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Abstract

Quasars play a crucial role in studying various
important physical processes. We propose a cross-
modal deep learning method for estimating the
photometric redshifts of quasars. Our model uti-
lizes adversarial training to enable the conver-
sion between photometric data features (mag-
nitudes, colors, etc.) and photometric image
features in five bands (u, g, r, i, z), in order
to extract modality-invariant features. We used
|∆z| = |(zphoto − zspec)/(1 + zspec)| as eval-
uation metric. The latest SOTA method, which
implements cross-modal generation of simulated
spectra from photometric data, has been chosen
as the baseline. Firstly the proposed method
was tested on the same SDSS DR17 dataset of
415,930 quasars(1 ≤ zspec ≤ 5) as the baseline
method. Compared to the baseline, the RMSE of
our ∆z decreased from 0.1235 to 0.1031. Further
evaluation on a larger dataset of 465,292 quasars
achieved a lower RMSE of ∆z of 0.0861. This
method also can be generalized to other tasks such
as galaxy classification and redshift estimation.

1. Introduction
High redshift quasars are important for the study of su-
permassive black hole formation, galaxy formation and
evolution (Fontanot et al., 2020; Getachew-Woreta et al.,
2022), cosmic reionization (Grazian et al., 2022), the dif-
fuse medium in the universe (IGM & CGM), and the early
history of the universe (Dong et al., 2022). As large-scale
sky surveys continue, the Sloan Digital Sky Survey (SDSS)
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has discovered spectra for over 750,000 quasars. How-
ever, only a small percentage, ranging from 0.01% to 1%,
of these spectra have a high SNR.It’s challenging to ob-
tain full and high-quality spectroscopic data(Collaboration,
2022; Almeida et al., 2023). The use of relatively complete
multi-band photometric data for calculating photometric
redshifts(zphoto) has greatly reduced resource costs.

To further improve the accuracy of photometric redshift
estimation, various deep learning methods have been applied
in the evaluation of photometric redshifts(Pasquet et al.,
2019; Brescia et al., 2021; Zhou et al., 2021; Henghes et al.,
2022; Cunha & Humphrey, 2022; Moriwaki et al., 2023).
Due to the advancements in multimodal techniques, (Hong
et al., 2023) attempted to use photometric data of quasars to
generate simulated spectral features, ultimately combining
the original photometric data with the generated spectral
data for redshift estimation. However, due to significant
differences in the physical properties of photometric and
spectral data, the |∆z| of RMSE only reduced from 0.1332
to 0.1235 and still reach the the SOTA.

Photometric images capture visual features like shape, struc-
ture, and position of quasars, while photometric magnitudes
and colors convey overall brightness and color information.
Due to the point-like nature of quasars, CCD-captured im-
ages are limited to a few pixels. Photometric magnitudes are
computed from the original photometric images and provide
an overall description of the celestial objects across different
wavelength bands. These datas are complementary to or
jointly used with each other for the photometric redshift
estimation(Salvato et al., 2019; Leistedt et al., 2019; Dey
et al., 2022).

In this paper, we propose a deep learning-based cross-
modal representation method that enables the mutual trans-
formation between photometric features, including magni-
tudes,colors, and photometric image features. By achieving
this cross-modal transformation, we extract cross-modal
invariant features that are used for downstream tasks such
as photometric redshift estimation.

We apply our model to the same dataset(415,930 quasars) of
the current state-of-the-art (SOTA) baseline method(Hong
et al., 2023). Compared to the baseline, our model achieves a
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reduced RMSE of 0.1031 on ∆z, compared to the baseline’s
RMSE of 0.1235. Furthermore, when applied to a larger
datasets of 465,292 quasars, our model achieves an even
lower RMSE of 0.0861.

2. Data
2.1. Extended Dataset acquisition

We cross-matched the photoObjAll and SpecObjAll cata-
logue in SDSS DR17(Collaboration, 2022) CasJobs and se-
lected 608,451 quasar samples with redshift values between
1 and 5(Appendix A). Due to the point-like nature of quasar
sources, we chose PSF(point spread function) magnitudes
and errors in five bands (denoted as psfMag , psfMag g,
psfMag r, psfMag i, psfMag z, psfMagErr u, psfMagErr g,
psfMagEr r, psfMagErr i, psfMagErr z), along with the in-
stellar extinction in each bands, (denoted as extinction u,
extinction g, extinction r, extinction i, extinction z).

