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Abstract
The Square Kilometre Array (SKA) will have the
sensitivity to take the 3D light-cones of the 21 cm
signal from the epoch of reionization. This sig-
nal, however, is highly non-Gaussian and can not
be fully interpreted by the traditional statistic us-
ing power spectrum. In this work, we introduce
the 3D ScatterNet that combines the normal-
izing flows with solid harmonic wavelet scatter-
ing transform, a 3D CNN featurizer with induc-
tive bias, to perform implicit likelihood inference
(ILI) from 21 cm light-cones. We show that 3D
ScatterNet outperforms the ILI with a fine-
tuned 3D CNN in the literature. It also reaches
better performance than ILI with the power spec-
trum for varied light-cone effects and varied sig-
nal contaminations.

1. Introduction
The 21 cm fields from the epoch of reionization are highly
non-Gaussian resulting from the patch reionization. Max-
imally exploiting the full information in the 21 cm fields
needs new statistics besides the 21 cm power spectrum.
Machine learning methods like the convolutional neural
networks (CNNs) are promising tools for astrophysical pa-
rameter estimation directly from 2D fields or 3D light-cones
(Gillet et al., 2019; Prelogović et al., 2022; Neutsch et al.,
2022; Zhao et al., 2022a; Prelogović et al., 2022), but some
key problems arise: the fine-tuning of hyperparameters and
the training process is time-consuming, needs a lot of train-
ing data to optimize the learnable parameters, and may lead
to sub-optimal trained models (Zhao et al., 2022a; Prelo-
gović et al., 2022).

To solve these problems, people are injecting inductive bias
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into CNNs with scattering transform (Mallat, 2012; Allys
et al., 2019; Cheng et al., 2020; Pedersen et al., 2022) and
utilize the scattering transform to construct scattering or
wavelet networks (Gauthier et al., 2021; Pedersen et al.,
2022). Compared with CNNs, the scattering transform uses
filters having well-behaving mathematical structures like
the Morlet filters (Mallat, 2012; Trott, 2016). It also uses the
special design of modulus nonlinearities, and hierarchical
structures, like multi-layers in a CNN, in order to extract the
information across scales. With the fixed filter parameters,
the scattering transform has the appeal of no need for train-
ing, which will be helpful when the training data is scarce
and expensive to generate. In 3D applications, the harmonic-
related wavelets (Eickenberg et al., 2017; 2018; Saydjari
et al., 2021; Valogiannis & Dvorkin, 2022; Chung, 2022;
Eickenberg et al., 2022) are introduced to predict molec-
ular properties or cosmological parameters. Specifically,
in Eickenberg et al. (2022), the authors use the first-order
wavelet-based features and emphasize the superiority of har-
monic wavelets compared with the isotropic and oriented
ones. In this work, to extract information from the light
cuboids (referred to as light-cones, following the trend in
the literature), we utilize the solid harmonic wavelet scat-
tering transform (Solid harmonic WST, Eickenberg et al.,
2017; 2018) which injects the inductive bias into 3D CNNs
with not only 3D solid harmonic wavelets but the scatter-
ing transform which outputs multiple-order wavelet-based
features.

Conventional CNNs also give only the point estimate of the
true parameters, not parameter posteriors, in the Bayesian
view. In the case where the likelihood is intractable, the so-
called implicit likelihood inference (ILI; Alsing et al., 2018;
2019; Papamakarios, 2019; Cranmer et al., 2020; Tejero-
Cantero et al., 2020) (also called simulation-based inference
or likelihood-free inference) is proposed to learn the density
of the likelihood or posterior directly from data, with the key
methodology like conditional masked autoregressive flows
(CMAFs, Papamakarios et al., 2017) which is a kind of nor-
malizing flows (Papamakarios et al., 2021). In light of this,
we construct a 3D ScatterNet that combines CMAFs
with Solid harmonic WST to infer the parameter posteriors
from 21 cm light-cones, compare 3D ScatterNet with
similar methods using 3D CNN in the literature, and with
the conventional statistics 21 cm power spectrum for varied
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Figure 1. 3D ScatterNet. Left: Solid harmonic WST, the 3D light-cone d simulated from parameter θ are compressed by a cascade
of scattering transforms, each containing convolution with wavelets, harmonic modulus (Eickenberg et al., 2017), and integration operation.
The integration with raised power q gives the zeroth-, first-, and second-order coefficients {S0,S1,S2} which form the summaries t.
Right: CMAFs, used to learn the summary density conditional on the parameters, with which the posterior can be inferred at t0.

light-cone effects and signal contamination.

