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Abstract

With the increasing volume of astronomical data
generated by modern survey telescopes, auto-
mated pipelines and machine learning techniques
have become crucial for analyzing and extract-
ing knowledge from these datasets. Anomaly
detection, i.e. the task of identifying irregular
or unexpected patterns in the data, is a com-
plex challenge in astronomy. In this paper, we
propose Multi-Class Deep Support Vector Data
Description (MCDSVDD), an extension of the
state-of-the-art anomaly detection algorithm One-
Class Deep SVDD, specifically designed to han-
dle different inlier categories with distinct data
distributions. MCDSVDD uses a neural net-
work to map the data into hyperspheres, where
each hypersphere represents a specific inlier cat-
egory. The distance of each sample from the
centers of these hyperspheres determines the
anomaly score. We evaluate the effectiveness
of MCDSVDD by comparing its performance
with several anomaly detection algorithms on
a large dataset of astronomical light-curves ob-
tained from the Zwicky Transient Facility. Our
results demonstrate the efficacy of MCDSVDD in
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detecting anomalous sources while leveraging the
presence of different inlier categories. The code
and the data needed to reproduce our results are
publicly available at https://github.com/
mperezcarrasco/AnomalyALeRCE.

1. Introduction
With modern survey telescopes producing unprecedented
volumes of data, it has become unfeasible to analyze astro-
nomical data massively by human inspection. Consequently,
the necessity for automated pipelines arises, enabling the
extraction of knowledge from these vast datasets in a data-
driven manner. Among the intriguing and complex astro-
nomical challenges lies the task of anomaly detection (AD),
which refers to the identification of irregular or unexpected
patterns that deviate from our existing understanding of the
data (Chandola et al., 2009).

In recent years, the application of machine learning tech-
niques in the field of astronomy has led to remarkable ad-
vancements in detecting anomalous sources in a systematic
manner. For instance, Xiong et al. 2010 employed a hi-
erarchical probabilistic model, while Baron & Poznanski
2016 utilized an unsupervised Random Forest approach to
identify outliers within galaxy spectra from the Sloan Dig-
ital Sky Survey (SDSS). More recently, Villar et al. 2020
applied an IForest algorithm to a latent space derived from
a Variational Recurrent Autoencoder (VRAE), specifically
targeting a simulated dataset of supernovae (SNe). Similarly,
Sánchez-Sáez et al. 2021a employed a VRAE architecture
to analyze the light curves of active galactic nuclei (AGN)
within the Zwicky Transient Facility Data Release 5 (ZTF
DR5). Furthermore, the work of Ishida et al. 2021 employed
Gaussian Processes to extract features and train Isolation
Forest algorithm in an active learning manner using the
Open Supernova Catalog dataset and the Photometric LSST
Astronomical Time-series Classification Challenge (PLAs-
TiCC; Kessler et al. 2019; Hložek et al. 2020). In a similar
vein, Muthukrishna et al. 2022 used a bayesian paramet-
ric model to find anomalous sources using simulated light
curves from SNANA (Kessler et al., 2009). Previous works
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share a common training procedure: they utilize a sample
of normal and well-identified objects categorized as inliers
to train an algorithm that can detect samples deviating from
these inliers. This approach, commonly known as one-class
anomaly detection (Schölkopf et al., 1999), represents the
current state-of-the-art for various anomaly detection prob-
lems. However, when different inlier categories with distinct
data distributions are present in the training set, it remains
unclear how to effectively utilize and leverage these meth-
ods.

