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Abstract

Spectropolarimetric inversion techniques, known
as Zeeman Doppler imaging (ZDI), have become
the standard tools for reconstructing surface mag-
netic field maps of stars. Accurate and efficient
uncertainty quantification of such magnetic field
maps is an open problem in current research, and
the high dimensionality of the spherical-harmonic
magnetic field parameterization makes inference
inherently difficult. We propose a probabilistic
machine learning framework for stellar surface
magnetic field reconstruction using a gradient-
based Metropolis-adjusted Langevin algorithm.
By efficient implementation in JAX, our frame-
work allows for reliable uncertainty quantification
of the global stellar magnetic field topology. We
test the proposed scheme on the bright, massive
star τ Scorpii, and show that our approach enables
accurate computation of the posterior magnetic
field distribution with fast convergence.

1. Introduction
Magnetic fields drive many key stellar processes through-
out a star’s lifetime. Since distant stellar surfaces cannot
be spatially resolved using imaging techniques, spectropo-
larimetric time series observations are necessary in the re-
construction of surface magnetic fields of stars other than
the Sun. For such stars, Zeeman Doppler imaging (ZDI,
Kochukhov, 2016) can be used to find the inverse map-
ping between two-dimensional stellar surface magnetic field
maps and a set of spectropolarimetric line profile observa-
tions recorded at different rotational phases of the target
star (see, e.g., Boro Saikia et al., 2022; Grunhut et al., 2022;
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Petit et al., 2022). However, despite the significant role of
magnetic fields in stellar evolutionary processes, essentially
all published magnetic field maps represent point estimates
with no formal quantification of the uncertainty, including
recent ZDI inversions by, e.g., Marsden et al. (2023) and
Fréour et al. (2023). This is a major shortcoming of modern
ZDI implementations. While some attempts at quantifying
the field uncertainty have been made, they do not capture
the family of field topologies capable of fitting a given set
of observations. For example, Kochukhov et al. (2019) and
Kochukhov et al. (2022) provide uncertainty quantifications
by empirical comparison of magnetic field maps obtained
from independent spectropolarimetric time series — a noisy
approach only feasible for strongly magnetic stars. Piskunov
& Kochukhov (2002) do the same by considering the diag-
onal of the Hessian matrix, which ignores the correlation
between parameters. Petit & Wade (2011) use Bayesian
analysis to determine stellar magnetic field properties from
circular spectropolarimetric observations, but their model is
restricted to an oblique dipole.

In this work, we formalize a probabilistic ZDI framework
focusing on high-dimensional spherical-harmonic field rep-
resentations, by extending the standard ZDI formulation
to a fully Bayesian setting. To obtain the posterior mag-
netic field distribution, we leverage Markov chain Monte
Carlo (MCMC) methods. These methods come with con-
vergence guarantees without requiring the specification
of a family of variational distributions, unlike the com-
monly used variational Bayes approaches (Jordan et al.,
1999; Blei et al., 2017). Indeed, proposing such a vari-
ational distribution family is challenging due to the lim-
ited amount of previous studies providing theoretical and
numerical indications. While the high dimensionality of
the inversion problem and complexity of the forward map-
ping process pose significant challenges in the MCMC
setting, we show that fast and stable convergence can be
achieved using the high-performance numerical computing
and machine learning library JAX (Bradbury et al., 2018).
Implementations for two different forward models will
be published at https://github.com/jenan007/
ProbabilisticZDI/. Moreover, we show that, un-
der certain model assumptions, the Bayesian formulation
collapses to basic Bayesian linear regression when the
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Figure 1. Our pipeline for probabilistic ZDI. The approach involves fitting a probabilistic model to a set of spectropolarimetric line profiles
observed at different rotational phases. From the resulting posterior distribution, we obtain samples z′, which are used to reconstruct
two-dimensional magnetic field maps and corresponding synthetic line profiles.

weak field approximation (Landi Degl’Innocenti & Landolfi,
2004) is used, allowing for analytical derivation of the pos-
terior magnetic field distribution for a large group of stars.