2. Method
The wavelet used in the Solid harmonic WST is the solid
harmonic multiplying by a Gaussian and can be dilated to
capture features of the field at different scales. A power q is
applied to the modulus operators and results in coefficients
that are sensitive to different amplitudes of fields. The co-
variance properties (both in translation and rotation) can be
obtained by aggregating the sub-angle information repre-
sented by the angular frequency m within each l, and the
invariant coefficients can be obtained by integrating over all
pixels in the covariant maps. Successive group of wavelets
with scales larger than the previous one can be convolved
with the previous modulus, in order to get final coefficients
that capture the information across scales. Apart from the
aforementioned advantage of Solid harmonic WST over 3D
CNNs, the ability to apply large kernels easily is also useful
to recognize large HII bubbles in the 21 cm light-cones;
Along the line-of-sight, the wavelets can both retain the
local information and preserve some large scale information
underneath the long tail of the wavelets. Part of the in-
variance properties (Eickenberg et al., 2017) of coefficients
inherited from the harmonics-the translation invariance over
sky directions and the rotation invariance over the redshift
axis can benefit the following conditional density learning.

We calculate the coefficients up to an order of two including
the 0th-order coefficients which are defined as the sum of all
pixel values raised by the power q. We choose the maximum

angular frequency number L = 6 so that l ∈ {0..L} leads
to both the solid harmonic wavelets (l > 0) which sample
angular frequencies capable of decoding underlying struc-
tures like filaments, and Gaussian wavelets (l = 0) that may
characterize the ionizing process. We also choose the max-
imum scale J = 5, the modulus power q ∈ {0.5, 1, 2} for
the first and second-order coefficients, and the (half) width
parameter “sigma” being 1. For these two orders of coeffi-
cients, we average the information over different l for each
q. For the zeroth-order coefficients, q = 0.5 can lead to the
complex number when the integration is negative and q = 1
is simply zero, so we choose three higher modulus power
q ∈ {2, 3, 4}. The final data summary is concatenated by
these coefficients flattened over the q and J axes (except
the zeroth-order coefficients which have no j dependence)
and has a dimension of 66 which can be decreased by need.
We follow Allys et al. (2019) and calculate the logarithms
(base 2) of these coefficients before averaging (for negative
components, we perform the logarithms on their absolute
values while keeping their signs). In this work, the Solid
harmonic WST is implemented with Kymatio (Andreux
et al., 2018) and calculated on 66× 66× 660 or 663 grids
depending on the light-cone dimensions.

The features extracted by the Solid harmonic WST serve
as the input of CMAFs which aims to perform the implicit
likelihood inference, as shown in Fig. 1. For CMAFs, we
set two neural layers of a single transform, 50 neurons per
layer. We also use the ensembles of CMAFs to improve the
performance, The number of transforms and the details of
ensembles are chosen based on the performance of posterior
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validation (Zhao et al., 2022a) where the hypothesis tests
are adopted to check, statistically, if the posteriors from
CMAFs are self-consistent. Note that some works refer to
this kind of validation as the calibration, though we do not
use this method to calibrate the trained networks. Instead,
we use it to indicate if the network complexity and training
data are enough to learn the conditional density accurately
in a statistical way. The CMAFs are implemented with
pydelfi (Alsing et al., 2019) and the CMAFs architec-
tures and training details used in this paper can be found in
Appendix A.