To address this challenge, we present Multi-Class Deep Sup-
port Vector Data Description (MCDSVDD), an extension of
the state-of-the-art anomaly detection algorithm One-Class
Deep SVDD (Ruff et al., 2018). Our proposed method em-
ploys a neural network to map the data into hyperspheres,
where each hypersphere encapsulates the data representation
of a specific inlier category. Consequently, the ”weirdness”
of each sample is determined by its distance from the center
of the closest hypersphere. To evaluate the effectiveness of
our approach, we compare the performance of several one-
class anomaly detection algorithms on a large dataset of as-
tronomical light-curves obtained from the Zwicky Transient
Facility (ZTF; Bellm et al. 2018). Through our comprehen-
sive evaluation, we demonstrate the efficacy of MCDSVDD
in detecting anomalous sources while effectively leveraging
the presence of different inlier categories.

2. Data
In this work we use data alerts from the from the ZTF
data stream (Bellm et al., 2018). In this data stream, an
alert is triggered by an object in the sky whose current
(science) image has a significant difference with respect to
a template (reference) image (Masci et al., 2018). For alerts
to be streamed by ZTF, they need to pass the cut-off criteria
defined by the real/bogus detection system designed by the
ZTF Collaboration. These criteria include signal-to-noise
ratios, near-edge image positioning, negative and bad pixels,
and morphological and photometric features (Mahabal et al.,
2019; Duev et al., 2019).

Light-curves are constructed using the same procedure of
Section 4.4 of Förster et al. (2021). We perform cross-
match with the AllWISE1 public source catalog (Wright
et al., 2010; Mainzer et al., 2011), using a matching radius
of 2 arcseconds, obtaining W1, W2, and W3 photometry.
Then, 152 features are calculated for each light-curve using
the ALeRCE broker feature extractor (Förster et al., 2021).
These features include detection and non-detection features
(see Section 3 of Sánchez-Sáez et al. 2021b for details). We
only use objects with at least six detections in either g or r

1The AllWISE Data Release can be found at http://wise2.
ipac.caltech.edu/docs/release/allwise/

bands.

Our training set consisted in labeled light-curves that follow
a taxonomy with three main classes (hereafter, the top level
classes): transient, stochastic, and periodic. Each of these
categories is then subdivided into the following subclasses:

• Transient: Type Ia supernova (SNIa), Type Ibc super-
nova (SNIbc), Type II supernova (SNII), and super-
luminous supernova (SLSN);

• Stochastic: Type 1 Seyfert galaxy (AGN; i.e., host-
dominated active galactic nuclei), Type 1 quasar (QSO;
i.e., nucleus-dominated AGN), blazar (blazar; i.e,
beamed jet dominated AGN), young stellar object
(YSO; including bursters, dippers and purely rotation
modulated lightcurves of pre-main sequence stars), and
cataclysmic variable/Nova (CV/Nova);

• Periodic: long-period variable (LPV; includes regular,
semi-regular, and irregular variable stars), RR Lyrae
(RRL), Cepheid (CEP), eclipsing binary (E), and δ
Scuti (DSCT).

In Section 4 we explain in detail how the above-mentioned
categories are used to train and evaluate our anomaly de-
tection algorithms by hiding the light curves from a given
subclass and considering all the others as inliers. This allows
for a rigorous comparison of algorithms that helps to select
the most promising method to be applied in a real-world
scenario.

3. Method
In this work we present Multi-Class Deep SVDD
(MCSVDD), an extension of the One-Class Deep SVDD
method (Ruff et al., 2018).

3.1. One-Class Deep SVDD

Deep Support Vector Data Description (Deep SVDD; Ruff
et al., 2018) is a neural network-based approach related to
OCSVM (Schölkopf et al., 1999). The general idea is to
map the data from an input space X ⊆ Rd into a new feature
space F ⊆ Rp using a neural network ϕ(·; Θ) : X → F
with L hidden layers and parameters Θ = {θ1, ..., θL}.
Specifically, we want the neural network ϕ to learn a rep-
resentation that minimizes the volume of a hypersphere of
radius R > 0 and center c that enclose the normal data in
the output space F .

