAN.

physical parameter c and a random vector z and returns
a style vector w. Second, a synthesis network g uses the
style vector w to shift the weights in convolution kernels,
and Gaussian random noise is injected into the feature map
right after each convolution to provide variations in different
scales of features. Our discriminator D has a ResNet (He
et al., 2015)-like architecture.

Cross-Domain Correspondence (CDC): Assuming we
have a good small-scale StyleGAN emulator, we expand the
size of the generator’s first layer, resulting in a final output
size of (2, 256, 512).

Next, we retrain our GAN with large-scale images. We first
employ the patchy-level discriminator and cross-domain
correspondence as described in Ojha et al. (2021). We mark
the small-scale GAN as our source model Gs and the large-
scale GAN as the target model Gt. First, we use the same
batch of vectors (z, c) feeding both Gs and Gt, getting
the corresponding small-scale images Gs(z, c) and large-
scale Gt(z, c). Then we calculate the cosine similarity s(i,j)
between any pair of images in Gs(z, c) as

Ss(z, c) = {cos(Gs(zi, ci), Gs(zj , cj))∀i ̸=j} (1)

and similarly for Gt we have:

St(z, c) = {cos(Gt(zi, ci), Gs(zj , cj))∀i ̸=j} (2)

Here the cos denotes the cosine similarity. Next, we normal-
ize these two vectors using softmax and calculate the KL
divergence between vectors:

LCDC = DKL (Softmax(Ss),Softmax(St)) (3)

In this way, one can encourage the Gt to generate samples
with a diversity similar to Gs, relieving the mode collapse
problem.

Other Techniques: A patchy-level discriminator is also
adopted in this work. We divided the astrophysical parame-
ter space into two parts: the anchor region and the rest. The
anchor region is a spherical region around training set pa-
rameters with a small radius. In this region, the GAN image
Gt(z, canch) has a good training sample to compare with.
Thus, we apply the full discriminator with these parameters.
If c is located outside the anchor region, we only apply a
patch discriminator: in this case, the discriminator does not
calculate the loss of the whole image but calculates the loss
of different patches of the image.

Since the small-scale information in both training sets is
identical, we freeze the first two layers of the discriminator
(Mo et al., 2020). We add the small-scale discriminator Ds

loss to ensure the correctness of small-scale information.
Our code is public-available in this GitHub repo1.

3. Dataset
The training dataset for this project consists of two parts: a
small-scale dataset and a large-scale dataset. All the data are
generated with 21CMFAST(Mesinger et al., 2011; Murray
et al., 2020), and each simulation has distinct reionization
parameters. Our parameters are the ionizing efficiency ζ and
the minimum virial temperature Tvir. We explored a range
of 10 < ζ < 250 and 4 < log Tvir < 6, and the parameters
are sampled with Latin-Hypercube Sampling(McKay et al.,
2000).

The small-scale dataset has a resolution of (64, 64, 512) and
consists of 30,000 simulations with a comoving box length

1https://github.com/dkn16/
multi-fidel-gan-21cm
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Figure 2. The upper panel: global signal reproduced with large-scale GAN. Different colors denote different parameters, the solid line is
calculated with the test set, while the dashed line is the GAN result. The shallow shaded region is the 2σ scatter of the GAN images,
while the thick shaded region is the 2σ scatter of the test set images. The lower panel: relative error between GAN global signal and test
set global signal, the grey dot-dashed line represents the 10% error line, while the data points near 0 are neglected.
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Figure 3. The upper panel: the 2D power spectrum of GAN results versus test set PS, each calculated with clips of size (2,256,128). The
redshift denotes the redshift of the center slice. Legends are the same as Fig. 2. The lower panel: the relative error, same as Fig. 2 but for
power spectrum here.
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Figure 4. The upper panel: the second order scattering coefficients
of GAN results versus test set result, each calculated with clips of
size (2,256,128). The redshift denotes the redshift of the center
slice. Legends are the same as Fig. 2. The lower panel: relative
error, same as Fig. 2 but for second order scattering coefficients
here.

of (128, 128, 1024)Mpc. The third axis (z-axis) is along the
line of sight (LoS), spanning a redshift range of 7.51 < z <
11.93. For each redshift, we run a realization and select the
corresponding slice for our final data. We include the matter
overdensity field δm and the 21 cm brightness temperature
Tb field for training. Since the overdensity field is highly
correlated with other intensity mappings (IM) like CO and
C[II] lines, we expect our method can be transferred to other
IM images smoothly. For each sample, we cut four image
slices, resulting in 120000 lightcone images with a size of
(2, 64, 512) in our small-scale dataset, containing both the
overdensity and brightness temperature field.

