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Abstract

Solar activity is one of the main drivers of variabil-
ity in our solar system and the key source of space
weather phenomena that affect Earth and near
Earth space. The extensive record of high resolu-
tion extreme ultraviolet (EUV) observations from
the Solar Dynamics Observatory (SDO) offers an
unprecedented, very large dataset of solar images.
In this work, we make use of this comprehensive
dataset to investigate capabilities of current state-
of-the-art generative models to accurately capture
the data distribution behind the observed solar
activity states. Starting from StyleGAN-based
methods, we uncover severe deficits of this model
family in handling fine-scale details of solar im-
ages when training on high resolution samples,
contrary to training on natural face images. When
switching to the diffusion based generative model
family, we observe strong improvements of fine-
scale detail generation. For the GAN family, we
are able to achieve similar improvements in fine-
scale generation when turning to ProjectedGANs,
which uses multi-scale discriminators with a pre-
trained frozen feature extractor. We conduct ab-
lation studies to clarify mechanisms responsible
for proper fine-scale handling. Using distributed
training on supercomputers, we are able to train
generative models for up to 1024x1024 resolution
that produce high quality samples indistinguish-
able to human experts, as suggested by the evalu-
ation we conduct. We make all code, models and
workflows used in this study publicly available
here.
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1. Introduction
Generative models for high resolution images have seen a
rapid progress in the last years, enabling for instance genera-
tion of highly photo-realistic, diverse natural image samples
after training on large-scale data (Sauer et al., 2022; Dhari-
wal & Nichol, 2021; Rombach et al., 2022). Consequently,
different domains that operate on image-like signals were
seeking to apply the powerful data-driven model class to
study various domain-specific problems.

The solar physics field offers high volume, high quality data
on the state and dynamics of the sun recorded during long
term observation missions. In this work, we investigate
whether generative models can accurately learn the underly-
ing data distribution of solar images with a high degree of
realism sufficient for scientific requirements.

For this study, we take the large-scale dataset provided by
the Solar Dynamic Observatory (Pesnell et al., 2012), op-
erated by NASA since 2010. Motivated by the progress on
high resolution natural image generation, we consider gen-
erative adversarial networks, i.e. GANs (Goodfellow et al.,
2014), and standard ablated diffusion models ADM (Dhari-
wal & Nichol, 2021), both known to produce natural im-
ages that are hard to distinguish from originals by human
observers. Experimenting with state-of-the-art GANs, we
observe that StyleGANs have surprisingly troubles generat-
ing high quality solar images, despite tuning of the learning
procedure. After switching to ProjectedGAN (Sauer et al.,
2021) which introduces additional mechanisms to deal with
the multi-scale nature of images, we can fix fine-detail issues
and produce high quality solar images. Ablation studies on
ProjectedGAN reveal mechanisms making this possible. In
contrast, diffusion models are able to provide high quality
solar images out-of-the box, without requiring additional
mechanisms or extensive tuning.

To further assess the quality of generated samples, we con-
duct a small study with human observers, with results sug-
gesting that it is impossible even for the experts from the
solar imaging community to tell the generated from real
sample images. We discuss the implications of our study
and conclude that after training on a large volume of high
quality scientific data, generative models are capable of pro-
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ducing realistic high resolution solar images with a level of
detail that makes generated samples indistinguishable from
real observations for human experts in the field.

We open-source the pre-trained models, the code for train-
ing, evaluation and the workflows around the dataset pre-
processing to foster further research on generative models
for high resolution solar images.

2. Methods & Experiments
Dataset We base our study on a subset of Extreme UltraVi-
olet (EUV) images from the SDO AIA instrument (Lemen
et al., 2012). SDO takes data from Earth orbit since Febru-
ary 2010, offering solar images in different optical and EUV
spectral bands with high resolution (up to 4096x4096 pix-
els). This accounts for about 1TB of data per day for almost
one full solar cycle. The mission also carries a Helioseis-
mic and Magnetic Imager (HMI) instrument that produces
spatially resolved doppler and magnetogram images with
the same spatial resolution and similar temporal cadence as
AIA. Each EUV spectral range explores different heights
in the solar chromosphere and corona, hence is capable of
detecting different structures of interest that contain comple-
mentary information about the state of the solar atmosphere.