The objective function for this task is defined by:
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min
Θ,R

R2 +
1

N

N∑
i=1

max{0, ||ϕ(xi; Θ)− c||2−R2}+λ

2
Θ⊤Θ,

(1)
where λ is a hyperparameter that controls the weight decay
on the network parameters θ. In practice, the encoding part
of an autoencoder can be used to map the data into the latent
space and define the center c. The parameters θ and R are
alternately and iteratively optimized via gradient descent
and line-search respectively.

In cases when training data contains only normal samples,
one can simply penalize the squared distance of all the data
points with respect to a center c as follows (Ruff et al., 2018;
2019):

min
Θ

1

N

N∑
i=1

max ∥|ϕ(xi; Θ)− c||2 + λ

2
Θ⊤Θ. (2)

This loss function will be used for comparisons in Section
5.

3.2. Multi-Class Deep SVDD

We extend the One-Class Deep SVDD to take into account
the different categories presented in our taxonomy. Instead
of modeling a single hypersphere to enclose the normal data,
MCSVDD models multiple hyperspheres, where each one
corresponds to a given class and enclose normal data for
that class. The idea is to learn a neural network that maps
objects from the same class close to each other and far from
objects from different classes. As abnormal samples come
from unseen classes, their distances to each hypersphere
should be larger than those of normal datapoints. We named
this method Multi-Class Deep SVDD (MCSVDD) as we
now have multiple inlier classes.

Assuming normal data pairs coming from M different
classes y ∈ {1, ...,M}, the objective function for a training
set composed by different inlier classes is given by:

min
Θ

M∑
j=1

1

Nj

N∑
i=1

1(yi=j)||ϕ(xi; Θ)− cj ||2+
λ

2
Θ⊤Θ, (3)

where λ is a hyperparameter that controls the weight decay
regularizer on the network parameters θ, 1(yi=j) is an in-
dicator function that becomes 1 if yi = j and 0 otherwise,
and Nj is the number of data points that belong to class j.

By following this approach, it is possible to define an
anomaly score A(·) based on the distance of the data points
to the centers of the hyperspheres as follows:

A(xi) = min
j

{||ϕ(xi;Θ
∗)− cj ||2}. (4)

where Θ∗ are the parameters of the trained neural network.

4. Methodology
For fair comparisons, we follow the same training and eval-
uation procedure for all our experiments. From the ZTF
light-curves, we extracted 152 features as described in Sec.
2. All the features were normalized between -1 and 1 us-
ing the quantile normalization method. We randomly split
the data into a training set (80%) and a test set (20%) in
a stratified fashion in order to preserve the proportion of
samples per class. The training set is divided into five strati-
fied subsets in order to perform 5-fold cross-validation for
model selection. Fig. 1 shows a scheme of our training and
evaluation methodology.

Figure 1. Methodology for training and evaluation of the anomaly
detection algorithms. We split the data into a training set and test
set, composed by 80% and 20% of the data, respectively. The
training set is subdivided into transient, stochastic, and periodic
data. For each of these classes, we choose each subclass as the
outlier class. The outlier class is removed from the training set and
added to the test set (TS2). Then, an anomaly detection algorithm
is trained using the remaining objects of each of the classes, and is
evaluated using TS2.