3. Data
In this work, we use the publicly available code 21cmFAST
(Mesinger & Furlanetto, 2007; Mesinger et al., 2011), which
can be used to perform semi-numerical simulations of reion-
ization, as the simulator to generate our 21 cm brightness
temperature datasets. Following the interpolation approach
in Zhao et al. (2022a), we generate a light-cone of the size
100 × 100 × 1000 comoving Mpc3 (or 66 × 66 × 660
grid cells) in the redshift range 7.51 ≤ z ≤ 11.76. We
parametrize our reionization model as follows: Tvir, the min-
imum virial temperature of halos that host ionizing sources.
We vary this parameter as 4 ≤ log10 (Tvir/K) ≤ 6; ζ, the
ionizing efficiency, varied as 1.0 ≤ log10(ζ) ≤ 2.4. We
use the logarithmic parameters for training, validation, and
testing unless stated otherwise. For the signal with the first
level of contamination, dubbed “pure signal”, we simply re-
move the mode with k⊥ = 0, because radio interferometers
cannot measure this mode. For the signal with the second
level of contamination, dubbed “noised signal”, we consider
1000-hour SKA1-Low observation of the 3D 21 cm light-
cones and use Tools21cm (Giri et al., 2020) to produce
the instrumental thermal noise, where we assume 6-hour
observation per day and 10 seconds of integration time. The
SKA uv coverage is calculated at each frequency channel
(out of 660) and used to generate the telescope response
on images and suppress the thermal noise. We also smooth
the images using a 1-km baseline to increase the signal-to-
noise ratio. We also use pygsm to simulate the foregrounds
based on the GSM-building model (Zheng et al., 2017), and
use the singular value decomposition (SVD, Masui et al.,
2013) for foreground removal, where we regard the first 6
components in the singular matrix as the foreground.

4. Results
Pure signal: For the pure signal, we use 18,000 samples
for the training and validation of CMAFs. The results for
two representative models are shown in Fig. 2 panel (a).
We find that the results from 3D ScatterNet have a
significant improvement over that from DELFI-3DCNN
which is quoted from Zhao et al. (2022a). In that work,

Table 1. Statistical quantities from 300 testing samples: the coef-
ficient of determination R2 and the 68% confidence interval of
the fractional errors ϵ = (ypred − ytrue)/ytrue (with unit ×10−1).
Both are based on medians of the inferred posteriors and show Tvir

and ζ ordered in rows. {PS, ST} represent {21cmDELFI-PS,
3D ScatterNet}. 3D ScatterNet shows superiority on
both quantities for both pure and noised signals.

PURE SIGNAL NOISED SIGNAL

PS ST PS ST

R2 0.9989 0.9997 0.7981 0.8348
0.9978 0.9990 0.8028 0.8254

ϵ
[−0.3, 0.3] [−0.2, 0.2] [−2.8, 4.7] [−2.8, 4.1]
[−0.4, 0.3] [−0.2, 0.2] [−2.6, 3.6] [−2.2, 3.2]

the authors applied ILI but with data summaries with equal
dimensions to the parameters compressed from a trained 3D
CNN.

Note that in the reference paper, the authors used the same
simulation settings as ours, but with 9000 samples for train-
ing and validation of the 3D CNN and 9000 samples for
training and validation of the density estimators. As we
repeat with the same experimental settings and increase the
training sample size to 18,000 for both 3D CNN and density
estimators, we did not get a better performance for these two
fiducial models, implying that the performance is mainly
limited by the hyper-parameter (including the network archi-
tecture) choice in 3D CNN. We also construct a 3D residual
network (ResNet) to train a data compressor. However, our
limited number of tests show worse performance than the
3D CNN used here. Further fine-tuning efforts are left to
future works.

We also show the comparison with 21cmDELFI-PS which
is quoted from Zhao et al. (2022b). In 21cmDELFI-PS,
the authors perform ILI with the power spectrum as the
summary that is a concatenated vector (with a dimension
of 130) from 10 cubic light-cone boxes, where for each
box, the authors choose to group the modes in Fourier
space into 13 k-bins. Comparing 3D ScatterNet with
21cmDELFI-PS, the estimated 1σ marginal errors in the
former are 1.2− 2× smaller than in the latter. In the follow-
ing, we focus on the comparison of these two methods.

Next, we test the trained NDEs on 300 samples. In the
second row of Table. 1, we present the coefficient of de-
termination R2 of the logarithmic parameters. A score
of R2 closer to unity indicates a better overall inference
performance of this parameter. We can see both methods
give a high R2 value while 3D ScatterNet still out-
performs 21cmDELFI-PS. In the third row of Table. 1,
we present the 68% confidence interval of the fractional
errors, ϵ = (ypred − ytrue)/ytrue, where y represents the
deduced parameter (in the linear scale), Tvir and ζ, and
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(a) (b)

Figure 2. The posteriors inferred from the (a) pure signal and (b) noised signal, each with the same two representative models. We show
the median (cross), 1σ (dark), and 2σ (light) confidence regions. The dashed lines indicate the true parameter values. For the pure signal,
3D ScatterNet has significant improvement over DELFI-3DCNN and has 1.2− 2 times improvement over 21cmDELFI-PS on 1σ
marginal errors; For the noised signal, the gains of 3D ScatterNet is decreased but still non-negligible (1.2 times on average).