The large-scale dataset has a (256, 256, 512) resolution and
consists of 80 simulations with a comoving box length of
(512, 512, 1024)Mpc, covering the same redshift range. As
before, for each sample, we cut four slices and obtained
320 lightcone images with a size of (2, 256, 512) in our
large-scale dataset.

4. Results
Here we present the evaluation of our model results. A
visual inspection of generated samples is shown in Fig. 1.
We tested our result on 3 combinations of parameters, each
having distinct evolution history. For each parameter combi-
nation, we run 4 simulations with distinct initial conditions
generated with different random seeds for testing.

Global Signal: We calculated the global 21 cm signal of the
GAN results. Limited by the size of the test set, the mean
value is calculated with 1024 image samples. Our result is
shown in Fig. 2. We see that GAN works well, with an error
of mostly less than 5% and a well-matched 2σ region.

Power spectrum (PS): Fig. 3 shows the Tb auto-PS, Tb−δm
cross-PS and δm auto-PS. GAN results perform well on
small scales, with an error of less than 10%, except when
the PS is close to 0. On extremely large scales, the error can
exceed 50%. This is unsurprising because we lack training
samples. The GAN still captures the large-scale power when
the Tb signal has a high amplitude. Moreover, the relative
error is insignificant compared with the sampling variance.

From Tb auto-PS figures (Fig. 3, top row), the change of
lines shows an evolution with the time that power is trans-
ferred from small scale to large scale. Again, the accuracy of
the cross-PS (Fig. 3, middle row) guarantees the correlation
between Tb and δm. At early stages, the HI traces the mat-
ter field well, and the GAN Tb and δm fields have positive
cross-correlation at all scales. Later, the cross-correlation
becomes negative due to the fact that dense regions hosted
ionizing sources earlier and ionized first. Our GAN per-
forms well in reproducing these features. The GAN samples
with different parameters have similar matter PS (Fig. 3,
bottom row), which agrees with the truth.

Non-Gaussianity: Here we employ the scattering transform
(ST, e.g. Mallat, 2012; Allys et al., 2019; Cheng et al., 2020;
Greig et al., 2022) coefficients as a non-Gaussian statistic
to evaluate our GAN. A detailed description can be found
in e.g. Cheng & Ménard (2021). We calculated the second-
order ST coefficients S2 as measures for non-Gaussianity
with KYMATIO (Andreux et al., 2020). As the image sample
size grows, we set the kernel size scale j = 0, 3, 6 to capture
more large-scale information. Results are shown in Fig.
4. When (j1, j2) = (0, 3), the error is less significant as
≲ 10%. When j2 = 6 the error exceeds 20%.

5. Summary
In this paper, we introduce the few-shot transfer learning
technique to build an emulator for large-scale 21 cm simula-
tions. The large-scale GAN is trained with 80 simulations,
and the relative error of statistics is less than 10% on small
scales. On large scales, a mild increase in error arises due
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to insufficient training samples.

Generating our multi-fidelity dataset requires ∼ 1.2× 105

CPU hours, while a purely large scale dataset requires ∼
1.5× 105 CPU hours, with 5000 simulations, an optimistic
estimate of dataset size consistent with e.g. Hassan et al.
(2022); Andrianomena et al. (2022). Our method reduces
the computational cost by 90%, which will enable us to
emulate more complex simulations in the future.
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Bryan, G. L., Davé, R., Somerville, R. S., Eickenberg,
M., Narayanan, D., Ho, S., and Andrianomena, S. HI-
Flow: Generating diverse hi maps and inferring cosmol-
ogy while marginalizing over astrophysics using normal-
izing flows. The Astrophysical Journal, 937(2):83, sep
2022. doi: 10.3847/1538-4357/ac8b09. URL https://
doi.org/10.3847%2F1538-4357%2Fac8b09.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition, 2015. URL https://
arxiv.org/abs/1512.03385.

Ho, M.-F., Bird, S., and Shelton, C. R. Multifidelity
emulation for the matter power spectrum using gaus-
sian processes. Monthly Notices of the Royal Astro-
nomical Society, 509(2):2551–2565, oct 2021. doi:
10.1093/mnras/stab3114. URL https://doi.org/
10.1093%2Fmnras%2Fstab3114.