Data from SDO is available in different formats and at dif-
ferent processing levels. We base our dataset on Level 1
data that can be obtained, for instance, through the SunPy
Federated Internet Data Obtainer (FIDO) API. The data is
downloaded in the Flexible Image Transport System (FITS)
format standard, containing the image pixel intensities to-
gether with a large set of metadata. We process the image
data with routines provided by the AIA team in the python
package AIApy (Barnes et al., 2020), which includes scal-
ing the images to a common plate scale and correcting for
instrument degradation effects. Our pipeline is similar to
the procedure described in (Galvez et al., 2019).

For generative training, we use a dataset of 40K images
spread evenly across the SDO mission duration to cover
all solar activity levels. We discard low-quality images
(FITS metadata field ”Quality” > 0). The raw data has
pixel intensities ranging from 0 to 16383 where most of the
mass is concentrated between 0 and 500; there are as well
negative pixel values which are considered as instrument
measurement errors. We preprocess the data by clipping
the pixel values to 1 as a minimum value, then applying a
(natural) log transform followed by normalization to [0, 1]
by dividing by the maximum value. We train our models on
AIA 193Å subsampled images (we use bilinear resampling)
of size 1024x1024. For visual inspection, real and gener-
ated images are colorized with the colormap sdoaia193
from the SunPy package to align with the most common
visualization of the data.

GAN models experiments We conduct a series of ex-
periments using different GAN models in our attempt to
generate high quality solar image samples. We apply
the published implementation of StyleGAN2-ADA (Kar-
ras et al., 2020), StyleGAN3 (Karras et al., 2021), Project-
edGAN (Sauer et al., 2021) and StyleGAN-XL (Sauer et al.,
2022) to our prepared dataset. All implementations are
based on the StyleGAN2-ADA implementation by NVIDIA.
We adjusted the respective implementations for the usage
on the supercomputer, and faithfully reproduced the com-
putational setup following previous work. This involves
introducing a multi-node launching procedure, as an 8-GPU-
setup as chosen in the previous work requires the usage of
two compute nodes. The implementation periodically per-
forms an FID evaluation of generated images. In agreement
with visual inspection, we report the generated images with
the lowest FID as the best images in every experiment.

Diffusion model experiments. We follow ADM (Dhariwal
& Nichol, 2021), and use their UNet architecture based
on convolutional residual blocks and global attention at
different resolutions and adapt OpenAI’s implementation of
ADMs. We experiment with different denoising steps (250,
500, 1000, 2000, 4000) and train the models for a maximum
of 100K training steps with a learning rate of 0.0001 and a
batch size of 64. For sample generation, we use 250 steps
to make generation faster.

3. Results
Generating solar images with GANs.. Our main results
obtained with ProjectedGAN, StyleGAN2-ADA and Style-
GAN3 are shown in Fig. 1 along with real images. The
mean FID measured in five ProjectedGAN runs is evaluated
to 4.2 with a standard deviation of ±2.0. In the panel, we
show a generated sample for a run with the best obtained
FID of 2.2. Visually, the quality of the different runs is
hard to distinguish. StyleGAN2-ADA and StyleGAN3 cre-
ate images of which the FID is evaluated to 15.0 and 11.0
respectively. While ProjectedGAN’s suns are round, Style-
GAN2’s suns deviate from circular shape. StyleGAN3’s
suns are better, yet deformation is visible, and the quality
of fine scale details is very different. For StyleGAN2 the vi-
sual image quality appears coarse, while StyleGAN3 shows
intricate details but with very visible artifacts. Both models
(StyleGAN2&3) do not produce visual structures resem-
bling coronal loops. On the other hand, ProjectedGAN’s
visual features are very fine and clearly also show coronal
loops, and even for the expert, it is difficult to separate real
from fake images. None of the training processes shows
signs of mode collapse.

