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Abstract
Telescopes capture images with a particular point-
spread function (PSF). Inferring what an image
would have looked like with a much sharper PSF,
a problem known as PSF deconvolution, is ill-
posed because PSF convolution is not an invert-
ible transformation. Deep generative models are
appealing for PSF deconvolution because they can
infer a posterior distribution over candidate im-
ages that, if convolved with the PSF, could have
generated the observation. However, classical
deep generative models such as VAEs and GANs
often provide inadequate sample diversity. As
an alternative, we propose a classifier-free con-
ditional diffusion model for PSF deconvolution
of galaxy images. We demonstrate that this diffu-
sion model captures a greater diversity of possible
deconvolutions compared to a conditional VAE.

1. Introduction
High-fidelity galaxy models are important for deblend-
ing (Melchior et al., 2021), analyzing lens substruc-
ture (Mishra-Sharma & Yang, 2022), and validating the
analysis of optical surveys (Korytov et al., 2019). Tradi-
tional galaxy models rely on simple parameteric profiles
such as Sersic profiles (Sérsic, 1963). However, these mod-
els fail to capture rich structures that are visible in modern
surveys. As a result, there is growing interest in utilizing
deep generative models, such as variational autoencoders
(VAEs), to represent galaxies (Regier et al., 2015; Castelvec-
chi, 2017; Lanusse et al., 2021).

Deep generative models of galaxies are fitted with images
that have been observed with a particular point-spread func-
tion (PSF). It is thus necessary to account for the PSF in
fitting these galaxy models, to disentangle the measurement
process from the physical reality.
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Because PSF convolution is not an invertible transformation,
multiple deconvolved images are compatible with the ob-
served image. Traditional deconvolution methods produce
just one deconvolved image that is compatible with the im-
age (Vojtekova et al., 2021). Deep generative models are
an appealing alternative because they infer a distribution of
deconvolved images that are compatible with an observation.
While conditional VAEs and conditional GANs (Schawin-
ski et al., 2017; Fussell & Moews, 2019; Lanusse et al.,
2021) can provide a distribution of deconvolved images,
both are known to produce insufficient diversity in their
outputs (Salimans et al., 2016).

Diffusion models are a recently developed alternative to
VAEs and GANs that excel at producing diverse samples.
Notably, diffusion models have also been successfully ap-
plied to solve inverse problems (Kawar et al., 2022; Remy
et al., 2023; Adam et al., 2022; Song et al., 2021). However,
training diffusion models with PSF convolved data to learn
a representation of physical reality that is decoupled from
the measurement process is not as straightforward as with a
VAE. If we simply add a PSF convolution layer to the end
of the diffusion model’s decoder, as we can with a VAE,
training is no longer tractable.

Instead, we propose to model PSF-convolved galaxy im-
ages with a classifier-free conditional diffusion model (Ho
& Salimans, 2022) and to condition on the observed PSF.
In training this model, we make use of paired data sources,
e.g., both ground-based and space-based telescopes. We use
a conditional VAE as a baseline and compare the methods by
framing this task as a constrained optimization problem. We
find that CVAEs tend to produce high percentages of invalid
deconvolutions due to missing high-frequency details in re-
constructions, resulting in lower sample diversity compared
to conditional diffusion models. Our code is available from
https://github.com/yashpatel5400/galgen

2. Methods
Let x denote the observed (PSF-convolved) image, let
y denote the latent “clean” image, and let Π denote the
PSF. Then, neglecting pixelation and measurement noise,
x = Π ∗ y. We investigate classifier-free conditional dif-
fusion models for solving the deconvolution task and we
consider conditional VAEs as a baseline to compare against.
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Figure 1. A CVAE is employed with a partially fixed decoder
consisting of a deterministic convolution with the known PSF.

2.1. Conditional VAE

VAEs model the data distribution as a transformation of a
lower-dimensional latent space (Kingma & Welling, 2013).
An encoder qφ maps the input x to a distribution over a
low-dimensional latent expression z, which defines an ap-
proximate posterior distribution qφ(z | x); a decoder pθ
maps z to the original data space through a generative
model, pθ(x | z). Conditional VAEs (CVAEs) (Sohn et al.,
2015) extend VAEs by conditioning both the encoder and
decoder on auxiliary variables c, which may be denoted as
qφ(z | x, c) and pθ(x | z, c), respectively.