Figure 3. The R2 as a function of the angular frequency l. The
“l single” uses the information of a specific l number, while the
“l average” uses the average information from less than or equal
to a specific l number. It is shown that solid harmonic wavelets
(l > 0) have better performance than Gaussian wavelets (l = 0).
The combination of the two has the best R2.

ypred are medians of the inferred posteriors. The fractional
errors from3D ScatterNet have about 1.5 (1.75) times
improvement in terms of the width of the 68% confidence
interval) for Tvir (ζ). In Fig. 3, we show the R2 of the log-
aritmic parameters from another two sets of experiments.
We first use the information from a single l (“l single”).
The l = 0, corresponding to a Gaussian wavelet, leads to
the smallest R2. Then we use the averaged information
from different l (“l average”). Compared l = 0 with other
points, the solid harmonic wavelet can lead to better perfor-
mance than the Gaussian wavelet, and combining the two
(by average) has the best R2. In Table.2, we also show the
results from light-cubes (663 grids), where the light-cone
effect is less obvious. We adjust the training sample size

Table 2. Similar to Table 1 but only shows the 68% confidence in-
terval of the fractional errors ϵ from light-cubes (663 grids) for the
pure signal. The two light-cubes correspond to the central redshifts
{8.36, 9.11}. The “FULL” represents the full-band light-cones
used for the main results of this paper. 3D ScatterNet(ST)
also shows better performance than 21cmDELFI-PS(PS) for
light-cubes with less light-cone effects.

LIGHT-CUBE1 LIGHT-CUBE2 FULL

ϵPS
[-0.6, 0.8] [-0.7, 0.8] [-0.3, 0.3]
[-0.5, 0.8] [-0.8, 0.7] [-0.4, 0.3]

ϵST
[-0.3, 0.4] [-0.5, 0.4] [-0.1, 0.1]
[-0.4, 0.5] [-0.6, 0.4] [-0.2, 0.2]

as shown in Appendix A, in order to get posteriors meeting
our validation (calibration) standard. For each specific red-
shift, 3D ScatterNet also has better performance than
21cmDELFI-PS. A natural extension of our work is to
modify the 3D ScatterNet by concatenating the scat-
tering coefficients from discrete boxes, with the caveat that
there are much more coefficients and thus it is harder to
train the CMAFs.

The results above are shown to be statistically reliable with
the validation methods we use. From the hypothesis tests
for validation, we claim that our results are at least reli-
able with a significance of 0.01. We emphasize the impor-
tance of using the validation methods to ensure the CMAFs
can learn self-consistent posteriors. The improvement of
3D ScatterNet over 21cmDELFI-PS implies that the
Solid harmonic WST may better capture the inherent non-
Gaussianity and the evolution information of the 21 cm
light-cones. We visualize the coefficients from Solid har-
monic WST in Appendix B for better understanding of how
these coefficients constrain the astrophysical parameters.
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Noised signal: For the noised signal, we use 36,000 samples
for the training and validation of CMAFs. Since the images
after the smoothing with 1-km baseline lose the small-scale
information, we discard the components of scattering co-
efficients with j = 0 and the final coefficients have the
dimension of 48. For the power spectrum, its dimension is
reasonably reduced to 70 with little information loss. The
inference results are shown in Fig. 2 panel (b), where we
concatenate the MCMC chains from 10 mock observations
each with a different realization of thermal noise. The re-
sults from 3D ScatterNet also have slight improvement
compared with that from 21cmDELFI-PS in terms of 1σ
marginal error. From the last two columns of Table. 1, the
R2 from 3D ScatterNet are about 5% (3%) higher for
log10 (Tvir) (log10ζ) and the fractional errors have about
1.09 (1.15) times improvement for Tvir (ζ).