In order to understand which mechanisms of ProjectedGAN
enable strongly improved solar image generation, we have
performed a series of systematic ablations. This ablation
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Figure 1. Image quality comparison between (from left to right) a real image, an image generated with ProjectedGAN, with StyleGAN2
and StyleGAN3, and a diffusion model (ADM). Below each image, a zoomed in version of the region indicated with the white box is
displayed. Only ProjectedGAN and ADM can reproduce coronal loops, the reentrant structure in the solar atmosphere. StyleGAN2 and
StyleGAN3 cannot reproduce these features.

study is summarized in Table 1 and selected results are
shown in Suppl. Fig. 4. The ablations point to three core
mechanisms behind the improvement: pre-trained feature
projection network, cross-scale feature mixing and multi-
ple discriminators with independent losses. Disabling one
of these components leads to significant drop in FID and
clear deterioration of important fine-scale details like coro-
nal loops regions and appearance of various artefacts in
generated solar images.

Diffusion model based generation. For diffusion models,
the best FID we obtain is 15.3 (see Fig. 1) with 1000 training
denoising steps and 250 sampling steps. Interestingly, even
if the FID is much higher than the best ProjectedGAN results
(FID = 2.2), we observe that the best diffusion model is
able to generate a correct spherical shape, and high quality
fine-scale details, e.g., we observe that it can successfully
reproduce coronal loops (see also Suppl. Fig. 2). To make
sure ProjectedGANs do not have an advantage in FID due
to the fact that it is using ImageNet pre-trained features
on the discriminator, we follow (Sauer et al., 2021) and
also compute rFID and CLIP-RN50. We find that the order
of different models (ProjectedGAN ablations together with
diffusion models) is consistent. We find a Spearman rank
correlation of ρ = 0.75 between FID and rFID, and ρ =
0.94 between FID and CLIP-RN50, also ProjectedGANs
have consistently smaller FID compared to diffusion models
(see also Suppl. Tab. 4, 6, 7).

Assessing quality by human experts study. We conducted

Run FID ↓ SR CL

ProjectedGAN (Baseline) 4.2 ± 2.0 ++ ++
Random feature network 17.8 ++ 0
EfficientNet-Lite1 7.4 ++ ++
EfficientNet-Lite2 4.1 ++ ++
EfficientNet-Lite3 3.8 ++ ++
No Cross Scale Mixing 9.6 + +
No Cross Scale/Channel Mixing 11.0 + +
Discriminator 1 10.7 0 +
Discriminator 1,2 7.4 + +
Discriminator 1,2,3 6.5 + ++
Augmentations off 4.2 ++ ++
Trainable Projections 7.2 ++ ++

Table 1. ProjectedGAN ablations. The columns SR and and CL
indicate results from qualitative visual inspection regarding sun
roundness (SR) and presence of coronal loops (CL). A zero indi-
cates unsatisfactory performance, two plus symbols indicate that
deviations from roundness is very difficult to see or that coronal
loops are clearly visible. A single plus sign indicates that artefacts
a still clearly visible.

a small exploratory study with a sample of 20 human sub-
jects with different proficiency in solar physics research. On
a scale from 1 to 5 they rated their expertise with an average
of 2.6 points and a standard deviation of 2.42. We showed
them a sample of 5 real and 5 fake samples generated from
both the best GAN results and the diffusion models. The
aim was to test if humans can distinguish real from fake
samples significantly better than random guessing.
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The average score of the entire group of 20 subjects was
4.55 with a standard deviation of 1.39 (see Suppl. Fig. 10).
The result is consistent with the hypothesis of random guess-
ing, with an aggregate two-sided p-value of 0.66. The data
indicates a small correlation between the expertise rating
and the number of correct responses. Overall, our sample
size is too small to allow for firm conclusions but we view
this as indication that humans, even with expertise in solar
EUV images, struggle to identify fake images reliably.

4. Discussion
Generation of fine-scale details. Going through intensive
experiments with various GAN approaches, we finally ob-
tain with ProjectedGAN solar images that have comparable
good quality to images produced in the experiments with
the diffusion model. We clearly see that no single technique
introduced by ProjectedGAN can be made solely responsi-
ble for the observed improvement over less successful GAN
models with basic StyleGAN architecture. To achieve good
quality, following components turn out to be necessary from
the conducted ablation study: the pre-trained feature net-
work, feature mixing across scales and independent discrim-
inators for all scales. This clearly underlines the importance
of the employed discriminator architecture. We observe that
architectures like StyleGANv2 and StyleGANv3, that do not
possess such explicit mechanisms to deal with multi-scale
nature of the image signal built into discriminator, fail to
generate necessary fine-scale structures in the solar images.
Remarkably, natural images like faces do not pose such a
difficulty for the models with basic StyleGAN architectures
that struggle on solar image data.