Kannan, R., Garaldi, E., Smith, A., Pakmor, R., Springel,
V., Vogelsberger, M., and Hernquist, L. Introducing the
THESAN project: radiation-magnetohydrodynamic sim-
ulations of the epoch of reionization. Monthly Notices
of the Royal Astronomical Society, 511(3):4005–4030,
dec 2021. doi: 10.1093/mnras/stab3710. URL https:
//doi.org/10.1093%2Fmnras%2Fstab3710.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progressive
Growing of GANs for Improved Quality, Stability, and
Variation. arXiv e-prints, art. arXiv:1710.10196, October
2017. doi: 10.48550/arXiv.1710.10196.

5

https://doi.org/10.1093%2Fmnras%2Fstz1960
https://doi.org/10.1093%2Fmnras%2Fstz1960
http://jmlr.org/papers/v21/19-047.html
http://jmlr.org/papers/v21/19-047.html
https://doi.org/10.1093%2Fmnras%2Fstaa3165
https://doi.org/10.1093%2Fmnras%2Fstaa3165
https://doi.org/10.1017%2Fs1743921317011103
https://doi.org/10.1017%2Fs1743921317011103
https://doi.org/10.3847%2F1538-4357%2Fac8b09
https://doi.org/10.3847%2F1538-4357%2Fac8b09
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.1093%2Fmnras%2Fstab3114
https://doi.org/10.1093%2Fmnras%2Fstab3114
https://doi.org/10.1093%2Fmnras%2Fstab3710
https://doi.org/10.1093%2Fmnras%2Fstab3710


21cm Few-shot GAN

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J.,
and Aila, T. Analyzing and improving the image quality
of StyleGAN. In Proc. CVPR, 2020.

Kennedy, M. and O’Hagan, A. Predicting the output from
a complex computer code when fast approximations are
available. Biometrika, 87(1):1–13, 03 2000. ISSN 0006-
3444. doi: 10.1093/biomet/87.1.1. URL https://
doi.org/10.1093/biomet/87.1.1.

List, F. and Lewis, G. F. A unified framework for 21 cm
tomography sample generation and parameter inference
with progressively growing GANs. Monthly Notices of
the Royal Astronomical Society, 493(4):5913–5927, April
2020. doi: 10.1093/mnras/staa523.

Liu, B., Zhu, Y., Song, K., and Elgammal, A. Towards Faster
and Stabilized GAN Training for High-fidelity Few-shot
Image Synthesis. arXiv e-prints, art. arXiv:2101.04775,
January 2021. doi: 10.48550/arXiv.2101.04775.

Mallat, S. Group invariant scattering. Communi-
cations on Pure and Applied Mathematics, 65(10):
1331–1398, 2012. doi: https://doi.org/10.1002/cpa.
21413. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/cpa.21413.

McKay, M. D., Beckman, R. J., and Conover, W. J. A
comparison of three methods for selecting values of input
variables in the analysis of output from a computer code.
Technometrics, 42(1):55–61, 2000.

Mesinger, A., Furlanetto, S., and Cen, R. 21cmfast: a fast,
seminumerical simulation of the high-redshift 21-cm sig-
nal. Monthly Notices of the Royal Astronomical Society,
411(2):955–972, 02 2011. ISSN 0035-8711. doi: 10.
1111/j.1365-2966.2010.17731.x. URL https://doi.
org/10.1111/j.1365-2966.2010.17731.x.

Mo, S., Cho, M., and Shin, J. Freeze the discriminator: a
simple baseline for fine-tuning gans, 2020. URL https:
//arxiv.org/abs/2002.10964.

Murray, S. G., Greig, B., Mesinger, A., Muñoz, J. B., Qin,
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A. Comparison with previous work
Several noteworthy applications of GAN in astronomy have
been extensively explored in previous studies (e.g., List &
Lewis, 2020; Andrianomena et al., 2022; Yiu et al., 2022;
Tröster et al., 2019). Previous works have made significant
progress in utilizing innovative GAN structures such as the
progressively growing GAN (PGGAN) (Karras et al., 2017)
and stabilized GAN (Liu et al., 2021). These studies have
demonstrated sub-percent-level accuracy, as assessed by
various statistical measures, for unconditional emulation,
and achieved accuracy at the ten percent level for condi-
tional emulation. A comparison between our results and
previous findings is presented in Table 1. By employing the
StyleGAN2 architecture, we have achieved percent-level
accuracy in conditional emulation with sufficient training
samples, as validated by various statistical measures. In
the few-shot learning scenario, our GAN exhibits similar
accuracy on a small scale and demonstrates a moderate in-
crease on a larger scale. Furthermore, our large-scale GAN,
combined with few-shot transfer learning techniques, allows
for computational resource savings ranging from 90% to
99%, depending on different estimations.