4.1. Training

To facilitate the problem at hand, our training dataset is
divided into three primary classes: transient, stochastic, and
periodic. These classes are further stratified into 14 sub-
classes, as described in Section 2. For each main class, we
employ a dedicated anomaly detector, resulting in three sep-
arate detectors. Since anomalies are typically unknown in
real-world scenarios, during cross-validation, we designate
a subclass from each main class as the anomalous class and
exclude it from the training set. Consequently, the model is
trained on the remaining subclasses, with the excluded sub-
class reserved solely for evaluation purposes. This approach
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Transient Stochastic Periodic
Method SLSN SNII SNIa SNIbc AGN Blazar CV/Nova QSO YSO CEP DSCT E RRL LPV
IForest 0.640 0.721 0.428 0.490 0.573 0.710 0.975 0.468 0.913 0.359 0.295 0.469 0.549 0.971
(Liu et al., 2012) ±0.014 ±0.021 ±0.032 ±0.038 ±0.017 ±0.009 ±0.001 ±0.016 ±0.003 ±0.007 ±0.012 ±0.021 ±0.033 ±0.007
OCSVM 0.577 0.587 0.434 0.492 0.532 0.443 0.909 0.517 0.792 0.432 0.557 0.555 0.539 0.943
(Schölkopf et al., 1999) ±0.014 ±0.014 ±0.021 ±0.011 ±0.008 ±0.002 ±0.001 ±0.005 ±0.005 ±0.004 ±0.005 ±0.003 ±0.004 ±0.001
AE 0.736 0.807 0.438 0.537 0.701 0.762 0.980 0.443 0.990 0.564 0.367 0.864 0.907 0.996
(Rumelhart & McClelland, 1987) ±0.022 ±0.021 ±0.015 ±0.019 ±0.010 ±0.006 ±0.016 ±0.004 ±0.001 ±0.024 ±0.015 ±0.009 ±0.015 ±0.000
VAE 0.669 0.690 0.404 0.522 0.596 0.597 0.849 0.500 0.795 0.442 0.417 0.561 0.451 0.936
(Kingma & Welling, 2014) ±0.015 ±0.023 ±0.018 ±0.025 ±0.007 ±0.010 ±0.028 ±0.009 ±0.009 ±0.010 ±0.007 ±0.007 ±0.006 ±0.007
Deep SVDD 0.644 0.731 0.475 0.507 0.496 0.607 0.932 0.411 0.901 0.707 0.482 0.636 0.774 0.785
(Ruff et al., 2018) ±0.043 ±0.043 ±0.040 ±0.040 ±0.025 ±0.044 ±0.015 ±0.008 ±0.022 ±0.027 ±0.054 ±0.055 ±0.068 ±0.025
MCDSVDD 0.686 0.828 0.624 0.584 0.706 0.512 0.770 0.483 0.854 0.858 0.819 0.945 0.953 0.953
(This work) ±0.051 ±0.024 ±0.039 ±0.032 ±0.069 ±0.113 ±0.127 ±0.080 ±0.041 ±0.025 ±0.015 ±0.006 ±0.003 ±0.008

Table 1: Evaluation of the performance of each model when applied to each of the top level taxonomy (transient, stochastic,
periodic). Each row represents a different outlier detection algorithm, and each column represents the subclass considered as
outlier. The performance is evaluated using the AUROC scores. Best metrics per class are marked in boldface

ensures that the model does not incorporate data from the
chosen anomalous subclass during the training phase. The
process is iterated for each subclass, thereby providing a
comprehensive evaluation of the anomaly detectors’ over-
all performance. The assessment primarily focuses on the
detectors’ ability to successfully identify the removed sub-
classes, aligning with established practices in the machine
learning literature (Ruff et al., 2018).

4.2. Evaluation

Although real outlier events are typically unavailable for
evaluation, we aim to create a realistic scenario to identify
the most promising anomaly detection models. As previ-
ously mentioned, 20% of the dataset is designated as the test
set (TS1) and is never utilized for training any model. We
create a second test set (TS2), including all the objects from
TS1 that belong to the inlier subclasses, and outliers from
both TS1 and those who were removed from the training set.
To ensure a realistic distribution, TS2 is composed of 10%
outliers and 90% inliers. This setup enables a comprehen-
sive assessment of the models’ ability to detect the chosen
outlier class within TS2. See Figure 1 for an illustrative
diagram of training en evaluation methodology.

To evaluate model performance when a subclass is treated as
an outlier, we employ the Area Under the Receiver Operat-
ing Characteristic curve (AUROC; Davis & Goadrich 2006).