Contrary to the efforts necessary to get fine-scale generation
working well in GANs, standard diffusion model (ADM) op-
erating in pixel space and employing U-Net works without
extensive tuning. This is in line with the already observed
benefits of diffusion models over GANs, and hints on advan-
tage of multi-step denoising generation methods for proper
fine-scale handling, as opposed to single-step one pass gen-
eration employed in GANs.

Comparing different generative models. When compar-
ing the quality of solar image samples generated by different
models, we notice various degrees of degradation either on
fine- or coarse-scale level. For instance, for fine-scales, we
see particular salient solar image features, like coronal loops
outside, or in the active regions within solar disk or on the
solar limb, either clearly expressed, or corrupted or entirely
gone, depending on model quality. On the coarse-scale level,
easily detectable is the preservation of the ideally spherical
shape of the solar disk or its distortion.

As we measure FID, the scores obtained for the GAN mod-
els seem on the one hand to be well ordered according to

the observed quality of fine and coarse scales of the solar
images in correspondence with the trained model quality.
On the other hand, we observe that despite being the best
among assessed image quality on fine and coarse scale, dif-
fusion models obtain higher FID than generated samples
obtained by GANs which have poorer quality upon visual
inspection. This again calls for caution when judging gener-
ated sample image quality via FID - alone it cannot give a
comprehensive answer, and other domain-specific scores or
visual inspection by experts might be necessary, as it is this
case in our study for solar images.

When conducting the human experts study, we were then
taking those sample images that showed high quality on
both fine and coarse scale - generated by ProjectedGAN and
ADM. Our study with human experts confirms the quality of
generated samples - as human were not able to distinguish
reliably real from generated solar images.

5. Conclusion and Outlook
Encouraged by the previous works showing capability to
generate high quality and high resolution natural images us-
ing architectures like StyleGAN, we started our study with
initial expectation to generate similar high quality and high
resolution samples from the SDO dataset containing solar
images using the same methods. However, we observe that
basic StyleGAN architectures and their extensions like Style-
GANv2, StyleGAN-ADA, DiffAug and StyleGANv3 are
not capable of generating solar images of sufficient quality,
failing at crucial fine-scale details - which is not observed in
this way for the scenario of natural image generation. This
calls for caution when applying generative models, highly
successful on natural image data, to images on scientific
domains. By executing extensive experiments, we find that
ProjectedGAN with its pre-trained feature extractor, cross
scale mixing and multi-scale discriminators provides solar
image samples with high quality on both fine and coarse
scale. Diffusion-based ADM can also achieve comparable
high sample quality without tuning effort. Samples created
by both methods are found to be indistinguishable from real
data in a human expert evaluation experiment.

As observed in this study, the scientific image dataset sce-
nario may differ from standard requirements for natural
image generation. To accelerate further progress in direc-
tion of generative modeling for high resolution scientific
data, we open-source the outcomes of this work. For solar
image modelling, exploring latent space of trained models,
and using further information like temporal, multi-spectral
and textual meta data available from SDO are future direc-
tions leading to powerful, physics-aware generative models
for solar state interpretation and prediction.
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Supplementary

A. Additional details on solar image sample quality comparison
Here we provide an overview over a wider spectrum of generated images with the best models of both classes. Fig. 2 shows
five images generated by ProjectedGAN and by the diffusion model (ADM) for different solar activity levels. The insets
zoom into regions with coronal loop structures. For both models, the subjective impression is very good. The solar shape
is indistinguishable from circular and coronal loops are clearly visible. However, the FIDs obtained for both models are
significantly different, being 2.2 for ProjectedGAN and 15.2 for the diffusion model, showing the FID alone cannot properly
reflect image quality.

