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Abstract

The ability to compress observational data and ac-
curately estimate physical parameters relies heav-
ily on informative summary statistics. In this
paper, we introduce the use of mutual informa-
tion (MI) as a means of evaluating the quality of
summary statistics in inference tasks. MI can as-
sess the sufficiency of summaries, and provide a
quantitative basis for comparison. We propose
to estimate MI using the Barber-Agakov lower
bound and normalizing flow based variational dis-
tributions. To demonstrate the effectiveness of
our method, we compare three different summary
statistics (namely the power spectrum, bispectrum,
and scattering transform) in the context of infer-
ring reionization parameters from mock images
of 21 cm observations with Square Kilometre Ar-
ray. We find that this approach is able to correctly
assess the informativeness of different summary
statistics and allows us to select the optimal set of
statistics for inference tasks.

1. Introduction

Statistical inferences in cosmology consist of two parts.
Firstly, summary statistics are selected to extract relevant
information from raw observed data. These statistics are
then used to infer parameters for a given physical model.
The choice of summary statistics is crucial for obtaining
better constraints on these physical parameters. Many sum-
mary statistics have been proposed to extract information
from various types of astronomical datasets. For Cosmic Mi-
crowave Background (CMB) studies, analyses have largely
focused on the power spectrum (Planck Collaboration et al.,
2016). However, other cosmological fields, such as the 21
cm signal, are expected to be highly non-Gaussian, necessi-

'Department  of Astronomy, Tsinghua
Beijing 100084, China. Correspondence to:
<suic20@mails.tsinghua.edu.cn>.

University,
Ce Sui

ICML 2023 Workshop on Machine Learning for Astrophysics,
Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright 2023 by the
author(s).

tating more informative summary statistics. As a result, new
summary statistics have been proposed in 21 cm cosmology,
such as the bispectrum (Yoshiura et al., 2015; Shimabukuro
etal., 2016) and Minkowski Functionals (Gleser et al., 2006;
Kapahtia et al., 2021). Furthermore, neural networks are
being explored for learning summaries from input images
in the context of cosmological inference (Zhao et al., 2022;
Prelogovi¢ et al., 2022; Charnock et al., 2018).

An important task is to predict and compare the effectiveness
of different summary statistics in constraining target phys-
ical parameters. There is no universal way to do that in a
given inference task, as summary statistics are often derived
from different frameworks. Traditional approaches for com-
paring new statistics often involve posterior comparisons
and Fisher analysis (Watkinson et al., 2022; Shimabukuro
et al., 2017; Zhao et al., 2022). These methods typically
consider one set of fiducial parameters. The former ap-
proach relies on inference results from mock observations
and assesses the effectiveness of different statistics by ex-
amining their posteriors. The latter approach often uses
Gaussian assumptions and calculates the Fisher information
at the fiducial parameter. However, predictions obtained
from these methods only consider a single point in the pa-
rameter space, which might not fully capture the overall
performance of the statistics. One way to evaluate statistics
across a large parameter space is through regression perfor-
mance. This involves assessing the optimal performance
that the statistics can achieve in predicting parameters across
the entire parameter range (Zhao et al., 2022; Prelogovié
et al., 2022). However, this approach only considers point
estimates and does not provide a comprehensive analysis of
statistical performance.

A similar problem is extensively studied in the machine
learning community in the context of representation learn-
ing. The goal of representation learning is to find a low-
dimensional representation that preserves most of the infor-
mation from the original data. It has been shown that such
task can be framed as a problem of maximizing the mutual
information (MI) between the learned summaries and the
original data (Devon Hjelm et al., 2018; van den Oord et al.,
2018). This suggests that we may use a similar metric to
quantify the effectiveness of different summary statistics.
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In this study, we introduce a novel approach to compare
different summary statistics by estimating the mutual in-
formation between the statistics and target parameters in a
given inference task. This method enables a quantitative
comparison of the effectiveness of various statistics by con-
sidering their statistical dependence on parameters. Unlike
many previous methods that focus on a single point in the
parameter space, our approach takes into account the en-
tire parameter range, providing a comprehensive evaluation
of how well the summary statistics capture the necessary
information for inference.

