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Abstract
The bulk kinematics and thermodynamics of hot
supernovae-driven galactic winds is critically de-
pendent on both the amount of swept up cool
clouds and non-spherical collimated flow geom-
etry. However, accurately parameterizing these
physics is difficult because their functional forms
are often unknown, and because the coupled non-
linear flow equations contain singularities. We
show that deep neural networks embedded as in-
dividual terms in the governing coupled ordinary
differential equations (ODEs) can robustly dis-
cover both of these physics, without any prior
knowledge of the true function structure, as a
supervised learning task. We optimize a loss func-
tion based on the Mach number, rather than the
explicitly solved-for 3 conserved variables, and
apply a penalty term towards near-diverging so-
lutions. The same neural network architecture is
used for learning both the hidden mass-loading
and surface area expansion rates. This work fur-
ther highlights the feasibility of neural ODEs as a
promising discovery tool with mechanistic inter-
pretability for non-linear inverse problems.

1. Introduction
Mathematics and the physical laws that have followed suit
are unreasonably effective in creating models with predic-
tive power for the natural sciences (Wigner, 1960). In
physics, understanding implies that the governing principles
are written in the form of explicit differential equations of
motion (Meiss, 2007). However, when modelling real world
systems, we do not always know what the true underlying
physics is.

In the context of explaining observations of nearby galactic
superwinds, recent works have suggested the inclusion of
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additional physics can help overcome the so-called “cloud-
crushing problem” (Klein et al., 1994), which challenges
the existence of observed high velocity cool clouds. These
efforts include incorporation of efficient multi-phase mix-
ing (Gronke & Oh, 2018; 2020), cosmic ray acceleration
(Quataert et al., 2022b;a), among many other mechanisms
(Faucher-Giguere & Oh, 2023). While incorporation of
new physics into semi-analytic models and 3D simulations
are a vibrant and active field of research (e.g., Schneider
& Robertson, 2015; Kim et al., 2020; Pandya et al., 2022;
Wibking & Krumholz, 2022; Smith et al., 2023; Nguyen
et al., 2023; Tan & Fielding, 2023, and many others), the
development of optimization methods to systematically dis-
cover and characterize the structure of physics from obser-
vational data has not received similar attention. Namely,
descriptions of superwinds from nearby starburst prototype
M82 have relied on parameter estimation of classic theoreti-
cal models (Chevalier & Clegg, 1985; Strickland & Heck-
man, 2009; Lopez et al., 2020; Nguyen & Thompson, 2021;
Yuan et al., 2023). Methods for developing new data-driven
models have not yet been explored for such systems.

Deep neural networks (LeCun et al., 2015; Goodfellow et al.,
2016) can be used as a universal approximator for unknown
functions and operators (Hornik et al., 1990; Lu et al., 2021).
Recently, deep neural networks have been used as numerical
discretization schemes of ODEs/PDEs (Chen et al., 2019)
based on the adjoint sensitivity method. This idea has been
expanded to a hybrid model termed the Universal Differen-
tial Equation (UDE, Rackauckas et al., 2020) that allows
one to freely augment ODEs/PDEs with universal approxi-
mators such as neural networks. Embedded neural networks
are guaranteed to obey conservation laws, as they can only
influence the dynamics of the system term by term. In this
paper, neural ODEs are ODEs with a neural network as a
part of the equations and are solved using standard numer-
ical methods (unlike Physics-Informed Neural Networks,
where the numerical solver is a “black box”). Neural net-
works embedded within ODEs/PDEs are a new and active
field of research and have been used to predict COVID-19
pandemic waves (Kuwahara & Bauch, 2023), and various
other applications within biology, chemistry, mathematics,
and physics (Vortmeyer-Kley et al., 2021; Gelbrecht et al.,
2021; Keith et al., 2021; Fronk & Petzold, 2023; Stepaniants
et al., 2023; Yin et al., 2023; Santana et al., 2023).
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We present the first analysis of neural coupled ODEs, within
the UDE framework, that contain singularities. To illustrate
generality, we consider two experiments where the embed-
ded neural network learns two different types of physics:
1. mass-loading of swept up clouds, and, 2. the surface
area expansion rate attributed to flow geometry. We define
a custom loss function based solely on the Mach number,
rather than the 3 individual conserved variables, and adopt
linear scaling towards early integration steps. Additionally,
this loss function penalizes solutions that approach the sonic
point, which is infamously known to lead to numerical in-
stability (Lamers & Cassinelli, 1999). We will show that
regression on such a loss function is sufficient to charac-
terize the underlying v, ρ, and P profiles and discover the
hidden physics embedded within the training data.