Figure 2. Comparison of ProjectedGAN results and Diffusion model results. Despite the FID being much lower for the ProjectedGAN
model (FID 2.2) than the Diffusion model (FID 15.2), both coarse and fine scale agree when evaluated by a human. Both models generated
sun of which the shape can visually not be distinguished from a circle. Also fine-scale details are of comparable quality.

B. Additional details on GAN experiments
B.1. Hyperparameters

In this section, we report the hyperparameters employed for ProjectedGAN in the configuration with which we obtained
optimal results. The reported parameter names are inspired by the parameters of the ProjectedGAN training code1, however

1https://github.com/autonomousvision/projected-gan
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for readability, abbreviations have been expanded.

Group Parameter Value

Generator type StyleGAN2
z dim 64
w dim 128
num mapping layers 2

G-Optimizer type Adam
betas 0,0.99
learning rate 0.0005

D-Optimizer type Adam
betas 0,0.99
learning rate 0.002

Training batch size 32
num gpus 8

Projection diffaug True
type 2 (CSM+CCM)
out channels 64

Discriminator num discs 4

Table 2. ProjectedGAN hyperparameters of the baseline run. The evaluation of multiple runs with this hyperparameter set can be found in
Fig. 3.

B.2. FID variation

With our studies, we observe that different GAN training runs with identical parameters can lead to very different behaviour
even with identical hyperparameters as given in Tab. 2. Fig. 3 shows the FID in the course of five identical ProjectedGAN
runs evaluated every 6400 iterations with a batch size of 32. The five runs exhibit significantly different behaviour. In
two runs the FID decreases continuously and subsequently fluctuates between 2 and 3. In three runs, the FID reaches a
pronounced minimum and starts increasing again. The resulting subjective image quality of all runs is comparable.

Figure 3. FID in the course of training of ProjectedGAN. The panel shows five runs with identical parameters. Horizonal lines at 3,5, and
10 to guide the eye.

B.3. Comparison to natural image generation

Here we show results of standard StyleGANv2 training on natural face image generation. Contrary to the severe issues
StyleGANv2 has when generating fine-scale details for solar images that we observe in this study (Fig. 4), such issues
are absent on natural face images, as demonstrated in Fig. 5. Fine-scale details like hair or eye structures are faithfully
reproduced. This exemplifies that differences in the solar images and natural face images dataset and single image statistics
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Figure 4. Qualitative Overview of the ProjectedGAN ablation studies. The original images are displayed on the left and different ablation
studies beneath. Each column displays representative example of (top) the solar disc and (bottom) a coronal loop region.

used for training are crucial for the properties of the resulting models, either being able or not able to handle fine-scale
details depending on dataset nature

B.4. Latent space control

We conducted an preliminary study on unsupervised extraction of meaningful directions in latent space of the best performing
GAN model, ProjectedGAN, following the GANSpace (Härkönen et al., 2020) method. In Fig 8, we provide a visualization
of the first and second PCA components (based on the W space) with highest eigenvalue, where each row is an independent
sample, and columns correspond to variation of the coordinate of the component. It can be observed that the first two
principal components span a space where both intensity of sun activity and number of corona holes can be traversed, hinting
that latent space already contains a well-shaped useful structure that contains physically meaningful representations of the
sun’s state.

C. Additional details on diffusion model experiments
C.1. Pixel value distribution and FID

In our experiments, we measure strikingly distinct FID values for the samples generated by the ProjectedGAN and diffusion-
based ADM. This does not correspond to the fine and coarse scale details quality as inspected visually - both models are
good in capturing such important details as coronal loops inside and outside the sun disk as well as spherical disk shape.
To understand the reasons behind FID differences, we were further analyzing the pixel intensity distribution, comparing
distributions underlying real solar images and the generated samples from ProjectedGAN and ADM (Fig. 6).

We observe that the pixel distribution (with values ranging from 0 to 255) generated by diffusion (ADM) deviates from the
real one: the real data has heaver left tail (cutoff 150) while ADM has a heavier right tail, resulting in mean pixel value of
113 for real data and 127 for ADM. Opposed to that, ProjectedGAN matches not only the pixel mean (113), but also the left
and right tails. Thus, the difference in FID is well reflected in different degree of matching real data distribution between
ProjectedGAN and ADM. Here, the conclusion is in line with previous observations stating that FID alone cannot serve as
reliable measure of generated samples quality - as samples of similar quality may have strongly different FID scores, clearly
evident in our observation.