5. Results
We conducted a comprehensive comparison of our proposed
method, Multi-Class Deep SVDD (MCDSVDD), against
five state-of-the-art algorithms for anomaly detection in the
field of astronomy. The baseline algorithms we considered
were Isolation Forest (IForest; Liu et al. 2012), One-class
Support Vector Machine (OCSVM; Schölkopf et al. 1999),
Autoencoder (AE; Rumelhart & McClelland 1987), Varia-
tional Autoencoders (VAE; Kingma & Welling 2014), and
Deep Support Vector Data Description (Deep SVDD; Ruff

et al. 2018). See Appendix I for details and hyperparameters
of all the algorithms used in this work. Table 1 presents
the 5-fold AUROC values obtained by each anomaly de-
tection model on the TS2 dataset. The table showcases the
performance of each model when considering each of the
14 subclasses as an outlier in separate trials. The highest
AUROC values for each subclass are highlighted in bold,
indicating the best-performing model for that particular task.

As can be seen, our proposed method MCDSVDD consis-
tently outperforms all other methods we considered for the
transient and periodic objects. Our method is able to detect
SNII, SNIa, and SNIb as outliers with higher AUROC val-
ues than the rest. For the SLSN subclass, AE’s performance
is statistically indistinguishable from MCDSVDD (i.e., not
statistically significant; p-value = 0.0789). In terms of the
periodic classes, MCDSVDD shows superior performance
in detecting CEP, DSCT, E, and RRL as outliers, while
AE demonstrates better performance in detecting LPVs.
Regarding stochastic sources, AE outperforms the other
methods for four out of the five subclasses (AGN, Blazar,
CV/Nova, and YSO), while OCSVM achieves the highest
performance for QSOs. It is worth mentioning that QSO
light curves often exhibit slow and smooth temporal varia-
tions, making them more challenging to detect as anomalies.
Therefore, AE emerges as the best outlier detection algo-
rithm for stochastic sources, whereas MCDSVDD excels in
detecting transient and periodic sources. We hypothesize
that the high variability of stochastic light curves may im-
pact MCDSVDD’s capability to detect different types of
sources, unlike AE, which benefits from its reconstruction
loss function.

6. Conclusion
In this paper, we addressed the challenge of effectively
utilizing different inlier categories with distinct data
distributions in anomaly detection for astronomical data.
We proposed Multi-Class Deep SVDD (MCDSVDD), an
extension of the state-of-the-art One-Class Deep SVDD
algorithm. MCDSVDD employs a neural network to
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map the data into hyperspheres, where each hypersphere
represents a specific inlier category. By measuring the
distance of each sample from the centers of these hyper-
spheres, MCDSVDD determines the anomaly scores of the
samples. We evaluated the performance of MCDSVDD
along with several one-class anomaly detection algorithms
on a large dataset of astronomical light-curves from the
Zwicky Transient Facility (ZTF). The results demonstrated
that MCDSVDD outperforms other algorithms in detecting
anomalous sources while effectively leveraging the presence
of different inlier categories. Our findings highlight the
importance of considering distinct inlier categories in
anomaly detection tasks and showcase the potential of
MCDSVDD for identifying anomalies in astronomical data.
Finally, the code and data to reproduce the results presented
in this work are publicly available at https://github.
com/mperezcarrasco/AnomalyALeRCE.
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A. Appendix I
In this work, six anomaly detection algorithms are examined in order to compare their performances in finding outliers. The
algorithms and their respective hyperparameters are:

Isolation Forest

The Isolation Forest algorithm is based on the concept of isolation trees. It randomly selects features and divides them into
distinct non-overlapping regions using a randomly selected threshold criterion. The anomaly score is proportional to the
number of splits required to isolate each object in the sample. Anomalous objects are expected to require fewer splits to be
isolated. To address the issue of overfitting, Isolation Forest employs ensembles of isolation trees.