We investigate a CVAE in which c = Π and the final layer
of the decoder is fixed to be a convolution with the known
PSF, as in Lanusse et al. (2021) and illustrated in Figure 1.
With this approach, for each draw from the latent space, a
candidate deconvolved image is produced as an intermedi-
ate result in the decoder, which is the quantity targeted by
inference. For training, we take the loss to be the ELBO on
the joint x, y | z, yielding the follow objective function:

LCVAE := α Ez∼qφ(z|x)[log(pθ(y | z))]
+β Ez∼qφ(z|x)[log(pθ(x | y, z))]

−DKL(qφ(z | x)||pθ(z)).
(1)

Note that the first term targets the reconstruction of the
deconvolved image. The hyperparameter weighting terms
α and β asymmetrically weight the PSF-convolved and
deconvolved reconstructions, a formulation akin to the β-
VAE (Higgins et al., 2017), which we found to improve the
reconstruction of high-frequency details in samples.

2.2. Conditional Diffusion Models

Conditional diffusion models, an extension on denoising
diffusion probabilistic models (Ho et al., 2020), are trained
with the following loss function:

LDiff := Et∼[1,T ],x0,ϵt

[
||ϵt − ϵθ(xt, t, c)||2

]
, (2)

where ϵθ(xt, t, c) predicts the noise added to xt (the latent
variable at time step t) and c is the conditioning informa-
tion. We set c = (x,Π). At inference time, therefore, to
deconvolve image x ∈ Rk1×k2 , a deconvolved image y is
sampled by first sampling x0 ∼ N (0, Ik1k2,k1k2) and then

taking T denoising steps conditioned on (x,Π).

2.3. Evaluation Metrics

Recently, works such as Hackstein et al. (2023) have in-
vestigated metrics for the related task of generating galaxy
images. However, the task of galaxy generation is distinct
from ours, as we are seeking to produce diverse candidates
conditional on a single observed image. Thus, simply mea-
suring the recovery of the marginal distribution p(y) of
deconvolved images is insufficient for our task. Further,
no reference dataset is available with observed x that also
contains multiple draws of y for each x.

Instead, to assess the diversity of samples from the posterior
p(y | x,Π), we propose the following metric, where a given
q must satisfy the specified constraint:

Ex∼p(x)

[
Vy∼q(y|x,Π)[y]

]
s.t. Ex∼p(x)

[
Ey∼q(y|x,Π)

[
||Π ∗ y − x||22

]]
< ϵ,

(3)

where ϵ represents an allowed slack and V denotes the total
variance of y given both x and Π. In adding the constraint,
we ensure that high-scoring methods produce valid decon-
volutions. To avoid favoring methods that generate images
with imperceptible pixel-level variance, we compute V over
image featurizations, defined by mapping the domain of im-
ages Y to image features F with a pre-trained InceptionV3
network; this idea is inspired by the Fréchet inception dis-
tance (FID). That is, for distributions p(y | x) and q(y | x)
defined over the space of images, we fit two distributions,
N (µ

(p)
y|x,Σ

(p)
y|x) and N (µ

(q)
y|x,Σ

(q)
y|x) respectively, over featur-

izations of the image space. Note that these distributions
are fitted separately for each xi in a test collection {xi}Ni=1,
giving a collection of distributions {N (µ

(q)
y|xi

,Σ
(q)
y|xi

)}Ni=1.
Finally, the objective is estimated as

Ex∼p(x)

[
Vy∼q(y|x,Π)[y]

]
≈ 1

N

N∑
i=1

Tr
(
Σ

(q)
y|xi

)
. (4)

3. Experiments
We experiment with galaxy images produced by the Illus-
trisTNG simulator (Pillepich et al., 2018). This data pro-
vides a synthetic testbed similar in structure to the paired
dataset of ground- and space-based telescope images that
motivates our work. We construct a dataset consisting of
tuples {(xi, yi,Πi)}ni=1 by convolving each clean image yi
with a PSF Πi sampled from a collection. We view the use
of the clean image yi as an idealized surrogate for space-
based telescopes.