2. Method

In statistical inference we seek to estimate the parameters
0 of a physical model given some input observation z. In
Bayesian inference, this requires estimating the posterior
distribution p(6|z). However, the original observation is typ-
ically high-dimensional and contains a substantial amount
of irrelevant information. To address this, we often utilize
summary statistics to compress the data into more compact
representations s that contain the most critical information
about the parameter.

To achieve optimal performance, summary statistics should
capture all the relevant information contained in the original
observation x regarding the parameter of interest. This leads
to the definition of sufficient statistics as those that satisfy
the condition

p(0lz,s) = p(0ls), M

which implies that once the summary statistics are given,
the original data does not provide additional information. If
a summary statistic closely resembles the sufficient statistic,
it is likely to provide more accurate and reliable information
about the underlying parameter.

2.1. Mutual information as a probe of Sufficient
Statistics

Mutual information is a fundamental concept in statistical
inference and information theory that measures the amount
of information one random variable contains about another.
Mutual information is defined as

I(z;y) = KL(p(x,y)|lp(z)p(y))
p(z,y) @
Ea s 5o |

where x and y are random variables, and p(z, y), p(z), and
p(y) are their joint and marginal probability distributions, re-
spectively. Mutual information quantifies the difference be-
tween the joint distribution and the product of the marginal
distributions using the Kullback-Leibler divergence (KLD).
If x and y are independent, their mutual information is zero,
indicating that knowing x does not provide any information

about y. Conversely, if « contains information about y, mu-
tual information is non-zero, and a higher value indicates a
stronger dependence between the two variables.

Mutual information can also be used to define sufficient
statistics. For Bayesian inference, we can show that Equa-
tion 1 is equivalent to

I(0;x) = 1(0; s(z)), 3)

which implies that sufficient statistics s contain all the infor-
mation about 6 in the original observation x. Thus, by mea-
suring the mutual information between a summary statistic
and the target parameters, we can evaluate the sufficiency of
the statistic. This interpretation provides a powerful tool for
selecting summary statistics and assessing their suitability
for use in statistical inference.

2.2. Mutual information estimation

Estimating mutual information is a challenging task in prac-
tice as it requires the computation of the KLD between
complex distributions, which are often unknown. For many
cosmological inference tasks we do not have access to a
tractable joint distribution of the physical parameters and
the data summaries, p(#, ). Hence, it is infeasible to di-
rectly evaluate the mutual information between them. How-
ever, we can use variational distributions to approximate the
real distributions, and obtain variational bounds of mutual
information.

Assuming that we have a variational distribution ¢(6|s), we
can utilize it to replace the actual conditional distribution
p(0|s) and prove that it generates a lower bound on MI.
Specifically, we have

1(0;s) =Ky, 9| 0) }
_ [ ( |s)p(0]s)
oo | O o “
:Ep((%S) }

+ Ep(s) [KL( (©1)14(0]s))]
>y 0,5 log q(0]5)] + R(0),

where h(0) = —Ep)[log p(9)] is the differential entropy
of 6 and the last inequality is due to the non-negativity of
the KLD. This is often referred as the Barber-Agakov lower
bound (Barber & Agakov, 2004; Poole et al., 2019). It
is evident from this equation that the replacement of the
real conditional distribution with a variational model re-
sults in a lower bound on MI, which is only tight when
p(0]s) = q(0|s). In cosmological inference problems, cal-
culating the differential entropy of the prior distribution
of 6 is relatively straightforward as it is typically tractable.
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For the first component, we can fit a highly flexible gener-
ative model to a large number of parameter-statistic pairs,
yielding a variational distribution that approximates the ac-
tual distribution closely. In this work, we use a masked
autoregressive flow (MAF; Papamakarios et al., 2017) as
the variational distribution. We optimize MAFs by mini-
mizing the negative log-probability, which is equivalent to
maximizing the lower bound. In principle, alternative loss
functions (e.g. Zeghal et al., 2022) can also be employed.