C.2. Hyperparameters

Following (Dhariwal & Nichol, 2021), we use 128 base channels, 2 residual blocks per resolution, attention layers in
resolution 16 and 8 with 4 heads, and a linear noise schedule. For training, we use a learning rate of 0.0001, a batch size of
64, use an EMA rate of 0.9999 and train for 100K steps. For evaluation, we select the model checkpoint with the best FID.
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Figure 5. In our baseline experiments with FFHQ (human faces) using StyleGANv2 with differentiable data augmentation (Zhao et al.,
2020; Karras et al., 2020), contrary our experiments with solar data (see Fig.1) the model is able to generate fine-scale details, e.g.,
wrinkles, in the head hair, and in facial hair. In solar data, despite optimizing hyper-parameters such as learning rate (for discriminator and
generator), trying different augmentations, training on more epochs, we could not find a setup where generation of fine-scale details is
acceptable.

We trained diffusion models with different training/sampling timesteps and with/without regularization. In Fig. 7a, we show
the best FID obtained with number of training timesteps with models trained up to 100K iterations. In 7b, we show the best
FID obtained when varying the sampling timesteps for a fixed model trained with 1000 denoising timesteps. After observing
initially that FID starts to increase after reaching 60K iterations, we attempted to regularize the model or reduce capacity
(using 1 residual block per resolution, attention layers with 2 heads, and 32 base channels), results are shown in Tab. 3.

Overall, the best combination we found is 1000 training timesteps, 250 sampling timesteps with random horizontal flipping.
We use the best model in our comparisons with ProjectedGAN models.
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Figure 6. Pixel intensities of diffusion model samples and real data do not match together, real data has heavier tails in the left side and
diffusion samples have heavier tails in the right side (cutoff of 150), while ProjectedGAN and real data match. This could explain the
difference in FID we observe between the samples of the two models.

(a) (b)

Figure 7. Effect of training and sampling denoising timesteps (7a) on diffusion model performance (FID). In 7a, we show the best obtained
FID with models trained with different training denoising timesteps. In 7a, we show the best FID obtained when varying the sampling
timesteps with DDPM for a fixed model trained with 1000 denoising timesteps.

Model FID

Random horizontal flip + Reduced model capacity 43.3
No regularization 28.1
Dropout=0.3 25.4
Random Horizontal flip 15.3

Table 3. Effect of regularization and model size on diffusion model performance
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D. Additional details on evaluation
We evaluate the models using FID, rFID, KID, CLIP-RN50 based FID, precision, and recall. We randomly sample 50K
images from each model. We provide detailed evaluation metrics in Tab. 4 and Tab. 6. In Tab. 7, we measure the aggreement
between the different metrics using Spearman rank correlation.

First, we note that from a model selection perspective, the best model according to each metric will lead to a different choice,
which makes it hard to automatize model selection, hence human assessment is still very helpful, especially in domain
specific datasets like solar data. We note however that our best ProjGAN model (baseline) achieves systematically either
first or second rank under all the metrics we consider in Tab .4 and Tab. 6. On the other hand, our best diffusion model have
a poor performance in all metrics compared to our ProjectedGAN-based models, despite being the best among assessed
image quality on fine and coarse scale.