2. Methods
The hydrodynamic equations for a non-radiative highly su-
personic steady-state hot flow moving in the x direction are
(Cowie et al., 1981; Nguyen & Thompson, 2021)
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where v, ρ, P , ϵ, µ̇, and A(x) are the bulk velocity, density,
pressure, specific internal energy, volumetric mass-loading
rate, and flow area, respectively. By substituting the equa-
tions into each other, the derivatives will each contain the
singularity: (M2 − 1)−1 (i.e., is a pole at the sonic point
where M = 1. See Lamers & Cassinelli, 1999). We
consider two experiments of training a neural network to
learn: 1. the volumetric mass-loading rate, µ̇, and 2. the
surface area expansion rate d lnA/dx. In each, the train-
ing dataset is calculated with the analytic functional form
of either µ̇(x) or d lnA/dx. After generating the training
dataset, we forget the true physical variable and replace it
with neural network Φ(x) that has a total of 5 layers (See
Fig. 1 for details).

The dimensions of each simulation is 0.3 kpc ≤ x ≤ 2kpc
and number of steps nx = 500. We have assumed the
flow to have already left the starburst volume R = 0.3 kpc
(Chevalier & Clegg, 1985). The initial conditions are then
v0 = 1500 km s−1, n0 = 10 cm−3, and T0 = 107 K, which
corresponds to a highly supersonic (M0 ∼ 3) non-radiative
wind that has asymptotic velocities roughly within the al-
lowed range for starburst galaxy M82 (Strickland & Heck-
man, 2009).

We calculate the loss function using the Mach number
M = v/(γP/ρ)1/2. We find this method to outperform

Dense(1, 64, swish)

Dense(64, 64, swish) + skip

Dense(64, 64, swish) + skip

Dense(64, 64, swish) + skip

Dense(64, 1, relu)

Figure 1. Architecture of neural network Φ(x). The input is a sin-
gle position x, which then gets passed through a total of 5 Dense
layers where the three hidden layers contain skip connections and
64 nodes. Each layer uses swish as the activation function, with
the output layer using relu to ensure positivity.

summing Mean-Squared-Error (MSE) of the individual con-
served variables v, ρ, and P , even when using min-max
normalization. The loss function is

L =

nx∑
i

[
Wi ×

(
Mi − M̂i

)2]
+ ζpenalty(M) (4)

The first term is a weighted MSE, where the weights Wi

linearly scale the MSE as a function of nx, where W0 = 1
and Wnx = κ < 1. We do not include division by nx, as
it does not impact training. We vary κ during training for
each optimization algorithm (details below). This scaling in-
creases sensitivity to early solutions, which is important for
non-linear problems. The latter term ζpenalty(M) penalizes
solutions with Mach numbers close to 1, as to prevent the
neural network from sampling diverging solutions (M = 1)
and is a function of the total loss Lj and Mi as:

ζpenalty,j = Lj × ω

nx∑
i

[
1−

(
1− M̂i

)2]
(5)

(Mmin ≤ M̂i ≤ Mmax), (6)

where j is the training iteration, ω is the penalty weight,
Mmin = 1, and Mmax = 1.5 sets the threshold for penal-
ization. We summarize the training process in the pseudo-
code below.