2.3. Relation with other methods

We can also consider other methods commonly used for
comparing data summaries as processes of MI estimation.
For instance, we can write MI as

1(6; 5) =Ep(s) [KL(p(0]5)]|p(0))]- ©)

Using this expression, we can estimate MI by assuming
p(0]s) = p(0|sp), where we replace the true conditional
distribution with a posterior distribution that we estimate
at a particular observation sg. In this case, the estimated
MI becomes I(6; s) = K L(p(0]so)||p(#)), which measures
the difference between the estimated posterior and the prior.
This is similar to comparing different statistics by exam-
ining their posteriors on one mock observation. However,
this estimation has high variance since it uses only one es-
timated posterior distribution to represent the conditional
distribution.

Regression performance can also be utilized to formulate a
Barber-Agakov lower bound. In one dimensional case if we
let g(0]s) = N (f(s),Epo.s) [(8 — f(s5))?]) in equation 4,
where f(s) is a estimator trained to predict 6 from given
summaries statistics s, then:

1(0;5) ZEp(o,s [log q(0]s)] + h(6)

_h(0) - 1/210g By [0 — £ ©)
—1/2log(2me),

where a smaller mean square error produces a larger MI
lower bound. This implies that summary statistics that can
more accurately predict the parameters in a regression task
may contain more information about those parameters. Note
that if we further assume the estimator is unbiased and
efficient, we can also derive a similar relation between MI
and Fisher information (Brunel & Nadal, 1998). In our
experiments, we train Light Gradient Boosting Machines
(LGBM,; Ke et al., 2017) to predict parameters directly from
data summaries. We use the regression performance to
validate the MI estimation from MAFs.

3. Data

As a demonstration of the this method, we consider an
inference problem in 21 cm cosmology, where we need to

constrain two Reionization parameters based on mock SKA
(Square Kilometre Array) images. The 21 cm lightcones are
simulated using the publicly available code 21cmFAST!
(Mesinger & Furlanetto, 2007; Mesinger et al., 2011). The
simulations were performed on a cubic box of 100 comoving
Mpc on each side, with 663 grid cells. In this work, we use
coeval boxes at redshift 11.76. We consider the following
reionization parameters in simulations and inferences:(1) ¢,
the ionizing efficiency. We vary ¢ as 10 < ¢ < 250. (2) Ty,
the minimum virial temperature of halos that host ionizing
sources. We vary this parameter as 4 < log,, (Tvir/K) < 6.

To include observational effects, signals with three different
levels of signal contamination are considered here: (i) signal
with k|, = 0 mode removal (removal of the mean for each
frequency slice); (ii) signal with the SKA thermal noise;
(iii) signal with the SKA thermal noise + residual fore-
ground after foreground removal with the singular value
decomposition. The thermal noise is produced using the
Tools21cm? (Giri et al., 2020) package by considering
the SKA1-Low configuration. The foreground simulation
is based on the GSM-building model in Zheng et al. (2017).
We generate 10000 data cubes for each case with differ-
ent reionization parameters and randomized observational
effects.

In this work, we try to evaluate the effectiveness of three
different summary statistics in the inference reionization
parameters: power spectrum (PS), bispectrum (BS) and scat-
tering transform (ST). For BS, we find that it may contain
many uninformative features, which can cause overfitting
issues. To address this problem, we conduct feature se-
lection using LGBM by comparing feature importance for
parameter estimation in regression tasks. Note that the MI
estimates after feature selection are still lower bounds due
to data processing inequality. The details of these summary
statistics and the process of feature selection are given in
Appendix A.

4. Results

Comparisons between different summary statistics: We
present our MI estimation results for different data sum-
maries and contamination levels in Figure 1. Our results
indicate that the presence of observational effects can sig-
nificantly reduce the amount of information available about
reionization parameters in our mock images. As we increase
the level of contamination, the estimated MI decreases ac-
cordingly. Furthermore, we find that in all three datasets
used in our experiments, the ST is better at extracting phys-
ical information than correlation functions. This is an ex-
pected result since ST is designed to capture more spatial

"https://github.com/andreimesinger/21cmFAST
“https://github.com/sambit-giri/tools21cm
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Figure 1. The estimated mutual information (MI) between target parameters and various summary statistics under three levels of
contamination: (1) pure signal (blue bars) obtained by removing only the k| = 0 mode, (2) signal contaminated by thermal noise from
the SKA telescope (orange bars), and (3) signal contaminated by both thermal noise and residual foreground (green bars). We estimated
MI for four different statistics for each dataset: power spectrum (PS), bispectrum (BS), scattering transform (ST), and a combination of
BS and PS (BS&PS).

information (Cheng et al., 2020). The performance of the
correlation functions is consistent with previous studies
(Watkinson et al., 2022; Shimabukuro et al., 2017), where
PS and BS are evaluated in a similar inference task. We also
notice that the MI estimation of BS in the highest contami-
nation case is negative, while MI should be non-negative by
definition. This is because we are estimating a lower bound
and the variational distribution is not exact. This result in-

dicates that BS in this case provides nearly no information
about the reionization parameters.

