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Abstract
We present a method to infer galaxy properties
and redshifts at the population level from photo-
metric data using normalizing flows. Our method
POPSED can reliably recover the redshift and stel-
lar mass distribution of 105 galaxies using SDSS
ugriz photometry with < 1 GPU-hour, being 106

times faster than the traditional SED modeling
method. The approach can also be applied to
spectroscopic data including DESI and Gaia XP
spectra. Our method provides an efficient and
self-consistent way to learn the population pos-
terior without deriving the posteriors for every
individual object and then combining them.

1. Introduction
Galaxies are the building blocks of the Universe. Billions of
galaxies will be characterized by the upcoming surveys such
as LSST (Ivezić et al., 2019), Euclid (Racca et al., 2016),
and Roman (Spergel et al., 2015), opening a huge discovery
space for the evolution of galaxies as a population. Decod-
ing the physical properties of galaxies, including the star for-
mation history (SFH) and chemical enrichment history, from
the observed spectral energy distributions (SEDs) requires
modeling their SEDs with stellar population synthesis (SPS)
models (e.g., Conroy, 2013; Carnall et al., 2018; Johnson
et al., 2021). After modeling individual SEDs, the poste-
riors of each galaxy can be combined to study the galaxy
population including the stellar mass function (Wright et al.,
2017) and star-forming main sequence (Speagle et al., 2014).
However, SED modeling is a high-dimensional problem
(typically > 10 dimensions) that requires evaluating the
SPS model and sampling the posterior several million times
for one galaxy. Bayesian SED fitting with traditional SPS
models (e.g., FSPS, Conroy et al., 2009) takes ∼ 20 CPU-
hours per galaxy (Leja et al., 2019), making it computa-
tionally infeasible to analyze billions of galaxies. Although
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recent advances have accelerated SED fitting using neural
networks and simulation-based inference (e.g., Alsing et al.,
2020; Hearin et al., 2021; Hahn & Melchior, 2022; Wang
et al., 2023), some of these methods need sophisticated
training and still face the problem of rigorously combining
individual posteriors (see §4).

In this paper, we present POPSED, an efficient and self-
consistent method to infer the properties of galaxy pop-
ulations from photometric data without fitting individual
galaxies. Our method could reliably recover the population
statistics of 105 galaxies within 1 GPU-hour. We describe
our method in §2, validate it using mock and real data in §3,
and discuss the implication and outlook in §4.

2. Method
We recover the population-level distribution of galaxy prop-
erties from photometry data as follows. We denote the
observed data by {Xi} and the physical properties of any
galaxy by θ. We seek to approximate the population pos-
terior p(θ|{Xi}) by a normalizing flow pϕ(θ), which is a
highly flexible model for probability density distributions.
By repeatedly sampling from the flow θj ∼ pϕ(θ), we
predict the corresponding photometry X̂ϕ

j = F (θj) using
the forward model F , which is a neural network-based em-
ulator for galaxy SEDs. We compare the distributions of
the observed photometry and the predicted photometry by
calculating the Wasserstein distance between the two dis-
tributions DW [p({X̂ϕ

j }), p({Xi})]. This distance is then
used as a loss to train the normalizing flow ϕ using the
gradient descent method. In the end, the flow will be able to
approximate the population posterior such that the predicted
photometry agrees well with the observed data. We train
an ensemble of flows and combine their results. Figure 1
shows a schematic diagram describing our method.

2.1. SPS Model and SED emulator

The forward model F translates a set of physical parameters
θj to the corresponding photometry X̂ϕ

j . This mapping is
prescribed by an SPS model and is accelerated by an SED
emulator. The SPS model predicts a galaxy spectrum by
combing SFH, chemical enrichment history, initial mass
function, dust model, and spectra templates for simple stel-
lar populations. In this work, we take the PROVABGSmodel
described in Alsing et al. (2020); Hahn et al. (2022a), where
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Figure 1.The schematic plot showing howPOPSEDworks as described in§2. The population posteriorp� (� jf X i g) is approximated
by a normalizing �owp� (� ). We sample from the normalizing �ow and forward model the photometryf X̂ �

j g using the galaxy SED
emulatorF (� j ). Then we compare the distributions of observed photometry and the predicted photometry by calculating the Wasserstein
distanceD W [p(f X̂ �

j g); p(f X i g)], which is used as a loss to train the normalizing �ow. After training, the population posterior describes
a galaxy population whose photometry distribution agrees with observation.

the SFH is described by a linear combination of four bases
and one burst component. The SFH bases are generated
from galaxies in the Illustris simulation (Vogelsberger et al.,
2014) using the non-negative matrix factorization. We sim-
plify the metallicity history to be a constant metallicityZ
over time. We useFSPS (Conroy et al., 2009; Johnson
et al., 2021) to generate galaxy spectrum for given redshift
z, total formed stellar massM ?, SFH, and metallicityZ .
Then we add dust attenuation to the galaxy spectra following
the Charlot & Fall (2000) recipe. As shown in Hahn et al.
(2022a), this SPS prescription is �exible enough to model
real galaxies. In total, our SPS model contains 12 parameters
as summarized in Table 1 in the appendix. We emphasize
that any SPS model can be used to perform population-level
inference just by retraining the SED emulator, as described
below.

We train a differentiable emulator for galaxy SED following
Alsing et al. (2020) where a neural network is trained to
predict the PCA coef�cients of a galaxy spectrum. The
emulator takes the physical parameters listed in Table 1 and
predicts the corresponding restframe spectra from 1,000	A
to 60,000	A that is later shifted to the observed frame for a
given redshift. In order to generate representative training
data, we sample the SPS parameter space according to the
prior distributions listed in Table 1. We use uninformative
priors to avoid introducing any bias in training the emulator.

Trained with3 � 106 spectra, the emulator achieves an
accuracy of� 0:01 mag in SDSSugriz �lters (Doi et al.,
2010). Noise needs to be added in order to meaningfully
forward model the observed data. We apply Gaussian noise
with uncertainties sampled from an SNR distribution, which
we describe in further detail in §2.4.

2.2. Normalizing �ow

We use normalizing �ows to approximate the population pos-
terior p� (� jf X i g). Normalizing �ows (Tabak & Vanden-
Eijnden, 2010; Kobyzev et al., 2019) map a complex dis-
tribution p(� ) to a simple base distribution� (z) using an
invertible bijective transformation parameterized by a neu-
ral network. From many different �ow models, we use the
Neural Spline Flow model (NSF, Durkan et al., 2019) where
the base function is a multivariate Gaussian distribution and
the transformations are described by monotonic rational-
quadratic splines. The �exibility of the NSF model is well-
suited to describe the SPS parameter distribution. We use
the NSF implementation in thesbi package (Greenberg
et al., 2019; Tejero-Cantero et al., 2020).

The original NSF model is initialized such thatp� (� ) is a
standard multivariate Gaussian distribution. However, this
initialization presents challenges during training. Firstly,
nonphysical parameters (e.g., negative redshift) will be
drawn from this initial distribution. Secondly, the strong