To ensure the quality of our data, we set z warning = 0
to ensure the quality of the spectrum, clean=1 to avoid con-
tamination of photometric data, zErr ≤ 0.001 to limit
redshift errors, 18 ≤ psfMag g ≤ 22 to exclude too faint
or too bright quasars, and petroRad r to avoid interference
from some AGN samples. Some of the data obtained from
CasJobs contain duplicate sources, i.e., with the same objID.
We removed these duplicates from our dataset.The model’s
results were based on a 60%/20%/20% split of training/-
validation/testing datasets. The datasets was divided five
times randomly. The SGD optimizer is selected, the hyper-
parameter weight decay is 0.03, the momentum is 0.2, and
the model achieves the best results when the learning rate is
0.008.

Finally, 465,292 targets are obtained with the smallest zErr
for each source. The reshift distribution of slected quasars
is shown in figure 1. The extended dataset used in this study
is employed to validate the model’s ability to generalize to
a larger dataset.

2.2. Baseline Dataset

The Baseline dataset(Appendix B) is a cross-modal transfor-
mation dataset of spectroscopic and photometric data uti-
lized by (Hong et al., 2023), consisting of 415,930 quasars
from the SDSS DR17 dataset (1 ≤ zspec ≤ 5). In com-
parison to the expanded dataset used in this study,(Hong
et al., 2023) primarily imposed constraints on the signal-
to-noise ratio (SNR) values in the u, g, r, i, and z bands to
achieve better performance in low SNR bands. The limita-
tions on spectroscopic quality were relaxed by not setting
zwarning = 0. Although this increased the diversity of
the spectra, it also resulted in the inclusion of spectra with
unreliable quality in the sample. However, this does not
affect the fair comparison of results in this study, as the

same dataset was used, relying solely on photometric data
for comparison with the baseline. Finally in this dataset,
415,930 quasars are obtained. The baseline dataset used in
this study is primarily based on the same dataset of base-
line’s method, allowing for a fair comparison with SOTA
methods.

2.3. PreProcessing

For the photometric data, we used the de-reddened magni-
tudes (dred u, dred g, dred r, dred i, dred z after correcting
for the interstellar reddening effects in the five bands. We
also calculated the color attributes such as u-g, g-r, r-i, and
i-z by interpolating between the magnitudes in two adjacent
bands.
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Figure 1. Redshift distribution histogram of selected quasars.

We transformed the RA and DEC coordinates of the quasar
samples into image positions for photometric images. Then,
64x64 images were cropped from the u, g, i, r, and z bands,
centered at the RA and DEC coordinates. The images were
aligned based on the r band.

3. Basical Model Architecture
Inspired by the approach in (Qian et al., 2022), which uti-
lizes adversarial learning to achieve cross-modal transforma-
tion between image and text information, our cross-modal
deep learning model as figure 2 consists of two main compo-
nents. The first part involves learning the modality-invariant
representation between photometric data and photometric
images through adversarial learning, an self-upervised pro-
cess. Extinctions are used as labels instead of inputs to
improve the feature extraction capability of the image en-
coder. The second part focuses on obtaining fused features
for photometric redshift estimation.
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Figure 2. Adversarial Learning Model Architecture

3.1. Cross-modal Adversarial Learning Method

In the adversarial learning module, the Encoder and Decoder
act as the generative network, while the modality discrimi-
nator network acts as the discriminative network. They have
opposite gradient propagation based on the adversarial loss.
C

Photo-Data Encoding Network. For each input pho-
tometric data, we split it into two parts: one part con-
tains the multi-band magnitudes and their correspond-
ing errors, while the other part contains the color prop-
erties: Xphoto ∈ (Xmag ∪ Xcolor), Xmag ∈ RnXm,
Xmag ∈ Rd. X is a two-dimensional matrix, where n
represents the number of bands and m represents the num-
ber of features. In this paper, n = 5(u, g, r, i, z) and
m = 2(deredmag {bands}, dredmag {bands} Err).

Γ(Xmag) = (W0X
mag(Xmag)TWT

0 )(W1X) ∈ RnXm

(1)
Equation 1 is an attention mechanism based on the classical
self-attention mechanism. W0 and W1 are trainable weight
matrices used to perform embedding operations on the orig-
inal feature matrix Xmag . Compared with the classical sub-
attention mechanism, (W0X

mag(Xmag)TWT
0 ) produces a

set of self-correlated symmetric matrices that do not contain
contextual information. This change is made because the
data we need to process is not sequential data.The origi-
nal values obtained by embedding with W1 are corrected
based on the correlation symmetric matrix obtained from

the training.

Xmag
l = F (Xmag

l−1 ; θmag) = fmlp(Γ(X
mag
l−1 ; θΓ); θFmlp

)
(2)

After each layer of attention mechanism, further feature en-
coding is performed through a feedforward neural network
consisting of multi-layer perceptron, where l represents the
network layer number, as shown in Equation 2.