We solve the equations (both classical and neural) using
standard numerical methods involving 5th order RK4 (Tsi-
touras, 2011) with adaptive step size control (Rackauckas
& Nie, 2017). We calculate gradients using forward-mode
automatic differentiation (Revels et al., 2016). All of the
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Algorithm 1 Training Psuedo-Code
Input: Initial Condition Array (v0, ρ0, P0) size 1× 3
1. Calculate true solution using µ̇(x) or A(x) in
Eqs. 1,2,3. The solution is then a matrix y of size nx × 3.
Use y to calculate M which is size nx × 1.
2. Calculate prediction using neural network Φ(x)p0

within neural equations. p0 is initial parameters array for
constructing Φ(x)p0 . The solution is a matrix ŷ0 of size
nx × 3. Use ŷ0 to calculate M̂0 which is size nx × 1.
for j = 0 to niters do

Reconstruct neural net Φ(x)pj using parameters pj .
Calculate ŷj , then M̂j .
Calculate loss Lj using MSE between M and M̂j

(batched over all positions nx)
if Mmin ≤ M̂j ≤ Mmax (batch) then
Lj+ = Lj ∗ Penalty Term

end if
Optimize for new set of parameters pj that minimize
Lj using ADAM or BFGS optimization algorithms.

end for if j = niters or gradient tolerance met

work is done using packages contained within Julia’s Sci-
entific Machine Learning (SciML) ecosystem (Rackauckas
et al., 2020).

3. Results
Learning Mass-loading: We test the neural network’s abil-
ity to learn mass-loading µ̇(x) = µ̇(λ/x)∆. This rep-
resents intense cloud entrainment immediately after the
wind leaves the host galaxy (λ = 0.3 kpc, ∆ = 4, and
µ̇0 = 500M⊙ yr−1 kpc−3). Here we take the flow geom-
etry to be spherical (i.e., A(x) ∝ x2). After calculating
the training (true) solution with this function, we “forget”
µ̇(x) and replace it with a neural network Φ(x) (See Fig. 1)
such that Equations 1, 2, and 3 are re-written as neural wind
equations:
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We initialize the neural network with an output of approxi-
mately 0 (using Flux.jl’s default Glorot initialization).
This implies that the first prediction solution is identical
to an adiabatic spherical wind with no mass-loading (i.e.,
µ̇ ≃ 0). We train for niters = 300 iterations using ADAM
with a learning rate of 0.01 and exponential decay rate of
0.98, followed by additional iterations using BFGS. We use
κ = 0.1 for scaling solutions. We use penalty term ω = 0.1

and ω = 0.75 for ADAM and BFGS, respectively. Optimiza-
tion with BFGS converges to the set gradient tolerance of
10−9 after 304 iterations.

In the left three panels of Figure 2, we plot three different
solutions for velocity, number density (n = ρ/µmp), and
temperature (T = P/nkB) radial profile predictions from:
the true solution (solid black), the untrained model (orange
dashed), the ADAM trained model (purple dashed), and the
ADAM + BFGS trained (blue dashed). Although we explic-
itly train on only the Mach number, the three conserved
variables (v, ρ, and P ) end up getting well-matched (blue
dashed lines). In the right most panel of Figure 2, we plot
various volumetric mass-loading rates calculated with the
true function µ̇ = µ̇0(λ/x)

∆ (black solid) and the output
of the neural networks (colored dashed). In Figure 3, we
plot the learning curve. The bumps in the ADAM portion
of the learning curve (first 300 iterations), demonstrate the
optimizer sampling solutions within the penalty threshold,
and then updating the mass-loading rate, encoded by Φ(x),
for new predictions that move away from such penalties.
Training decreases the normalized loss by nearly 7 orders
of magnitude. The predictions of the neural ODEs agree
with the true solutions, and the output of the neural network
indicate that it has learned the true mass-loading function.

Learning Surface Area Expansion: We now test the neu-
ral network’s ability to learn properties of the flow geometry
A(x) = A0(1 + (x/η)2), which describes a flared-cylinder
flow tube that has previously been used for solar coronal
hole flux tubes (Kopp & Holzer, 1976) and Milky-Way disk
winds (Everett et al., 2008). Qualitatively, this function
implies a roughly constant flow area up until η when the
flow begins to undergo spherical expansion. For illustra-
tion, Equation 1 can be expanded into differential form as:
d ln ρ/dx + d ln v/dx + d lnA/dx = µ̇/ρv. This means
that the effects of flow geometry are governed specifically
by the surface area expansion rate d lnA/dx, and not the
magnitude of A(x) (e.g., flows expanding into 4πx2 or
2πx2 behave the same). Setting µ̇ = 0 we generate the
training dataset using A(x) = A0(1 + (x/η)2) so that
d lnA/dx = 2x/(η2 + x2), where A0 = 0.25 kpc and
η = 1.0 kpc. We now “forget” d lnA/dx, replacing it with
neural network Φ(x). Again, we initialize the neural net-
work with output of approximately 0. This implies that the
first prediction solution is identical to an adiabatic planar
wind (i.e., A(x) ≃ constant). We train for 300 iterations us-
ing ADAM with a learning rate of 0.01 and exponential decay
rate of 0.98, followed by additional iterations using BFGS.
We take κ = 0.1 and ω = 0.1. Optimization with BFGS
converges to the set gradient tolerance after 47 iterations.