Model FID ↓ rFID (×103)↓ KID(×103)↓ CLIP-FID (×103)↓ Prec.↑ Rec. ↑

ProjectedGAN (Baseline) 2.37 10.79 0.74 12.10 0.60 0.84
EfficientNet-Lite3 3.80 13.08 1.61 20.42 0.54 0.71
EfficientNet-Lite2 4.07 13.17 0.99 13.43 0.58 0.75
Augmentations off 4.19 17.34 1.62 10.81 0.66 0.51
Discriminator 1,2,3 6.45 19.25 2.50 20.48 0.65 0.29
Trainable Projections 7.22 15.12 3.88 31.89 0.48 0.57
EfficientNet-Lite1 7.42 18.14 4.31 24.91 0.63 0.47
Discriminator 1,2, 7.43 24.99 3.15 26.35 0.54 0.33
No Cross Scale Mixing 9.60 28.75 2.89 22.91 0.60 0.15
Discriminator 1 10.69 22.40 6.15 37.54 0.47 0.39
No Cross Scale/Channel Mixing 10.99 32.29 4.74 27.56 0.62 0.16
Diffusion (ADM) 15.27 140.63 15.59 111.25 0.43 0.63
Random feature network 17.72 9.01 16.44 267.15 0.15 0.57
Unfreeze feature network 171.56 3366.57 199.23 2440.33 0.01 0.00
Randomly initialized feature network (unfrozen) 252.43 5119.63 299.56 3111.04 0.00 0.00
Unfreeze feature network+Trainable Projections 328.04 7221.13 405.74 4784.95 0.00 0.00

Table 4. Detailed performance metrics of the models.Best model on each metric is highlighted in bold.

We further investigated whether pre-training domain specific models and using them for evaluation can agree better with
human assessment of solar data image generation. We pre-trained a masked-autoencoder (He et al., 2022) (MAE) and
VicReg (Bardes et al., 2021) on solar data, and used them to compute Fréchet Distance (FD) between real and generated
samples of the different models, and also compare them with MAE and VicReg models pre-trained on ImageNet. For MAE
pre-training on solar data, we used a Vit-B/16 model with 75% masking ratio and we pre-trained the model for 1600 epochs.
For VicReg on solar data, we pre-trained a ResNet50 for 1000 epochs. For MAE and VicReg pre-trained on ImageNet data,
we used openly available checkpoints for B/162 and ResNet50 models3 respectively.

In Tab. 5, We observe that with an MAE pre-trained on solar data, our best diffusion model is ranked second best (and better
than ProjGAN baseline), while it is ranked poorly using both original FID and with MAE pre-trained on ImageNet. With
VicReg, we observe a different outcome, there the best diffusion model is ranked poorly both with VicReg pre-trained on
ImageNet and on solar data. We also observe that the ProjGAN with a randomly initialized feature network is ranked first
when using MAE or VicReg pre-trained on solar data, although it has poorer sample quality than the best ProjGAN and
diffusion models (human assessment).

As a conclusion, model ranking can be significantly impacted by the pre-training data used to compute Frechet distances (in
our case, ImageNet vs solar data). This finding emphasizes the need for further investigation into the impact of pre-training
data (used to train models used for evaluation) on model selection of existing generative models.

2https://github.com/facebookresearch/mae#fine-tuning-with-pre-trained-checkpoints
3https://github.com/facebookresearch/vicreg#pretrained-models-on-pytorch-hub
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Model FID MAE-IN-FD MAE-SOL-FD VIC-IN-FD VIC-SOL-FD

ProjectedGAN (Baseline) 2.37 8.44 29.49 3.29 4.99
EfficientNet-Lite3 3.80 12.44 29.87 4.88 5.80
EfficientNet-Lite2 4.07 11.14 29.88 4.45 5.52
Augmentations off 4.19 9.55 29.07 5.03 5.59
Discriminator 1,2,3 6.45 14.10 29.77 7.84 6.68
Trainable Projections 7.22 16.09 30.72 8.42 6.20
EfficientNet-Lite1 7.42 18.53 30.11 8.33 6.53
Discriminator 1,2 7.43 20.29 31.50 8.40 7.08
No Cross Scale Mixing 9.60 18.79 33.27 10.21 8.46
Discriminator 1 10.69 27.06 31.71 10.40 7.76
No Cross Scale/Channel Mixing 10.99 21.73 32.09 10.04 8.90
Diffusion 15.27 53.80 28.92 19.55 12.10
Random feature network 17.72 27.16 28.67 23.40 4.59
Unfreeze feature network 171.56 1141.76 66.04 365.75 494.73
Random feature network (unfrozen) 252.43 1727.87 78.49 565.27 1068.64
Unfreeze feature network + Train projs 328.04 4162.40 148.02 555.81 140.88

Table 5. Additional performance metrics of the models based on pre-trained MAE and VicReg (noted VIC) models to compare between
Fréchet Distances based on ImageNet (noted IN) and on solar data (noted SOL). Best model on each metric is highlighted in bold, while
second best is underlined.