χphoto = Ffusion(X
mag, Xcolor; θF )

= fmlp(X
mag ∪Xcolor; θf ) ∈ R512

(3)

The final step is to fuse the magnitude and color features to
obtain the photometric data features as equation 3.

Photo-Image Encoding Network.For each input photo-
metric image Ximg ∈ R5X64X64.The main backbone
neural networks used for encoding image features are
VIT(Vision Transformer)/CNN. In this paper we employed
ResNet101(He et al., 2016) as the backbone neural network
for image feature encoding as Equation 4, σ means to non-
linear activation function.

χimg = σ(F (Ximg, θF))

= σ(fmlp(fCNN (Ximg, θCNN ); θmlp)) ∈ R512

(4)
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Table 1. Comparison of quasar photometric redshift prediction results between Baseline and our method(input pattern means to single
modal data, multimodal data or single modal with generated fake modal data; The method is tested on the same dataset as baseline’s and
then be tested on a extended dataset)

Data set Input pattern |∆z| < 0.1(%) |∆z| < 0.2(%) |∆z| < 0.3(%) |∆z| < 0.4(%) RMSE

Result of Baseline
SDSS DR17

Baseline Dataset χphot 80.41 92.60 96.06 98.23 0.1332
(χphot, χ

generated
spec ) 84.45 93.59 96.43 98.35 0.1235

Result of Our Method
SDSS DR17

Baseline Dataset (χphot, χimg) 82.05 94.62 97.88 98.96 0.1010
(χgenerated

phot , χimg) 82.14 94.52 97.88 98.96 0.1011

(extended data
in our paper) (χphot, χimg) 86.36 96.30 98.67 99.21 0.0865

(χphot, χ
generated
img ) 73.48 94.60 98.63 99.17 0.1035

Cross-modal Decoder Representation. In the decoder part,
multi-layer perceptrons with non-linear activation functions
are used to generate persudo cross-modal representation as
Equation 5.

χphoto2img = Gphoto(X
photo; θGphoto

) ∈ R512,

χimg2photo = Gimg(X
img; θGimg

) ∈ R512,
(5)

Redshift,Extinction Regression And Modal Discrimina-
tor. These modules are achieved through several full con-
nected layers that containing nonlinear activation functions
as Equation 6.

ŷextinction = Fextinction(X
img; θF) ∈ R5,

Ẑphoto = Fimg(χ
img, χphoto; θF) ∈ R1,

(6)

In Equation 7, there are two mode discriminators, where D1

discriminates whether the input photometric data features
are real or fake, and D2 discriminates whether the input
image features are real or fake.

ŷpho2pho = SOFTMAX(D1(χ
photo; θD1

)) ∈ R2,

ŷimg2pho = SOFTMAX(D1(χ
img2photo; θD1

)) ∈ R2,

ŷimg2img = SOFTMAX(D2(χ
img; θD2

)) ∈ R2,

ŷpho2img = SOFTMAX(D2(χ
photo2img; θD2

)) ∈ R2,

(7)

3.2. The Objective Loss Function Optimization

The training of the adversarial learning neural network re-
quires the optimization of three loss function components
Jall: the cross-modal loss function Jintra−modal, the ex-
tinction regression loss function Jextinction, and the photo-

metric redshift estimation loss function Jz . The two hyper-
parameters α, β represent the trade-off factors.

Jall = αJintra−modal + βJextinction + (1− α− β)Jz
(8)

In equation 9, the loss function H is cross-entropy function,
which can measure the similarity between two distributions.
The vector yTrue is a full-ones vector with the same di-
mension as the input feature, while the vector yFalse is a
full-zeros vector with the same dimension as the input fea-
ture. Equation 9 describes the core adversarial loss function
that permeates throughout the paper. For each discriminator,
a set of real modalities is provided as positive samples, while
transformed generated modalities serve as negative samples.
The training process of the entire model is achieved through
an adversarial process between the generator and the dis-
criminator, where gradients are backpropagated between
them. Therefore, we refer to the overall model’s concept as
adversarial learning.

H(y|ŷ) =
∑
i

y log(ŷ),

Jintra−modal = H(yTrue|ŷpho2pho) +H(yFalse|ŷimg2photo)

+H(yTrue|ŷimg2img) +H(yFalse|ŷphoto2img),

(9)

The equation 10 employs MSE (Mean Squared Error) as a
metric to evaluate the discrepancy between predicted regres-
sion values and the actual values.