Validation with regression tasks: Our results are largely
consistent with theoretical interpretations and previous
works. To further validate their correctness, we trained
LGBM to predict reionization parameters and evaluated the
regression performance for each dataset. As mentioned in
Section 2.3, regression performance can also be used as an
estimator for mutual information by selecting a specific vari-
ational distribution. We used the R? score to evaluate the
regression performance of LGBM and present the results in
Figure 2, where we also plotted the previous MI estimates.
The two MI estimators are observed to be consistent with
each other. However, we note that the R? score was unable

to show the difference between summary statistics when
mutual information was relatively high

5. Summary
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Our study presents a practical framework for evaluating the
effectiveness of summary statistics in a specific inference
problem. We accomplish this by estimating the mutual in-
formation between these statistics and the target parameters

Figure 2. Comparison between the optimal R? achieved by differ-
ent statistics and their MI estimates. The R? values(right y-axis)
are presented as points overlaid on the MI results. The regression

performance for two target parameters, 7y and , is indicated by
the blue and red color, respectively.
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Unlike existing approaches that rely on inference perfor-
mance assuming fiducial parameters, our method provides a
more robust assessment. We validate this methodology by
applying it to the task of inferring reionization parameters
from simulated SKA images. Our results demonstrate that
the MI estimates agree with previous works and regression-
based verification. This novel framework introduces a valu-
able tool for evaluating the informativeness of summary
statistics in the field of cosmology.
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A. Summary Statistics

In this work, we try to evaluate the effectiveness of three different summary statistics in the inference of reionization
parameters: power spectrum, bispectrum and scattering transform.

Power spectrum (PS) Py (k) is the most commonly used statistic, defined as:
(621(K)da21 (K')) = (27)367 (k + k') Par(k), @)

where d5; (k) is the Fourier transform of the 21 cm brightness temperature field, 6 is the Dirac delta function and (...)
represents an ensemble average. We use the Tools21cm (Giri et al., 2020) package to calculate the spherical averaged
power spectrum of the mock observation.

Bispectrum (BS) is the Fourier dual of three-point correlation function, defined as:
(021 (k1) 021 (k2) 091 (k3)) = (27r)36 (k1 + ko + k3) B (k1,ka, k3) . ®)

The BS is a function of three k vectors that form a closed triangle (k; + k2 + k3=0). In this work, we consider only
isosceles triangles and use the python package Py1ians?(Villaescusa-Navarro, 2018) to calculate the bispectrum of mock
observation. We normalize BS following Watkinson et al. (2022) to separate non-Gaussian information. In our experiments
we also consider a combination PS and BS by directly concatenating them and refer it as BS&PS. For BS, we observe that it
may contain some uninformative features (here each feature represents the bispectrum value calculated for a specific triangle
configuration), which can lead to overfitting issues. To tackle this problem, we employ feature selection using the LGBM.
We first add random noise features to the bispectrum and conduct regression with LGBM. The regression process is repeated
multiple times to calculate the mean and variance of the importance of the random noise features. Subsequently, we identify
all features that fall within the 3-sigma range of the importance of the random features and exclude them from the fitting of
MAFs.

The solid harmonic wavelet scattering transform (ST), first introduced by Eickenberg et al. (2017; 2018), is a method for
compressing data for inference by convolving the original fields with a cascade of solid harmonic wavelets, performing
non-linear modulus on the convolved fields, and integrating over all coordinates. It is an effective way to capture information
at different scales and orientations, producing coefficients that are invariant to both translation and rotation. The ST is
implemented with the Kymat io # (Andreux et al., 2018) package.

3https://github.com/franciscovillaescusa/Pylians3
*https://www.kymat.io/