We demonstrate our approach by reconstructing the surface
magnetic field of the bright, massive star τ Scorpii (τ Sco,
hd 149438, HR 6165), with corresponding uncertainties
across the stellar surface. Previous results produce point
estimates that predict an unusually complex surface mag-
netic field topology for τ Sco with significant contribution
in many higher-order harmonic modes (Donati et al., 2006),
motivating the need for a high-dimensional field parameter-
ization. Moreover, Kochukhov & Wade (2016) find that the
magnetic field maps obtained from ZDI inversion of τ Sco
are highly sensitive to specific assumptions in the spherical-
harmonic field parameterization, further motivating why it is
particularly interesting to accurately quantify the uncertainty
of the reconstructed magnetic field maps for this star.

2. ZDI of Stellar Magnetic Fields
In this section, the spherical-harmonic magnetic field pa-
rameterization and forward model are introduced, followed
by a description of the standard ZDI inversion.

2.1. Magnetic Field Model

Our stellar surface magnetic field model is parameterized
by a spherical-harmonic expansion, which has been widely
used in recent research (e.g., Kochukhov et al., 2014; Fol-
som et al., 2018; Grunhut et al., 2022; Marsden et al., 2023).
The inversion problem resulting from this field representa-
tion is inherently high-dimensional, with hundreds of coeffi-
cients truncated from an infinite series expansion. When the
exact solution is available, however, it comes with substan-
tial benefits. For example, the spherical-harmonic represen-
tation guarantees that the net signed magnetic flux through
the closed stellar surface is zero, fulfilling the correspond-
ing divergence-free constraint imposed by Maxwell’s laws.
This property in general does not hold for the magnetic field
generated by direct field parameterization. For a detailed
exposition of the spherical-harmonic field representation,
see, e.g., Kochukhov & Wade (2016).

Let Br(θ, ϕ), Bθ(θ, ϕ), and Bϕ(θ, ϕ) denote the surface
magnetic field components in the radial, meridional, and
azimuthal direction, respectively, as a function of the surface
latitude θ and longitude ϕ. Our spherical-harmonic field
representation is defined as follows:

Br(θ, ϕ) = −
lmax∑
l=1

l∑
m=−l

αl,mYl,m(θ, ϕ), (1)

Bθ(θ, ϕ) = −
lmax∑
l=1

l∑
m=−l

βl,mZl,m(θ, ϕ) + γl,mXl,m(θ, ϕ),

Bϕ(θ, ϕ) = −
lmax∑
l=1

l∑
m=−l

βl,mXl,m(θ, ϕ)− γl,mZl,m(θ, ϕ).

Here, l and m denote the degree and order, respectively,
of the spherical-harmonic functions Xl,m(θ, ϕ), Yl,m(θ, ϕ),
and Zl,m(θ, ϕ). See Kochukhov et al. (2014) for a
more detailed description of these equations. The free
parameters in the resulting spectropolarimetric inversion
problem are the amplitudes of the spherical-harmonic
modes, αl,m, βl,m, and γl,m. For ease of notation, we
collect the spherical-harmonic coefficients into a vector
z = (αl,m, βl,m, γl,m), where m ∈ {−l,−l + 1, . . . , l}
∀l ∈ {1, 2, . . . , lmax}. The hyperparameter lmax specifies
the truncation of the expansion.

2.2. Forward Model

Spectropolarimetry allows for measurement of not only the
total intensity spectrum (Stokes I), but also the circular po-
larization spectrum (Stokes V), which is sensitive to the
line-of-sight component of the stellar magnetic field vector.
Given a set of spherical-harmonic coefficients, our forward
model produces a set of synthetic Stokes V profiles. The pro-
cess is based on the integration of local line profiles across
the visible stellar surface on a discretized surface grid. For
our purposes, this simulation process is referred to as a deter-
ministic forward simulator denoted f(z) ∈ RN , where N is
the observation profile dimension. We model the local line
profiles by the Unno–Rachkovsky (UR) analytical solution
of the polarized radiative transfer equation in the Milne–
Eddington atmosphere (Landi Degl’Innocenti & Landolfi,
2004), using a Gaussian absorption profile. Disk-integration
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of the weighted local line profiles is carried out over the visi-
ble surface elements at each observational phase, producing
the corresponding synthetic Stokes V profiles.