Jextinction + JZ = MSE(Z, Ẑ) +MSE(yext, ŷext)
(10)
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4. Results
4.1. Evaluation Metrics

The baseline method chosen in this study is the SOTA deep
learning method proposed by (Hong et al., 2023), which
uses photometric data to represent spectral features compar-
ing to many existing methods. This method outperforms
many existing methods for photometric redshift estimation
of quasars. During the evaluation stage, we mainly used the
RMSE (Root Mean Squared Error) of the ∆z in Equation
11 for assessment.

|∆z| = |zphoto − zspec|
1 + zspec

(11)

4.2. Redshift Estimation Results

As shown in Table 1, to ensure a fair comparison, our
method is initially evaluated and compared with the baseline
method using the same dataset as the baseline. Although
our method shows a slightly lower performance compared
to the baseline by around 2% in (|∆z| < 0.1%), it signif-
icantly increases the proportion in the |∆z| < 0.2% and
|∆z| < 0.3%. Consequently, the overall RMSE of |∆z|
is further reduced from 0.1235 to 0.1010. With evaluation
on an expanded dataset of 465,292 quasars, our method
achieves even better results, with an RMSE of 0.0865. Due
to space limitations, Appendix C provides a more visually
intuitive presentation of the four experimental results from
Table 1 in the form of scatter density plots and histogram
figures.

5. Conclusions
Cross-modal Discussion. Since photometric magnitudes
and colors are derived from original photometric images, it
can’t be strictly defined as multimodal data. The semantic
relationship between them is closer than in strictly multi-
modal data. However, experimental results demonstrate that
enhancing the mutual representation of these semantically
similar data effectively reduces the error in photometric
redshift estimation.

Conclusion. This paper proposes a multi-modal adversarial
learning method for estimating the photometric redshift of
quasars. It learns the transformation between photometric
data features (magnitude, color, etc.) and photometric image
features in five bands (u, g, r, i, z), and generalizes to larger
datasets with reduced precision errors. And it can be applied
to many other celestial objects such as galaxys.
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A. Entended SQL appendix
s e l e c t b . run , b . camcol , b . f i e l d , a . specObjID , a . bes tObj ID ,
a . c l a s s , a . z , a . zEr r , b . objID , b . psfMag u , b . psfMag g ,
b . psfMag r , b . ps fMag i , b . psfMag z , b . e x t i n c t i o n u ,
b . e x t i n c t i o n g , b . e x t i n c t i o n r , b . e x t i n c t i o n i , b . e x t i n c t i o n z ,
b . psfMagErr u , b . psfMagErr g , b . ps fMagEr r r ,
b . p s f Mag Er r i , b . ps fMagErr z , b . de r ed u , b . de r ed g , b . d e r e d r , b . d e r e d i , b . d e r e d z
i n t o mydb . d r 1 8 p s f u g r i z S N R z 0
from dr17 . SpecObjAl l as a
j o i n dr17 . Pho toOb jAl l as b
on a . bes tOb j ID = b . obj ID
where a . c l a s s = ’QSO ’ and a . z >=1 and a . z<5 and a . zEr r< 0 .001 and b . psfMag g >= 18 and
b . psfMag g <= 22 and b . p e t r o R a d r < 5 and a . snMedian u <10 and a . snMedian g <10 and
a . snMedian r <10 a . snMedian i <10 a . snMedian z <10;

B. Baseline Data SQL appendix
s e l e c t b . run , b . camcol , b . f i e l d , a . specObjID , a . bes tObj ID ,
a . c l a s s , a . z , a . zEr r , b . objID , b . psfMag u , b . psfMag g ,
b . psfMag r , b . ps fMag i , b . psfMag z , b . e x t i n c t i o n u ,
b . e x t i n c t i o n g , b . e x t i n c t i o n r , b . e x t i n c t i o n i , b . e x t i n c t i o n z ,
b . psfMagErr u , b . psfMagErr g , b . ps fMagEr r r ,
b . p s f Mag Er r i , b . ps fMagErr z , b . de r ed u , b . de r ed g , b . d e r e d r , b . d e r e d i , b . d e r e d z
i n t o mydb . d r 1 8 p s f u g r i z S N R z 0
from dr17 . SpecObjAl l as a
j o i n dr17 . Pho toOb jAl l as b
on a . bes tOb j ID = b . obj ID
where a . c l a s s = ’QSO ’ and a . z >=1 and a . z<5 and a . zEr r< 0 .001 and b . psfMag g >= 18 and
b . psfMag g <= 22 and b . p e t r o R a d r < 5 and b . f l a g s i s not n u l l and zWarning =0 and b . c l e a n =1;
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C. Figure appendix

(a)

(c)

(b)

(d)

Figure 3. Photometric redshift estimation visualization of our method corresponding to results of table 1:On the baseline’s dataset,(a)
shows the predictions obtained using the real image and photometric data features.(b) displays the results obtained using the real image
and generated photometric data features. On the extended dataset (465,292 samples),figure (c) illustrates the predictions achieved using
the real image and photometric data features, while (d) depicts the results obtained using the real photometric data and generated image
data features.