5. Summary
In this work, we build a 3D ScatterNet by combining
the Solid harmonic WST, a 3D CNN featurizer with induc-
tive bias, with CMAFs in order to perform implicit likeli-
hood inference (ILI) from 21 cm light-cones. After using
the posterior validation tools to choose the CMAFs architec-
ture and the proper size of training sets, we find that solid
harmonic wavelets can enhance the performance compared
with using Gaussian wavelets alone. 3D ScatterNet
has significant improvement over using 3D CNN for ILI
in the literature. Our results show that the Solid harmonic
WST produces informative summaries more robustly and
efficiently compared with a 3D CNN resulting from a reason-
able amount of fine-tuning, while we note that the 3D CNN
architecture adopted in this reference paper may not be opti-
mal and could be improved by introducing further inductive
bias in the networks or adopting a learnable version of 3D
scattering transform. We also find improvements over using
21 cm power spectrum for ILI regarding varied light-cone
effects and signal contamination, implying that applying
solid harmonic WST to full-band light-cones better captures
the inherent non-Gaussianity and evolution information in
line-of-sight, at either small or large scales, without split-
ting light-cones. Our results show that 3D ScatterNet
possesses the potential for parameter inference with future
21 cm light-cones and other line intensity mappings.
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A. CMAFs architectures and training details
In pydelfi, we set two neural layers of a single transform, 50 neurons per layer, for all CMAFs architectures. We also use
the ensembles of CMAFs which are shown to be more effective compared with the single CMAF for a small size of training
sample. For the training of CMAFs, we split and use 10% of the training samples for additional validation. We also use the
batch size of 50, epochs of 2000, and patience of 20 for early stopping. We fine-tune the the size of training sample and the
CMAFs architecture for each method and each experiment, after the results of posterior validation (calibration). The general
idea for the fine-tuning is that the data (summaries) containing more uncertainties may need more complex CMAFs like
more transformations in a single CMAF, and the data (summaries) with higher dimension may need larger size of training
sample because of the huge feature space. The details to produce the results in this paper are as follows:

3D ScatterNet:

• Pure signal (main results). We use 18,000 samples and an ensemble of 8 CMAFs: (5, 6, 7, 8) ∗ 2, where we use two
CMAFs blocks each containing a CMAF with the number of transformations 5, 6, 7, and 8, respectively. Hereafter we
use the similar convention for the illustration of CMAFs ensembles. Note that the performance can be further enhanced
especially for 3D ScatterNet with double size of training samples.

• Pure signal (light-cubes). We use 27,000 samples and the ensembles for the 1st, 3rd, and 5th box: (5, 6, 7, 8) ∗ 3,
(5, 6, 7, 8) ∗ 3, (5, 6, 7, 8) ∗ 2.

• Noised signal. We use 36,000 samples and the ensembles: (20) ∗ 2.

21cmDELFI-PS:

• Pure signal (main results). We use 18,000 samples and the ensembles (5) ∗ 4.

• Pure signal (light-cubes). For the 1st box, we use 32,596 samples and the ensembles (6, 7, 8, 9) ∗ 3; for the 3rd box, we
use 34,044 samples and the ensembles (5, 6, 7, 8) ∗ 3; and for the 5th box we use 27,000 samples and the ensembles
(5, 6, 7, 8) ∗ 2.

• Noised signal. We use 36,000 samples and the ensembles (20) ∗ 3.

B. The sensitively of coefficients to astrophysical parameters
We show the first- and second-order scattering coefficients calculated from the light-cones in Fig. 4 with averaged l (up
to l = 6) and q = 1. We find that increasing log10 (Tvir) (log10ζ) tends to have decreasing (increasing) amplitude of
the coefficients at all scales. The sensitivity of the amplitude to the varying of parameters implies that these coefficients
have the power to constraint the two parameters. The opposite effects on the amplitude agree with our physical intuition:
perturbing a specific universe with larger ionizing efficiency has the similar ionization history to perturbing with more
abundant low-mass galaxies, which also implies the direction of degeneracies in the two-parameter space. Interestingly, our
initial results show that only using the zeroth-order coefficients can already give the parameter inference just slightly worse
than 21cmDELFI-PS on one of the representative models, while it failed training for the other model. Further investigation
is needed based on these results.
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Figure 4. The first (S1) and second (S2) order solid harmonic scattering (logarithmic) coefficients with averaged l (up to l = 6) and
q = 1. We vary the two parameters log10 (Tvir) and log10ζ in the top and bottom panel, respectively. The green lines in both top and
bottom panels are the same and used for clearer comparison.
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