Our dataset consists of 9718 images, each of size 128x128
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Figure 2. Candidate deconvolutions from the CVAE model. The generated samples are roughly valid inverse mappings in comparing
the original PSF-convolved image to the samples after convolving with the known PSF. However, high-frequency details, such as the
belt of stars along the median, are lost in reconstructions by the CVAE, unlike in the diffusion model. Differences in the details of the
reconstructions are highlighted, though fewer exist amongst samples drawn from the CVAE compared to those from the diffusion model.

Figure 3. Candidate deconvolutions from the conditional diffusion model. Convolving the generated samples with the known PSF recovers
the original image, confirming these being valid inverse mappings. Additionally, high-frequency details are more prominently captured
in deconvolutions compared to those from the CVAE, enabling a greater diversity of reconstructions. Differences in the details of the
reconstructions are highlighted.
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Figure 4. A representative sample from CVAEs trained to convergence with different choices of weights for the deconvolved and convolved
image reconstructions, i.e. α and β respectively. Of note is that increasing weight on the clean reconstruction tends to result in loss of
high-frequency detail.

pixels, with 7774 used for training and 1944 reserved for
validation. Evaluation of the aforementioned FID-like and
variance metrics was performed on the validation set. Note
that inference does not use the clean images. PSFs were
taken to be two-dimensional, isotropic Gaussians discretized
over grids of size 10 × 10 with varying choices of σ ∈
[2.0, 4.0] discretized in intervals of 0.5.

All experiments were implemented in PyTorch (Paszke
et al., 2019). A standard U-Net architecture was em-
ployed for the DDPM denoiser ϵθ(·). Implementation of the
DDPM was based on the “Conditional Diffusion MNIST”
project (Pearce et al., 2022). The CVAE employed a stan-
dard CNN-based architecture for both the encoder and de-
coder, with transposed convolutional layers used in the de-
coder. The observed PSF was included as an additional
channel after being embedded with a one-layer CNN net-
work for both the DDPM and CVAE. The diffusion model
was trained for 500 epochs with a minibatch size of 96,
whereas the VAE model was trained for 600 epochs with a
minibatch size of 128. Optimization was performed using
Adam (Kingma & Ba, 2014) with a learning rate of 10−4.
We trained the diffusion model using one Nvidia A100 40G
GPU, while the VAE model was trained using one Nvidia
2080 Ti GPU. We used T = 950 DDPM time steps. DDPM
inference required 10 seconds per sample whereas CVAE
inference was significantly faster, averaging 0.01 seconds
per sample.

The CVAE was trained with asymmetric weights on the de-
convolved and convolved reconstructions, whose selection
is justified by the results of Figure 4. To then assess the
quality of the results as per Equation 3, we first confirmed
the validity of the samples across both the CVAE and dif-
fusion model by convolving them with the known PSF to
ensure approximate recovery of the original images with a
slack of ϵ = 10−4. While both accurately capture the low-
frequency details, the CVAE fails to capture high-frequency

Table 1. Percent of retained samples and conditional variance met-
rics for samples generated by the diffusion and CVAE models.
Quantitative results confirm the greater diversity apparent in vi-
sualizing the valid samples produced by the diffusion model over
those from the CVAE.

Metric Diffusion CVAE

Percent Retained 100% 53.9%
Variance 15.86 15.13

variation, resulting in visibly distinct reconstructed images
compared to the originals (Figures 2 and 3). Such samples
with insufficient similarity were discarded; percentages of
retained samples are given in Table 1.

From these retained samples, we find the diffusion model
produces greater variety than the CVAE, as can be seen in
Figures 2 and 3 and in Table 1. This variety manifests in sub-
tle variations of high-frequency details that are equivalent
under the forward convolution map.

4. Discussion
We have presented an investigation of the sampling diver-
sity of CVAEs and diffusion models that have been trained
to perform PSF deconvolution. Diffusion models produce
a greater diversity of valid deconvolution candidates com-
pared to CVAEs, suggesting that they are preferable for
downstream inference tasks. Our work suggests many in-
teresting directions for future work. In particular, future
work can extend this to cases with variable PSFs present
in both the source and target domains, by conditioning on
the target PSF too. This extension would enable us to train
high-fidelity disentangled galaxy models solely with images
from ground-based surveys.
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