2.3. Point Estimate of Field Reconstruction

To obtain a point estimate of the surface magnetic
field map, standard ZDI inversion is often performed
by solving the weighted nonlinear least-squares prob-
lem given in Equation (2), with a regularizer r(z) =

η
∑lmax

l=1

∑l
m=−l l

2(α2
l,m + β2

l,m + γ2
l,m) (see, e.g.,

Kochukhov, 2016). The regularization strength is denoted
by η, and each term in the regularization function corre-
sponds to the l2-weighted magnitudes of the magnetic ener-
gies of the spherical-harmonic coefficients. Since ZDI inver-
sion using spectropolarimetric information only in Stokes V
is an ill-posed problem, the regularization is required in
order to ensure convergence to a stable and unique solu-
tion. Formally, if y is the observed Stokes V profile and
Λ is the precision matrix of the measurement noise, then
the model parameters z are given by the solution to the
following optimization problem:

z = argmin
z

∥Λ 1
2 (y − f(z))∥22 + r(z). (2)

3. Probabilistic ZDI
By extending the least-squares formulation of the spec-
tropolarimetric inversion problem to a Bayesian nonlinear
regression setting, we can quantify the magnetic field
uncertainty following the standard Bayesian framework.
This section details the statistical model and the proposed
inference approach.

3.1. Statistical Model

In our Bayesian framework, z is treated as a latent random
variable, and the posterior distribution p(z|y) is given by
p(z|y) = p(y|z)p(z)/p(y). The corresponding Bayesian
network is illustrated in Figure 1, together with a schematic
illustration of our inference pipeline. Given the field param-
eterization provided in Equation (1), the posterior magnetic
field distribution can be obtained from a linear transforma-
tion of random variable z′ ∼ p(z|y). Similar to standard
ZDI described in Section 2.3, we assume the observational
noise to be Gaussian with diagonal covariance. Thus, our
likelihood model becomes p(y|z) = N (y; f(z),Λ−1). The
marginal likelihood p(y) is, however, intractable in general,
due to the nonlinearity of f(z). As for the prior distribu-
tion, we use p(z) = N (0, ω−1I), where ω−1I is a diagonal
matrix.

Although it is difficult to construct physics-informed priors
on the spherical-harmonic coefficients, we can design priors

that capture the ZDI regularization structure described in the
previous section, detailed by, e.g., Kochukhov et al. (2014).
More specifically, we choose the parameter ωi = ηl2i for
the marginal prior distribution of each spherical-harmonic
coefficient zi. The maximum a posteriori estimate
ẑMAP = argmaxz p(z|y) then solves the the weighted
least-squares problem detailed in Equation (2). Thus, if the
mean of the full posterior distribution happens to coincide
with the MAP estimate, the Bayesian inference provides
an uncertainty quantification around the point estimate
obtained from standard ZDI.

3.2. Computing the Posterior Distribution

Monte Carlo methods are commonly used to approximate
the posterior distribution when it is not analytically tractable,
as is often the case for forward mapping functions mod-
eling the relationship between spherical–harmonic coeffi-
cients and spectropolarimetric time series. To draw samples
from the posterior distribution, MCMC methods can be
employed. Simple MCMC algorithms are often limited
by poor sample efficiency, preventing efficient exploration
of complex and high-dimensional state spaces. Since the
spherical-harmonic field parameterization in Equation (1)
produces a high-dimensional posterior distribution, we use
the gradient-based Metropolis-adjusted Langevin algorithm
(MALA, Brooks et al., 2011) for inference, achieving sig-
nificant improvement in the mixing of the chain. MALA is
based on a Langevin diffusion process and uses the gradient
of the target log-posterior to form efficient proposal distribu-
tions under the hood of the Metropolis–Hastings algorithm,
see, e.g., Luengo et al. (2020) for details.

3.3. Differentiable Simulator in JAX

We implement our forward simulator f(z) in JAX, which
makes the MCMC inference computationally feasible for
this application. The main advantage is that JAX offers just-
in-time (JIT) compilation of Python code, resulting in signif-
icant hardware acceleration on CPUs. The accelerated linear
algebra (XLA) based compilation also allows for effortless
GPU and TPU extensions. In addition, XLA is combined
with an updated Autograd functionality, allowing for auto-
matic differentiation of the log-posterior, removing the need
for analytical derivation, implementation, or explicit numeri-
cal approximation of the gradients, ∇z log(p(z|y)). In light
of these attractive properties, JAX provides a convenient
framework for implementation of complex MCMC algo-
rithms incorporating gradient information, while supporting
flexibility in terms of forward mapping functions and prior
distributions. To sample from the posterior distribution, we
use the JAX-based library BlackJAX (Lao & Louf, 2020),
which offers a robust baseline implementation of MALA.
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Figure 2. The two columns to the left show the analytical MAP magnetic field estimates across the stellar surface obtained using the weak
field approximation, and the corresponding standard deviation maps. The magnetic field maps correspond to the radial (top), meridional
(middle) and azimuthal (bottom) magnetic field components (kG). The middle columns show the MAP magnetic field map estimates and
standard deviation maps obtained using the nonlinear UR-solution. The right-most column shows the corresponding model Stokes V
spectra (red) compared to observations (black). These profiles are offset vertically according to the corresponding rotational phase.