Model FID FID-p64 FID-p128 FID-p256

ProjectedGAN (Baseline) 2.37 1.01 0.84 0.97
EfficientNet-Lite3 3.80 0.96 0.99 1.24
EfficientNet-Lite2 4.07 1.05 0.90 0.96
Augmentations off 4.19 3.68 3.55 1.62
Discriminator 1,2,3 6.45 1.07 1.18 1.79
Trainable Projections 7.22 2.37 2.15 2.60
EfficientNet-Lite1 7.42 1.28 1.59 2.08
Discriminator 1,2, 7.43 1.37 1.73 2.26
No Cross Scale Mixing 9.60 1.18 1.51 2.55
Discriminator 1 10.69 2.54 2.86 4.00
No Cross Scale/Channel Mixing 10.99 1.65 1.53 2.85
Diffusion (ADM) 15.27 8.99 7.92 11.83
Random feature network 17.72 21.80 36.15 55.84
Unfreeze feature network 171.56 134.92 128.03 162.78
Random feature network (unfrozen) 252.43 191.38 175.69 187.80
Unfreeze feature network+Trainable Projections 328.04 414.97 441.43 506.61

Table 6. Results on FID and Patch-based FID, where FID is computed on patches, e.g., FID-p64 is computed by using patches of size
64x64 extracted randomly from images.

FID rFID KID CLIP-RN50 Prec. Rec. MAE-IN-FD MAE-SOL-FD VIC-IN-FD VIC-SOL-FD

FID 1.00 0.75 0.97 0.94 -0.74 -0.71 0.98 0.53 0.98 0.78
rFID 0.75 1.00 0.68 0.64 -0.44 -0.83 0.75 0.73 0.71 0.98
KID 0.97 0.68 1.00 0.97 -0.76 -0.64 0.96 0.48 0.96 0.72
CLIP-RN50 0.94 0.64 0.97 1.00 -0.86 -0.58 0.96 0.51 0.95 0.69
Prec. -0.74 -0.44 -0.76 -0.86 1.00 0.31 -0.81 -0.41 -0.79 -0.48
Rec. -0.71 -0.83 -0.64 -0.58 0.31 1.00 -0.66 -0.81 -0.69 -0.83
MAE-IN-FD 0.98 0.75 0.96 0.96 -0.81 -0.66 1.00 0.54 0.96 0.79
MAE-SOL-FD 0.53 0.73 0.48 0.51 -0.41 -0.81 0.54 1.00 0.53 0.72
VIC-IN-FD 0.98 0.71 0.96 0.95 -0.79 -0.69 0.96 0.53 1.00 0.76
VIC-SOL-FD 0.78 0.98 0.72 0.69 -0.48 -0.83 0.79 0.72 0.76 1.00

Table 7. We measure agreement between performance metrics using Spearman rank correlation (ρ). For each metric (rows), we highlight
in bold the metric with highest correlation.
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(a) PCA Component 1

(b) PCA Component 2

Figure 8. Unsupervised latent space control based on the W space of our best ProjectedGAN model using the GANSpace(Härkönen
et al., 2020) method. We visualize the the first (a) and second (b) PCA components with highest eigenvalue. Each row is an independent
sample and columns correspond to images obtained by varying of the coordinate of the component. We observe that the first two principal
components span a space where both intensity of sun activity and number of corona holes can be traversed.
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Figure 9. Sample of a real EUV solar image in 193Å with indications to the most typical prominent features commonly observed, such as
coronal holes, active regions and closed coronal loops with many fine scale structures. While round discs could be obtained in many cases,
especially the existence of coronal loops in generated data turned out to be the key indicator of good fine scale image quality.
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Figure 10. Histograms of the number of correct responses (out of 10 questions) from the human expert study (left) and their expertise self
assessment (on a scale 1-5, middle). The correlation between both is shown in the right panel with a correlation coefficient of 0.46.
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