B. Test on mode collapse
B.1. Visual inspection

To assess the diversity of our model, we conducted a vi-
sual inspection. We generated multiple realizations for both
GAN samples and simulation samples, as illustrated in Fig.
5. Upon careful observation, we observed that the shape
and size of ionized bubbles exhibit variation across different
GAN samples, indicating the absence of any specific pref-
erence for bubble features. Furthermore, the locations of
ionized bubbles also appear random, as no discernible trend
or pattern was observed among the samples we examined.

B.2. Pixel level variance

In addition to visual inspections, we also computed the stan-
dard deviation of the Tb field for each pixel, as depicted in
Fig. 6. Our aim was to observe any potential decrease in
the standard deviation, which could indicate mode collapse.
Upon analyzing the results in Fig. 6, we noticed that the
variance for both GAN and simulation samples appeared
similar, particularly for higher Tb values. However, we ob-
served mild fluctuations in the standard deviation when the
Tb value was low. Based on this analysis, we can conclude
that there is no clear evidence of significant mode collapse
at the pixel level.

B.3. Feature level variance

Lastly, we computed the 2σ scatter of the second-order ST
coefficients (S2) for the Tb field, which serves as a represen-
tation of image features. The results are presented in Figures
7-9. Consistent with the analysis in Section 4, we selected
the scales (j1, j2) as (0,3), (0,6), and (3,6) to capture both
small and large-scale features.

Upon examination, we observed that in most cases, the 2σ
scatter of GAN features overlapped with that of simulation
samples, indicating the absence of mode collapse at the
feature level. However, in the bottom subplot of Fig. 8, we
noticed a deviation in both the mean value and 2σ scatter
for certain features at the super-large scale. This suggests a
slight mode collapse issue in the generated images at that
particular scale.

In conclusion, our analysis indicates that there is no strong
evidence of mode collapse at the feature level. The GAN
samples generally mimic the behavior of the simulation
samples quite well, except when the Tb approaches zero.
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Table 1. A comparison of accuracy and cost of various methods. Large-scale GAN is training GAN with only large-scale image samples,
and the performance is estimated. The cost here is the CPU hours used to generate the dataset.

Method Relative Error Cosmic Variance Cost [CPU hours]
At small scales At large scales

Small-scale GAN < 10% — Large 1× 104

Large-scale GAN (estimateda) < 10% < 10% Small (1.5− 9)× 105

Few-shot GAN (this work) < 10% 20%− 50% Small 1.2× 104

aAccording to related work, 5000 large-scale simulations is an optimistic estimation for the necessary training samples (e.g. Hassan
et al., 2022; Andrianomena et al., 2022), which will take 1.5× 105 CPU hours; to ensure the 10% accuracy and to make a fair comparison,
30000 simulations are required, which will cost 9× 105 CPU hours.
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Figure 5. Here we present four distinct realizations for both GAN and simulation samples, allowing for visual inspection. These
realizations were generated with the parameters log Tvir = 5.50 and log ζ = 1.70. The upper panel displays the GAN samples, while
the lower panel showcases the simulation samples. Each realization was computed using a unique latent vector (for GAN) or initial
condition (for simulation). Within each subplot, the upper half represents the brightness temperature field, while the lower half represents
the overdensity field.
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Figure 6. The standard deviation in each pixel is calculated for the 21 cm Tb map. The upper panel is for the GAN samples while the
lower panel is for the simulation samples.
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Figure 7. The 2σ scatter of S2 for in simulations and GAN samples
at z = 7.933. The solid line is for the simulation mean value, while
the dashed line is for GAN mean. Shaded region is the 2σ scatter
for simulation samples while the error bar is for GAN samples.
Different plot corresponds to different reionization parameters, as
is shown on the right of each plot.
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Figure 8. Same as Fig. 7, but for z = 9.384.
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Figure 9. Same as Fig. 7, but for z = 11.221.
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