3.4. Probabilistic ZDI under the Weak Field
Approximation

For many stars, in particular solar-like stars and the majority
of cool, low-mass stars, the weak field approximation (Landi
Degl’Innocenti & Landolfi, 2004) applies. In this special
case, the forward model can be approximated by a function
linear in the parameters z such that f(z) = Az, where A is
the transformation matrix. When this is the case, our choice
of prior is conjugate to the likelihood, and an analytical
expression for the Gaussian posterior distribution p(z|y)
exists, such that p(z|y) = N (z;µ,Σ) with Σ−1 = ωI +
ATΛA and µ = Σ(ATΛy). Since the magnetic field B is
a linear function of z according to Equation (1), and p(z|y)
is Gaussian, the posterior magnetic field distribution is also
Gaussian in this case, and can be expressed in closed form.

4. Results
We use high-quality mean Stokes I and Stokes V spectra
based on the observational data of τ Sco analyzed by
Kochukhov & Wade (2016). The original data consists
of 49 circular polarization observations recorded with the
ESPaDOnS instrument (Donati et al., 2006) at the 3.6m
Canada-France-Hawaii telescope between 2004 and 2009.
Following Kochukhov & Wade (2016), we fix the rotational
period to 41.033 days, the projected rotational velocity
to 6 km s−1, and the inclination angle to 70 degrees. For
further details on the data and preprocessing, readers are
referred to Kochukhov & Wade (2016).

We let lmax = 10 in Equation (1), resulting in 360 spherical-
harmonic coefficients. With our implementation of the

proposed scheme, we achieve stable and fast convergence.
Compared to the corresponding implementation in pure
NumPy, where we use JAX for gradient calculations only,
our implementation achieves a runtime speedup of 648x on
a Tesla A100 GPU. We run the MALA sampler for 3 · 106
iterations, and remove a burn-in of 500k samples. Figure 2
shows the resulting MAP estimate of the surface magnetic
field maps and the corresponding Stokes V fit obtained using
the forward simulator described in Section 2.2, together with
the obtained standard deviation of the magnetic field across
the stellar surface. The analytical MAP estimate of the
magnetic field maps obtained using the weak field approxi-
mation and corresponding uncertainty are also included in
Figure 2. Since the weak field approximation applies, the ob-
tained field maps in the two cases are expected to be similar.
The presented point estimates in both cases coincide with
the magnetic field maps reconstructed using standard ZDI,
and are similar to the previously published magnetic field
maps of τ Sco obtained by Kochukhov & Wade (2016). Our
results show that the uncertainty is latitude-dependent in
all three components, which is reasonable due to the stellar
inclination with respect to the observer. The mean deviation
between the MAP fits and observed Stokes V profiles is
9.17 · 10−5 (weak field) and 1.15 · 10−4 (UR), which is
comparable to previously published point estimates.

5. Conclusions and Future Work
We present a Bayesian extension of standard ZDI using
the high-dimensional spherical-harmonic field parameteri-
zation, allowing for accurate uncertainty quantification of
stellar surface magnetic field maps where current research
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is dominated by point estimates. By efficient implemen-
tation in JAX, we achieve a significant runtime speedup
and show that fast and stable convergence is possible using
MCMC methods. Our results formalize empirical uncer-
tainty quantification in stellar magnetic field maps, and can
be extended to a variety of ZDI targets. In future work, we
plan to expand the hierarchy in the statistical model to ac-
count for uncertainties in multiple stellar parameters. This
allows for uncertainty quantification of particularly chal-
lenging ZDI targets, including equator-on hosts of transiting
exoplanets and stars in eclipsing binary systems, where
spherical-harmonic coefficients may exhibit degeneracy.
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Palacios, A., Morin, J., Donati, J.-F., and Vidotto, A. A.
The evolution of surface magnetic fields in young solar-
type stars II: the early main sequence (250-650 Myr).
Monthly Notices of the Royal Astronomical Society, 474:
4956–4987, 2018.
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