In the left panel of Figure 4, we plot the Mach number solu-
tion calculated with the true area function (black line) and
from predictions of the neural ODEs with varied degrees
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Figure 2. Density, temperature, and velocity profiles for solutions (left 3 panels) calculated with the mass-loading (right panel) given by
the true function (black solid) and the output of neural networks (colored dashed). After BFGS and ADAM training, the three kinematic
and thermodynamic profiles are well-matched (blue dashed on black lines), and the underlying mass-loading function was learned.

Figure 3. Learning curve for training neural network Φ(x) to learn
underlying volumetric mass-loading rate µ̇ from the solved wind
solutions. The bumps in the loss function during ADAM training
epochs are attributed to penalties for near-diverging solutions.

Figure 4. Left: Mach number solutions calculated with the true
area function (black solid), predictions from the neural ODEs
(colored dashed lines). Right: The true surface area expansion rate
for a flared cylinder d logA/dx (black solid) and the output from
neural network Φ(x) for various degrees of training.

of training (colored dashed lines). We see that the best fit-
ting line is, again, the model that underwent both ADAM
and BFGS optimization. In the right panel we plot the sur-
face area expansion rate calculated for the true surface area
function (black), and the direct output of neural networks
(colored dashed), finding agreement between the two (blue
dashed and solid black).

4. Conclusion and Future Work
In this work we show that deep neural networks embed-
ded as individual terms within astrophysical wind equations
can discover the true functional form of both mass-loading
and flow geometry expansion, without any prior knowledge.
Additionally, to our knowledge at the time of writing, this
is the first use of the UDE framework for coupled ODEs
that contain singularities (i.e., poles at M = 1). To avoid
diverging solutions, we introduced a penalty term that ac-
tivates when the predicted solution falls within a threshold.
This method is shown to be effective, and guides the opti-
mization away from diverging solutions (Fig. 3). We require
BFGS optimization after ADAM to converge to the functional
form of the true solution. BFGS is a quasi-Newton method
that uses second-order derivative information that outper-
forms ADAM here at low values of normalized loss. We note
that using ADAM at the beginning of training is still bene-
ficial, as it is faster and can overcome local minima better.
We demonstrate the same neural network architecture can
be used to learn two very different types of physics. We
show that the outputs of the neural network are interpretable
(Figs. 2 and 4). We find that training on the Mach number
M outperformed training on the conserved variables v, ρ,
and P . Beyond winds, we expect neural ODEs to be useful
in discovering physics in other non-linear systems.
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In future work we would like to explore the predictive power
of the trained neural networks, beyond the training dataset.
Here, we specifically studied the ability of a neural net-
work embedded within coupled ODEs to accurately capture
physics during supervised training, and showcase the inter-
pretability of the result. One possible direction is to use the
SINDy (Brunton et al., 2016) algorithm to extract symbolic
representations of the trained neural networks which has
been shown to be useful in creating hybrid models capa-
ble of making accurate long-term predictions for partially
observed non-linear systems (Rackauckas et al., 2020; San-
tana et al., 2023; Fronk & Petzold, 2023). However, this
approach requires the creation of a basis function library,
which may not be generally applicable, especially when
complicated non-polynomial functions are involved. If we
continue to use the direct output of the trained neural net-
work, careful considerations will need to be made towards:
1. more advanced neural network architectures that better
capture long-term dependencies such as LSTMs (as opposed
to the simple forward-feed neural network used here), and 2.
overfitting. Additionally, future work will investigate how
noisy data may affect learning outcomes. We note that even
in cases where predictive power beyond the training dataset
is limited, the use of neural ODEs as a discovery tool for a
contained dataset is still useful, as we demonstrate here.
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