We utilized the implementation of Isolation Forest provided by scikit-learn. The hyperparameters were set as follows:
number of trees = 100, number of samples to train each base estimator = 256, and contamination parameter = 0.1. These
values were recommended in the original work by Liu et al. (2012). Since outliers were not used for training, we did not
perform hyperparameter selection through cross-validation.

One-Class Support Vector Machine

The One-Class Support Vector Machine (OCSVM) is an anomaly detection method based on Support Vector Machines
(SVM). OCSVM maps the data into a new feature space, where the inner product between two objects can be represented
with a kernel function, such as the Gaussian kernel. It learns a hyperplane in this feature space that separates the region
where most of the data lie. During testing, the anomaly score is computed by evaluating the distance of data points with
respect to the learned hyperplane.

We used the One-Class SVM implementation provided by scikit-learn with the radial basis function (RBF) kernel. The
hyperparameters were set to ν = 0.01 and the contamination parameter c = 0.1, following the default values. As the
anomalous samples were assumed to be unknown, we did not perform hyperparameter selection and used the default settings.

Autoencoder

Autoencoders (AE) are unsupervised neural network algorithms that aim to reconstruct the input data using a lower-
dimensional representation called the latent space. They consist of an encoder function that maps the input data to the
lower-dimensional representation and a decoder function that reconstructs the original data from the latent space. AE’s
effectiveness in anomaly detection is attributed to the assumption that anomalies are incompressible and cannot be effectively
reconstructed from low-dimensional projections. The reconstruction error, computed as the mean squared error, serves as
the anomaly score.

We implemented the Autoencoder using PyTorch 1.0.0. Our model architecture consisted in an encoder with 4 hidden layers
with {512, 256, 128, 64} neurons, and a decoder with {64, 128, 256, 512} neurons. We use batch normalization and Leaky
ReLU as activation function, except for the last layer that used a Tanh activation function. We selected the hyperparameters
by considering the reconstruction error over a validation set consisting only of inliers.

Variational Autoencoder

Variational Autoencoders (VAE) extend autoencoders by incorporating a regularization term. This term enforces the latent
space to follow a known distribution, typically a normal distribution. By generating multiple reconstructions for each sample
and averaging their reconstruction errors, VAEs compute an anomaly score.

We implemented the Variational Autoencoder using PyTorch 1.0.0. We use the same model architecture as the autoencoder,
but we add two extra layers at the end of the encoder to learn the parameters µ and σ of the normal distribution. We selected
the hyperparameters using the unsupervised loss function over a validation set consisting only of inliers.

Deep Support Vector Data Description

To train the Deep Support Vector Data Description (Deep SVDD), an Autoencoder is trained until convergence. Then, the
decoder is removed, and the center of the hypersphere is estimated as the average of the encoder’s outputs on the training
data. Subsequently, the parameters of the encoder are re-optimized using the pretrained parameters, with the objective
of minimizing the distance between the encoder’s output and the center of the hypersphere, along with a weight decay
regularizer.

During testing, the anomaly score is defined as the distance between each data point and the center of the hypersphere.
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We implemented Deep SVDD using PyTorch 1.0.0. We use the same model architecture as the encoder of the autoencoder.
The hyperparameter λ = 0.5 × 10−6 was selected by measuring the unsupervised loss function over a validation set of
inliers.

Multi-Class Deep SVDD

Similar to Deep SVDD, an Autoencoder is trained until convergence, and the decoder is removed. The centers of the
hyperspheres are estimated as the averages of the encoder’s outputs, considering only the data points of each class. The
parameters of the encoder are re-optimized using a similar objective as Deep SVDD, but considering multiple hyperspheres.

During testing, the anomaly score is determined by measuring the distance between each data point and the center of its
closest hypersphere.

We implemented MCDSVDD using PyTorch 1.0.0. We use the same model architecture as the encoder of the autoencoder.
We set the hyperparameter λ = 0.5× 10−6 through cross-validation of the unsupervised loss function over a validation set
consisting only of inliers.


